
Structural Engineering and Mechanics, Vol. 14, No. 6 (2002) 661-677 661

The buckling of a cross-ply laminated non-homogeneous 
orthotropic composite cylindrical thin shell 
under time dependent external pressure

A.H. Sofiyev†

Department of Civil Engineering, Suleyman Demirel University, Isparta, Turkey
 

(Received May 28, 2002, Accepted October 4, 2002)

Abstract U The subject of this investigation is to study the buckling of cross-ply laminated orthotropic
cylindrical thin shells with variable elasticity moduli and densities in the thickness direction, under
external pressure, which is a power function of time. The dynamic stability and compatibility equations
are obtained first. These equations are subsequently reduced to a system of time dependent differential
equations with variable coefficients by using Galerkin’s method. Finally, the critical dynamic and static
loads, the corresponding wave numbers, the dynamic factors, critical time and critical impulse are found
analytically by applying a modified form of the Ritz type variational method. The dynamic behavior of
cross-ply laminated cylindrical shells is investigated with: a) lamina that present variations in the elasticity
moduli and densities, b) different numbers and ordering of layers, and c) external pressures which vary
with different powers of time. It is concluded that all these factors contribute to appreciable effects on the
critical parameters of the problem in question.

Key words: buckling; non-homogeneous; cross-ply laminated; orthotropic shell; external pressure;
dynamic critical load; dynamic factor; critical impulse; wave number.

1. Introduction

The improvements of the strength properties of materials used in the production of structural
elements in contemporary technology aims at decreasing their sizes and weights. In this way it is
essential that computation methods take the actual behavior of materials into consideration. This fact
has drawn the attention of researchers to the elasticity problems of objects made of non-
homogeneous material in the last decades, see e.g., Lomakin (1976). The non-homogeneity of
materials stems from production techniques, surface and thermal polishing processes, effect of
radiation, etc. They cause the physical properties of materials to change from point to point as
continuous functions of the coordinates. Depending on the production method and the geometry of
the structural members, the dependence on the elastic properties can be given by different functions
for different coordinates. In actual engineering applications, the variation of the elastic properties of
materials remains in a bounded range and small enough, necessitating a restriction on the variation
functions. Researchers have given this restriction in different ways. 
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In the referenced works, and in most of available solutions to elastic non-homogoneity, it is
assumed that the material is isotropic or orthotropic, the Poisson’s ratio is constant, and the
elasticity moduli or density is either an exponential or a power function of a spatial variable
(Massalas et al. 1982, Heyliger and Juliani 1992, Tarn 1994, Mecitoglu 1996, Wang et al. 1998,
Guiterrez et al. 1998, Zhang and Hasebe 1999, Elishakoff 2001, Aksogan and Sofiyev 2000, 2002,
Sofiyev and Aksogan 2002).

Laminated structural elements composed of non-homogeneous materials with different elastic
properties are frequently used in contemporary engineering applications. The wide use of laminated
structural elements is due to the progress in the manufacturing of new composites, leading to
materials with the capability of attaining desired strengths and stiffness for specific applications see
Reddy (1997). Most materials in nature are of laminated texture. Structural elements made of such
materials can be constituted of many thin layers. The theory of such structural elements can be
considered as an extension of the classical theory of plates and shells (see Ambartsumian 1964,
Vinson and Sierakowski 1986). 

In recent years, the vibration, buckling and dynamic stability problems of cross-ply laminated
anisotropic shells, using different thin shell theories, has been studied by Jones and Morgan (1975),
Soldatos and Tzivanidis (1982), Tong et al. (1992, 1993) Argento and Scott (1993), Ng et al. (1998,
1999), Greenberg and Stavsky (1980, 1998), Mao et al. (1999) and Park et al. (2001). In these
problems, generally the dynamic stability problem has been solved numerically. This type of
solutions necessitate huge amount of computations and yield results, showing peculiar characteristics.

As pointed above, there are many solution methods in order to obtain the static critical loads at
different loading and limit conditions, which are consistent with experiments. Research publications
on cylindrical shells made of non-homogeneous composite materials under an external pressure,
which is a power function of time are very limited in number because of the complexities
encountered during manufacture and theoretical analysis; in the case of laminated shells such
complexities are further increased. One such problem, not considered till today, is the buckling of
laminated orthotropic composite cylindrical shells under the effect of external pressure, which is a
power function of time. The solution of a dynamic problem is reduced to the determination of the
dynamic factor for certain loading cases. The dynamic factor can be found, using different methods,
depending on the manner in which the loading is applied, particularly on the loading speed (Shumik
1970, Ogibalov et al. 1975, Sachenkov and Baktieva 1978, Yakushev 1990 and Tazyukov 1991).

The aim of the present research is to study the buckling problem of cross-ply laminated cylindrical
thin shells, made of orthotropic composite materials with elasticity moduli and densities varying
piecewise continuously in the thickness direction, subjected to external pressure varying as a power
function of time, by using the Ritz type variational method.

2. Problem formulation

Consider a circular cylindrical shell as shown in Fig. 1, is assumed to be thin, cross-ply laminated
and composed of an N layers of equal thickness δ of non-homogeneous orthotropic composite
materials perfectly bonded together. The shell thickness is denoted by 2h and the radius to the
middle surface by R. The Ox and Oy axes are in the middle plane of the shell in the axial and
tangential directions, respectively, and the Oz axis normal to them. The axes of orthotropy in all
layers are parallel to Ox and Oy axes. The cross-ply laminates are composed of laminas (plies) with
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their principal material directions (one being the fiber direction) aligned with the axial Ox-axis and
the circumferential Oy-axis of the shell. That is, the fibers in one layer are aligned in the axial
direction, whereas the fibers in the next layer are aligned in the circumferential direction. Theoretically
any sequence of orientations between 0o (Ox-direction) and 90o (Oy-direction) can be considered
(Jones and Morgan 1975).

The contact condition between any two consecutive layers is one of perfectly rigid bonding,
ensuring the satisfaction of the Kirchhoff-Love hypothesis for the whole shell, meaning that there is
a single displacement and a single strain expression for the whole shell and that the pressures at the
contact surfaces do not need any particular attention. During the deformation there is no slip and no
loss of contact between the contact surfaces of the layers. The elasticity moduli and densities of all
layers are defined as continuous functions of the thickness coordinate z as:

(1)

where  and  are the elasticity moduli in the x and y directions for the layer k + 1,
respectively,  is the shear modulus on the plane of the layer k + 1, and  is the density
of the homogeneous material for the layer k + 1, δ = 2h/N is the thickness of the layers. Additionally

(2)

where  are continuous functions giving the variations of the elasticity moduli and
densities in the layers, satisfying the condition , and µ is a variation coefficient
satisfying . The middle surface z= 0 is located at a layer interface for even values of N,
whereas for odd values of N the middle surface is located at the center of the middle layer. 

The shell is subjected to a external pressure varying as a power function of time in the form
(Yakushev 1990, Aksogan and Sofiyev 2002): 

(3)

where  and  are the membrane forces for the condition with zero initial moments, P1 is
static external pressure, P0 is the loading parameter, t is time and  is the power expressing the
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Fig. 1 Geometry and the cross-section of a cylindrical thin shell with N layers



664 A.H. Sofiyev

time dependence of the pressure.
According to the shell theory, the stress-strain relations for a thin cross-ply laminated layer are

given as follows

(4)

where  are the stresses in the layers. The quantities  for
orthotropic lamina are

(5)

where  and  are the Poisson’s ratios, assumed to be constant.
By Love’s first approximation theory the strain-displacement relations are given by

(6)

where  and  are the normal strains in the curvilinear coordinate directions x and y on the
middle surface, respectively, whereas  is the corresponding shear strain; χ11 and χ22 are the
curvatures of the deformed shell in the directions x and y, respectively, whereas χ12 is the twist of
the middle surface. The last three entities are given by

(7)

where W is the small incremental displacement of the middle surface in the normal direction. The
well known force and moment resultants are expressed by (Ambartsumian 1964, Leissa 1973, Jones
and Morgan 1975, Vinson and Sierakowski 1986)

(8) 

The relations between the forces N11, N22 and N12 and the stress function Φ are given by

(9)

The dynamic stability and compatibility equations of a cylindrical shell are given respectively by
(Agamirov 1990) 
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(10)

(11)

where 

(12) 

Substituting expressions (3-9) in Eqs. (10-11) a system of differential equations for the stress
function Φ and the normal displacement of the middle surface W can be obtained 

(13)

 (14)

where bij, cij, i, j = 1, 2, 3, 4 are given in the Appendix. 

3. Solution of the differential equations

Assuming the cylindrical shell to have simply supports at the ends, the solution of equation set
(13-14) in general is sought in the following form (Volmir 1967):

(15)

where m1 = mπR/L, m is the half wave length in the direction of the Ox axis, n is the wave number
in the direction of the Oy axis, ξmn(t) and ζmn(t) are the time dependent amplitudes. Substituting
expressions (15) in the equation set (13-14) and applying Galerkin’s method in the ranges 
and , in obtained equation set, the terms that are included by (15) expression, are
solved besides so one of this terms are selected and eliminating ζmn(t), a differential equation is
obtained: 
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where the following definitions apply:

(17)

(18)

An approximating function will be chosen as a first approximation as

 (19)

satisfying the initial conditions 

(20)

where Amn is found from the condition of transition to the static condition (Sachenkov and Baktieva
1978).

Multiplying (16) by  and integrating it with respect to τ, from 0 to τ and from 0 to 1, in that
order, the Ritz type variational method yields the following characteristic equation for finding the
critical load (see appendix of the paper Sofiyev and Aksogan 2002):

(21)

in which the new constants are defined as follows:

(22)

In cylindrical shells of medium length, the wave number n satisfies the inequality , then
Eq. (21) becomes (Aksogan and Sofiyev 2000):
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where the following definitions apply:

(26ab)

(27)

For P1 = 0 and very large P0 values . The solution of (25) yields

(28)

Considering expression (28) in the expression (26a), the following expression is found for the
wave number corresponding to the dynamic critical load:
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Substituting expression (29) in Eq. (24), the dynamic critical load is found as follows:
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It is indicated in Eq. (35), in the large values of the loading parameter, the values of the critical
impulse is independent from the length of the shell.

When, µ = 0, N = 1 the appropriate formulas for a single layer cylindrical shell made of a
homogeneous isotropic material are found as a special case (Sachenkov Baktieva 1978):

(36) 

(37)

(38)

(39)

(40)

where , ρ0 is density of the homogeneous isotropic material, V is speed of sound
propagation in a isotropic material, E0 is the modulus of elasticity of the homogeneous isotropic
material, h1 = 2h is thickness of the one layered cylindrical shell.

4. Numerical computations and results

For the numerical computations cross-ply laminated truncated conical shells up to 10 layers are
considered. The numerical computations were carried out for glass/epoxy and graphite/epoxy
composites with the following material properties (Jones and Morgan 1975, Vinson and Sierakowski
1986, Reddy 1997, Ng and Lam 1998, Mao 1999), 

shell and loading parameters (Agamirov 1990):

For the homogeneous case and an even number of layers the values of the critical parameters are
independent of the stacking sequence (cases 90o/0o/...) and (0o/90o/...) of cross-ply laminas (Table 1, 2).
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In Table 1 are presented the variation of the dynamic critical load, dynamic factor and critical
impulse of cross-ply laminated orthotropic composite cylindrical thin shells with the number and
ordering of layers, when elasticity moduli and densities functions are given as =

. Examining Table 1, we can see from the given variation function =
ϕi

k 1+( ) z( )
z i 1 2,=( )± ϕi

k 1+( ) z( ) z±

Fig. 2 Number and ordering of layers

Table 1 The variation of the dynamic critical load, dynamic factor and critical impulse with linear functions of
elasticity moduli and densities, number and ordering of layers (P = P0t, P0 = 100 MPa/s, R= 0.09 m,
2h = 0.0008 m, L = 0.2 m, k = 0, 1, 2, 3, 4)

Number and 
positioning
of layers

(MPa) Kd (MPa × s) (MPa) Kd (MPa · s)

µ = 0 µ = 0.9
i = 1 µ = 0 µ = 0.9

i = 1 µ = 0 µ = 0.9
i = 1

µ = 0.9
i = 1

µ = 0.9
i = 1

µ = 0.9
i = 1

Glass/epoxy

1 0o 1.3640 1.2608 19.851 23.234 0.0930 0.0795 1.2608 23.3337 0.0795
1 90o 1.7953 1.6594 15.083 17.653 0.1611 0.1377 1.6594 17.6529 0.1377
2  (0o/90o) 1.5401 1.4257 17.210 21.407 0.1186 0.1016 1.4581 18.2539 0.1063
2  (90o/0o) 1.5401 1.4581 17.210 18.254 0.1186 0.1063 1.4257 21.4089 0.1016
3 (0o/90o/0o) 1.3886 1.3238 20.371 22.414 0.0964 0.0876 1.3238 22.4143 0.0876
3 90o/0o/90o 1.7841 1.6089 13.425 16.507 0.1591 0.1294 1.6089 16.5070 0.1294
4 (0o/90o/...) 1.6028 1.5381 15.890 17.779 0.1285 0.1183 1.4284 19.4824 0.1020
4 (90o/0o/...) 1.6028 1.4284 15.890 19.482 0.1285 0.1020 1.5381 17.7786 0.1183
5 (0o/90o/...) 1.4880 1.4018 18.003 20.286 0.1107 0.0982 1.4018 20.2859 0.0982
5 (90o/0o/...) 1.7295 1.5722 14.012 16.957 0.1496 0.1236 1.5722 16.9566 0.1236

Graphite/epoxy

1 0o 1.0312 0.9532 21.204 24.817 0.0532 0.0454 0.9532 24.8170 0.0454
1 90o 2.2366 2.0674 9.7760 11.442 0.2501 0.2137 2.0674 11.4419 0.2137
2  (0o/90o) 1.4872 1.5115 11.975 13.236 0.1106 0.1142 1.3555 13.2269 0.0919
2  (90o/0o) 1.4872 1.3535 11.975 13.227 0.1106 0.0919 1.5115 13.2361 0.1142
3 0o/90o/0o 1.1915 1.1733 17.457 18.004 0.0710 0.0688 1.1733 18.0043 0.0688
3 90o/0o/90o 2.2166 1.9653 5.9036 7.5100 0.2457 0.1931 1.9653 7.5100 0.1931
4 (0o/90o/...) 1.8225 1.8231 7.9750 8.4409 0.1661 0.1662 1.5497 10.5252 0.1201
4 (90o/0o/...) 1.8225 1.5497 7.9750 10.525 0.1661 0.1201 1.8231 8.4409 0.1662
5 (0o/90o/...) 1.5716 1.5072 10.284 11.181 0.1235 0.1136 1.5072 11.1811 0.1136
5 (90o/0o/...) 2.1162 1.9001 6.2208 7.7164 0.2239 0.1805 1.9001 7.7164 0.1805
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(i = 1, 2) that the variation of the material densities has no effect on the critical parameters. 
When elasticity moduli and densities functions of the glass/epoxy (graphite/epoxy) composites are

given as  the maximum effect on the critical load and critical impulse was observed
to be in the four layered shell, in which the ordering of the layers was (90o/0o/90o/0o), being 10.88%
and 20.62% (14.97% and 27.69%) respectively, on the dynamic factor was observed to be in the
three layered shell, in which the ordering of the layers was (90o/0o/90o), being 22.96% (27.21%). 

When elasticity moduli and densities functions of the glass/epoxy (graphite/epoxy) composites are
given as  the maximum effect on the critical load and critical impulse was
observed to be in the four layered shell, in which the ordering of the layers was (0o/90o/0o/90o),
being 10.88% and 20.62% (14.97% and 27.69%) respectively, on the dynamic factor was observed
to be in the three layered shell, in which the ordering of the layers was (0o/90o/0o), being 24.40%
(27.70%). The values in the parenthesis are for the shells, which are made of graphite/epoxy (Table 1).

In Table 2 are presented the variation of the dynamic critical load and dynamic factor of cross-ply
laminated orthotropic composite cylindrical thin shells with the number and ordering of layers,
when elasticity moduli and densities functions are given as .

When the elasticity moduli and densities functions of the glass/epoxy (graphite/epoxy) composites
were varied (the variation function is given as ), the maximum effect on
the dynamic critical load, was observed to be in the five layered shell, in which the ordering of the
layers was (90o/0o/…), being 20.27% (20.55%). When the densities were kept constant and the
elasticity moduli were varied (the variation function is given as ), the
maximum effect on the dynamic factor was observed to be in the five layered shell, in which the
ordering of the layers was (90o/0o/…), being 24.89% (28.36%) (Table 2).

When the elasticity moduli and densities functions of the glass/epoxy (graphite/epoxy) composites
were varied (the variation function is given as ), the maximum effect on
the dynamic critical load, was observed to be in the five layered shell, in which the ordering of the
layers was (90o/0o/…), being 26.92% (28.36%). When the densities were kept constant and the
elasticity moduli were varied (the variation function is given as ), the
maximum effect on the dynamic factor was observed to be in the five layered shell, in which the
ordering of the layers was (90o/0o/…), being 68% (70.93%) (Table 2).

In the foregoing, the elasticity moduli and densities of the materials of the layers vary linear and
parabolic functions in the thickness direction, both together and each at a time, as separate cases. It
is observed that, both in the homogeneous and in the non-homogeneous cases, the number and
ordering of the layers affect the values of the critical parameters appreciably. The effect of the non-
homogeneity on the critical parameters also changes with the number and ordering of layers. It is
also observed that, compared to homogeneous case, the foregoing effect of the variation of the
material properties in the thickness direction is more pronounced for the linear variation than that
for the parabolic one. The variation effect of elasticity moduli and densities on the values of critical
parameters of the shell made of graphite/epoxy materials is bigger than the shell, which is made of
glass/epoxy composites (Table 1, 2).

Fig. 3 shows the values of the dynamic critical load and dynamic factor for cross-ply laminated
orthotropic composite cylindrical thin shells made of glass/epoxy composites, versus the number
and ordering of layers, when elasticity moduli and densities functions are given as

. The maximum effect on dynamic critical load occurs at five layered
(0o/90o/...) ordered shells, the maximum effect on the dynamic factor occurs at five layered (0o/90o/
...) ordered shells. In homogeneous and non-homogeneous cases, at the (0o/90o/...) ordered and (90o/
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Fig. 3 The variation of the dynamic critical load and dynamic factor with exponential functions of elasticity
moduli and densities, number and ordering of layers (P = P0t, P0 = 100 MPa/s, R= 0.09 m,
2h = 0.0008 m, L = 0.2 m, µ = 0.9, k = 0, 1, 2, ..., 9)

Table 2 The variation of the dynamic critical load and dynamic factor with parabolic functions of elasticity
moduli and densities, number and ordering of layers (P = P0t, P0 = 100 MPa/s, R= 0.09 m, 2h =
0.0008 m, L = 0.2 m, µ = 0.9, k = 0, 1, 2, 3, 4)

Number and
positioning
of layers

 (MPa) Kd  (MPa) Kd

i = 1, 2 i = 1 i = 2 i = 1, 2 i = 1 i = 2 i = 1, 2 i = 1 i = 2 i = 1, 2 i = 1 i = 2

Glass/epoxy

1 0o 1.623 1.520 1.457 15.99 14.98 21.20 1.028 1.123 1.248 29.27 32.00 18.16
1 90o 2.135 2.000 1.917 12.15 11.38 16.11 1.352 1.479 1.642 22.24 24.31 13.80
2  0o/90o 1.827 1.711 1.645 13.95 13.06 18.38 1.164 1.273 1.409 25.20 27.55 15.74
2  90o/0o 1.827 1.711 1.645 13.95 13.06 18.38 1.164 1.273 1.409 25.20 27.55 15.74
3 (0o/90o/0o) 1.643 1.539 1.483 16.36 15.32 21.75 1.064 1.164 1.270 29.86 32.64 18.63
3 90o/0o/90o 2.126 1.991 1.905 11.01 10.31 14.34 1.335 1.460 1.632 19.36 21.17 12.28
4 (0o/90o/...) 1.892 1.772 1.712 12.99 12.17 16.97 1.22 1.334 1.466 22.95 25.09 14.53
4 (90o/0o/...) 1.892 1.772 1.712 12.99 12.17 16.97 1.22 1.334 1.466 22.95 25.09 14.53
5 (0o/90o/...) 1.741 1.630 1.589 14.85 13.91 19.22 1.18 1.287 1.361 24.54 26.83 16.48
5 (90o/0o/...) 2.08 1.944 1.847 11.24 10.52 14.96 1.262 1.380 1.582 21.53 23.54 12.82

Graphite/epoxy

1 0o 1.227 1.149 1.101 17.09 16.00 22.64 1.737 0.849 0.943 31.26 34.18 19.40
1 90o 2.66 2.492 2.388 7.878 7.378 10.44 3.767 1.842 2.046 14.41 15.76 8.942
2  (0o/90o) 1.731 1.621 1.588 10.08 9.443 12.79 2.566 1.255 1.360 16.83 18.39 10.95
2  (90o/0o) 1.731 1.621 1.588 10.08 9.443 12.79 2.566 1.255 1.360 16.83 18.39 10.95
3 (0o/90o/0o) 1.366 1.279 1.272 14.8 13.86 18.64 2.205 1.078 1.090 22.39 24.47 15.97
3 900/00/90o 2.644 2.476 2.367 4.97 4.655 6.304 3.697 1.808 2.028 8.26 9.030 5.400
4 (0o/90o/...) 2.105 1.972 1.946 6.814 6.382 8.516 3.186 1.557 1.667 10.92 11.94 7.295
4 (90o/0o/...) 2.105 1.972 1.946 6.814 6.382 8.516 3.186 1.558 1.667 10.92 11.94 7.295
5 (0o/90o/...) 1.78 1.667 1.678 8.997 8.426 10.98 2.977 1.456 1.438 12.34 13.56 9.406
5 (90o/0o/...) 2.551 2.389 2.260 5.01 4.692 6.643 3.389 1.657 1.938 9.726 10.63 5.690
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0o/...) ordered shells that have even number of layers and at the (0o/90o/...) ordered shells that have
odd number of layers, as the number of layers increases, the values of the dynamic critical load
increase, but the values of the dynamic factor decrease whereas at the (90o/0o/...) ordered shells that
have odd number of layers, as the number of layers increases, the values of the dynamic critical
load decrease, but the values of the dynamic factor increase. However, at the shells that have more
than 10 layers, the values of the dynamic critical load and dynamic factor are almost same without
considering the order of the layers.

In Table 3 are presented the variation of the dynamic critical load and dynamic factor of cross-ply
laminated orthotropic composite cylindrical thin shells with the power α and number of layers,
when elasticity moduli and densities functions are given as . Therefore, as α
increases, the values of the dynamic critical load and dynamic factor decrease. Another point to be
noted is that as α increases, the effect of the variation of the elasticity moduli on the dynamic
critical load increases, whereas, the effect on the dynamic factor decreases, meanwhile the effect of
the variation of the elasticity moduli and densities on critical parameters is larger compared with the
effect at the one layered (0o) shell.

In Table 4 are presented the variation of the dynamic critical load and dynamic factor of cross-ply
laminated orthotropic composite cylindrical thin shells with the ratio h/R and number of layers,
when elasticity moduli and densities functions are given as . With an increase of
the ratio h/R, the values of the dynamic critical load increase, however the values of the dynamic
factor decrease. The effect of the variations of elasticity moduli and densities to the critical
parameters is very necessary and it is independent on the variations of ratio h/R.

Table 5 presents the comparison of the results of the present method, using finite deformation
analysis, for the dynamic buckling of an homogeneous orthotropic cylindrical thin shell with one
layered having simple supports at the two ends, with those found numerically of Ogibalov et al.
(1975). The comparisons were carried out for the following material properties and shell parameters:

E01/E02 = 2, ν12= 0.12, ρ0 = 1.84 × 102 kg · s2/m4, 2h/R= 2/143, L/R= 2.6,

µ = 0, N = 1, α = 1
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2
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Table 3 The variation of the dynamic critical load and dynamic factor with parabolic functions of
elasticity moduli and densities, power α and number of layers ( , i = 1, 2,
P = P0tα, P0 = 200 MPa/sα, R= 0.09 m, 2h = 0.0008 m, L = 0.2 m)

Glass/epoxy  (MPa)

α (0o) (0o/90o) (0o/90o/0o)

µ = 0 µ = 0.9 µ = 0 µ = 0.9 µ = 0 µ = 0.9

1.0 1.929 1.453 2.178 1.646 1.964 1.505
2.0 0.420 0.288 0.494 0.340 0.431 0.302
3.0 0.199 0.131 0.240 0.158 0.205 0.138

Kd

1.0 28.07 41.39 24.34 35.64 28.81 42.22
2.0 6.12 8.21 5.52 7.37 6.32 8.47
3.0 2.91 3.72 2.68 3.41 3.01 3.86
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As seen from Table 5, the results of the present work have been compared with the numerical
results of Ogibalov et al. (1975) for an homogeneous orthotropic elastic cylindrical shell with one
layered subject to an external pressure varying linearly with time and a good match has been
observed.

For uniform isotropic cylindrical shell with one layered the same problem in Shumik (1970) was
solved numerically using energetic method, Lagrange equation and Runge-Kutta method, in
Tazyukov (1991) was solved analytical using Bessel equations, in Agamirov (1990) numerical and
experimental. The comparisons were carried out for the following material properties, shell
parameters (Shumik 1970, Agamirov 1990, Tazyukov 1991):

E0 = 7.75 × 104 MPa, ν0 = 0.3, V = 5 × 103 m/s, 2h = 8 × 10−4 m, R= 0.09 m,

L = 0.2 m, µ = 0, N = 1, α = 1

As seen from Table 6, the results of the present work have been compared with the analytical,
experimental and numeric results for an homogeneous isotropic elastic cylindrical shell with one

Table 4 The variation of the dynamic critical load and dynamic factor with parabolic functions of
elasticity moduli and densities, number of layers and the ratio 2h/R ( ,
i = 1, 2, P = P0t, P0 = 100 MPa/s, R= 0.09 m, L = 0.2 m)

 Glass/epoxy  (MPa)

α (0o) (0o/90o) (0o/90o/0o)

2h/R µ = 0 µ = 0.9 µ = 0 µ = 0.9 µ = 0 µ = 0.9

0.0020 0.614 0.462 0.693 0.524 0.625 0.479
0.0025 0.767 0.578 0.866 0.655 0.781 0.559
0.0030 0.921 0.694 1.039 0.786 0.940 0.720
0.0035 1.070 0.809 1.210 0.920 1.090 0.840
0.0040 1.230 0.925 1.390 1.048 1.250 0.960

Kd

0.0020 65.76 96.96 57.01 83.48 67.48 98.90
0.0025 47.05 69.38 40.80 59.73 48.29 70.77
0.0030 35.80 52.78 31.03 45.44 36.73 53.83
0.0035 28.41 41.88 24.63 36.06 29.15 42.72
0.0040 23.25 34.28 20.16 29.51 23.86 34.97
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Table 5 Comparison of critical parameters with those of Ogibalov et al. (1975)

Ogibalov et al.
Numerical Present work

P0 (MPa/s) Kd Kd

250 4.20 4.32
300 4.56 4.73
350 4.94 5.11
400 5.31 5.47
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layered that is subjected to an external pressure varying linearly with time and a good match has
been observed. 

5. Conclusions

The dynamic buckling of a cross-ply laminated non-homogeneous ortohotropic cylindrical shell
has been studied employing the Ritz type variational method. At first, the fundamental relations and
modified Donnell type dynamic buckling equations have been written for a cylindrical shell subject
to an external pressure which is a power function of time. Then, applying Galerkin’s method, a time
dependent differential equations with variable coefficients has been obtained. Finally, applying the
Ritz type variational method, the critical static and dynamic loads, the corresponding wave numbers,
dynamic factor and critical impulse have been found analytically. Using the foregoing results, the
dependence of the critical parameters on the variation of the elasticity moduli and densities with a
linear, parabolic or exponential function in the thickness direction, are studied numerically.
Furthermore, the present method has been verified by comparisons of critical parameters with the
theoretical and experimental ones given in previous literature for the case of a homogeneous shell
subject to a uniform external pressure, which is a linear function of time.
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Appendix

The expressions appearing in Eqs. (13-14), cij and bij i, j = 1, 2, 3, 4, are:

Finally, the expressions for the factors , i, j = 1, 2, 3, 4, m= 0, 1, 2, are (i, j not from 1 to 4):

Notation

: Elasticity moduli of the homogeneous orthotropic materials in the layers 
: Elasticity moduli of the orthotropic material in a single layer shell 
: Elasticity modulus of the isotropic material in a single layer shell 
: Shear moduli of the homogeneous materials in the layers 

2h : Thickness of the shell 
Kd : Dynamic factor
M11, M22, M12 : Internal moments per unit length of the cross-section of the shell 
N11, N22, N12 : Internal forces per unit length of the cross-section of the shell 

: Membrane forces prior to buckling 
N : Number of layers
n : Wave number in the circumferential direction
nst, nd : Wave number corresponding to the static and dynamic critical loads
Oxyz : Coordinate system on the middle surface of the shell plane

: Static and dynamic critical loads 
: Loading parameter 

R : Radii of the cylindrical shell 
t : Time 
tcr : Critical time 
V : Sound propagation in a isotropic materials
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W : Displacement of the middle surface in the inwards normal direction z
α : Power of time in the external pressure expression

: Curvatures of the middle surface
: Strains in the curvilinear coordinate directions
: Strain components on the middle surface of the cylindrical shell

Φ : Stress Function
: Variation function of the elasticity moduli in the layers
: Variation function of the density in the layers

µ : Elasticity moduli and densities variation coefficient
: Poisson’s ratios of the homogeneous orthotropic materials in the layers
: Poisson’s ratios of the orthotropic materials in a single layer shell 
: Density of the isotropic material in a single layer shell 
: Density of the homogeneous materials in the layers 

ρ0 : Densities of the homogeneous materials in a single layer shell 
: Stress components 

τ : Dimensionless time parameter
: Time dependent amplitudes
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