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Technical Note

Transverse earthquake-induced forces 
in continuous bridges
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(Received August 1, 2001, Accepted October 21, 2002)

Abstract. A simplified rational method is developed to evaluate transverse earthquake-induced forces in
continuous bridges. This method models the bridge as a beam on elastic foundation, and assumes a
sinusoidal curve for both vibration mode shape and deflected shape in the transverse direction. The
principle of minimum total potential is used to calculate the displacements and the earthquake-induced
forces in the transverse direction. This method is concise and easy to apply, and hence, offers an attractive
alternative to a lengthy and time consuming three dimensional modeling of the bridge as given by
AASHTO under its Single Mode Spectral Analysis Method.
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1. Introduction

Evaluation of earthquake-induced forces in bridges is given by the American Association of State
Highway and Transportation Officials, AASHTO, in Division I-A (AASHTO 1992). The Single
Mode Spectral Analysis, SMSA, is the most used method to evaluate earthquake-induced forces in
the transverse direction.

Briefly, AASHTO procedures for SMSA method requires the application of a uniform load in the
transverse direction to find a corresponding deflected shape using three dimensional space frame
analysis. The resulting deflected shape is then used to calculate the period and the earthquake-
induced elastic forces in the bridge using some parameters, α, β, and γ which require explicit
integration operations (AASHTO 1992) (Buckle, Mayes, and Button 1987). Proportional to this
resulting deflected shape which is assumed to be the vibration mode shape, earthquake-induced
forces are applied to the bridge accordingly. In order to find the internal elastic forces in the bridge
components, mainly, the substructure and the foundations, a three dimensional space frame analysis
is needed again.

The SMSA method can be greatly simplified without relying on three dimensional space frame
analysis by using the principle of minimum total potential in conjunction with sinusoidal deflected
shape (mode of vibration). The sinusoidal mode shape offers the advantage of being readily
integrable. Furthermore, the actual vibration modes of beams are sinusoidal (Clough and Penzien
1993).
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2. Problem formulation

The development of the problem may be demonstrated using the example given by AASHTO in
its commentary as a reference. The AASHTO example consists of three span continuous deck slab
supported directly by two abutments A1 and A2; and two intermediate bents b1 and b2 as shown in
Fig. 1. The bridge dimensions are identified as shown in Fig. 1. Each bent consists of three circular
columns fixed to the slab at the top and also fixed at the foundation level. As a beam on elastic
foundation, the bridge is modeled as a beam, simply supported at A1 & A2; having elastic supports
at bent locations with equivalent stiffness at the bent-deck connection as shown in Fig. 2.

With these assumptions, moment of inertia of the bridge deck in the transverse direction is given
as Id = t.B3/12. The equivalent stiffness of the fixed-fixed bent, kb, is given as:

kb = 12 EIc/h3 (1)

AASHTO steps may be followed by applying a uniform load to the bridge in the transverse
direction. The resulting deflected shape may now be assumed to be sinusoidal as vs = vo sinπx/L as
shown in Fig. 2.

The principle of minimum total potential is used to calculate vo. The total potential, Π, is given as
the summation of the strain energy, U, and the potential energy, V (Chen and Lui 1987). The strain
energy is the result of the deformation of the deck, Ud, and the deformation of the bents, Ub,

∑

Fig. 2 Statical system of the bridge under transverse uniform load, po

Fig. 1 Bridge layout and dimensions
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whereas the potential energy is given as the negative of the work done by the external loads, Wpo.
These quantities may be evaluated as

 (2)

(3)

(4)

Adding Eq. (2), Eq. (3), and Eq. (4), we get the total potential energy, Π, as

Π = U + V = U d + Ub − Wpo

vo can be found by taking the first derivative of Π with respect to vo, i.e., 
Once vo is found, and noting that in most cases, bridges have uniform distribution of mass

(weight) along their longitudinal axes, i.e., w(x) = wo, the parameters α, β, and γ as given by
AASHTO can be calculated as

Substituting the above values in the period, T, and elastic force, pe, expressions as given by
AASHTO, we get

(5)

= (4/π)Cswosin(πx/L) = peosin(πx/L) (6)

where Cs is a normalized acceleration response spectrum. Cs is given by the following expression as
recommended by NEHRP (FEMA 1994)

Cs = 1.2AS/T2/3  (7)

where A and S are the seismic zone factor and soil profile parameter respectively.
The force in the columns due to the earthquake loading pe can be also found by similar simplified

procedures making use of the sinusoidal deflected shape again. By applying the earthquake load,
pe = peo sin(πx/L), to the bridge as shown in Fig. 3, the resulting deflected shape, ve, due to pe is
also assumed to be sinusoidal, i.e., ve = veosin(πx/L). Similar to the calculations of vo, principle of
minimum total potential energy is used to find veo

Ud
1
2
---EId v″( )2dx EId 2 vo( )2 π L⁄( )4sin2∫ πx L⁄( )dx⁄=∫=

1
4
---EId π4 L3⁄( ) vo( )2=

Ub
1
2
---kb vb( )2∑ 1

2
---kb vo( )2sin2 πxb L⁄( )∑= =

wpo povsdx∫ po vo∫ sin πx L⁄( )dx 2poL π⁄( )vo== =

∂Π ∂vo⁄ 0.=

α vs x( )dx∫ vosin πx L⁄( )dx∫ 2Lvo π⁄= = =

β w x( )vs x( )dx∫ wovo sin πx L⁄( )dx∫ 2Lwovo π⁄= = =

γ w x( )vs x( )2dx∫ wo vo( )2 sin2 πx L⁄( )dx∫ wo vo( )2L 2⁄= = =

T 2π γ
pogα
------------

π3wovo

pog
-----------------= =

pe βCs γ⁄( )w x( )vosin πx L⁄( )=

 2.5A≤
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Ud = EId (π 4/L3) (veo)2 (8)

Ub =  kb(veo)2 sin2 (πxb/L) (9)

The work done by pe is calculated as

Wpe = pevedx = peosin(πx/L)veosin(πx/L)dx 

                                     = peoveo L /2 (10)

Adding Eq. (8), Eq. (9), and Eq. (10), we get

Π = Ud + Ub − Wpe

veo can be found by taking the first derivative of Π with respect to veo, i.e., 
Finally, the elastic forces in the in the bent (columns) as shown in Fig. 4 are calculated as

Fb = kb · ve(x) = kb · veo sin (πx/L) (11)

Fc = kc · ve (x) = kc · veo sin (πx/L) (12)

3. Application of the method

The ease of application and the accuracy of the results may be demonstrated using the dimensions
of the same example given by AASHTO as a reference for comparison purposes.

Relevant parameters and properties (taken directly from AASHTO) are:

Seismic parameters: A = 0.4, S = 1.2
Modulus of Elasticity: Ec = 20700 MPa

1
4
---

1
2
---∑

∫ ∫

∂Π ∂veo⁄ 0=

Fig. 3 Bridge deflection under earthquake-induced
forces, pe

Fig. 4 Earthquake-induced forces in columns 



Transverse earthquake-induced forces in continuous bridges 737

Deck parameters: Id = 566 m4, L = 115 m, B = 25 m
w(x) = constant = wo = 296 kN /m

Column parameters: Ic = 0.112 m4, h = 7.620 m

Calculation of initial displacement due to a unit of uniformly distributed force (po = 1 kip/ft)
which is equivalent to 14.59 kN /m will be as follows:

Using Eq. (2): Ud = 187600 (vo)2 kN-m
Using Eq. (1): kb = 188640 kN/m
Using Eq. (3): Ub = 144600 (vo)2 kN-m
Using Eq. (4): Wpo = 1068 vo kN-m
Accordingly, Π = 187600 (vo)2 + 144600(vo)2 − 1068vo

= 664400vo − 1068 = 0
Resulting in, vo = 1.6 mm vs  (1.5 mm in AASHTO example)
Using Eq. (5): T = 0.310 sec vs (0.314 in AASHTO)
Using Eq. (7): Cs = 1.23
Using Eq. (6): pe = 377 sin (πx/L) kN/m

Note that pe is the earthquake-induced forces in the bridge which is proportional to the vibration
mode. To find the displacements and the forces in the bridge due to this load, pe, minimum total
potential is utilized again. In this case, the quantities Ud and Ub are readily available by replacing vo

by veo in the previous vo calculations, hence

Using Eq. (8): Ud = 187600 (veo)2 kN-m
Using Eq. (9): Ub = 144600 (veo)2 kN-m
Using Eq. (10): Wpe = 21678 veo kN-m
Accordingly, Π = 187600 (veo)2 + 144600 (veo)2 − 21678 veo

 = 664400 veo − 21678 = 0
Resulting in, veo = 32.6 mm vs (31.1 mm in AASHTO example)

The forces in the columns are calculated as function of their stiffness, i.e.,

For bent #1, using Eq. (12): Fc = 1752 kN vs (1761 kN in AASHTO example)
For bent #2, using Eq. (12): Fc = 1879 kN vs (1886 kN in AASHTO example)

4. Conclusions

Evaluation of earthquake-induced forces in the transverse direction in continuous bridges can be
greatly simplified without sacrificing the degree of accuracy offered by AASHTO procedures for the
Single Mode Spectral Analysis method. This simplification is attained by assuming that both
vibration mode shape and deflected shape in the transverse direction are described by sinusoidal
curves. The bridge is modeled as a beam on elastic foundation where the principle of minimum
total potential is used to formulate this problem. A great advantage can be taken of the properties of
the sinusoidal curves in the integration schemes. Together, these two elements yield final results in

∂Π ∂vo⁄

∂Π ∂veo⁄
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simple expressions for period parameters, earthquake-induced forces, and deflection that can be
handled with simple hand calculations. It has been demonstrated that the application of this
approach is very simple and yet preserves the degree of accuracy given by AASHTO procedures.
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