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Abstract. This paper explores the possibility of using a combination of the empirical mode
decomposition (EMD) and the Hilbert transform (HT), termed the Hilbert-Huang transform (HHT)
method, to identify the modal damping ratios of the structure with closely spaced modal frequencies. The
principle of the HHT method and the procedure of using the HHT method for modal damping ratio
identification are briefly introduced first. The dynamic response of a two-degrees-of-freedom (2DOF)
system under an impact load is then computed for a wide range of dynamic properties from well-
separated modal frequencies to very closely spaced modal frequencies. The natural frequencies and modal
damping ratios identified by the HHT method are compared with the theoretical values and those
identified using the fast Fourier transform (FFT) method. The results show that the HHT method is
superior to the FFT method in the identification of modal damping ratios of the structure with closely
spaced modes of vibration. Finally, a 36-storey shear building with a 4-storey light appendage, having
closely spaced modal frequencies and subjected to an ambient ground motion, is analyzed. The modal
damping ratios identified by the HHT method in conjunction with the random decrement technique (RDT)
are much better than those obtained by the FFT method. The HHT method performing in the frequency-
time domain seems to be a promising tool for system identification of civil engineering structures. 

Key words: system identification; closely spaced modal frequencies; modal damping ratio; the HHT
method; the FFT method.

1. Introduction

The identification of modal damping ratios of a civil engineering structure is an important task
toward the accurate dynamic response prediction and the reliable dynamic design of the structures.
For a linear lightly-damped structure with well-separated modal frequencies, the fast Fourier
transform (FFT) method in conjunction with the bandwidth method are the most popular approach
for identifying the modal damping ratios of the structure from the measured structural response time
histories (Bendat and Piersol 1993). This approach, however, may encounter difficulties when
applied to complicated civil engineering structures such as long span cable-supported bridges, large
span space structures, tall buildings with flexible masts, and high television towers, for these
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structures may possess closely spaced modes of vibration. 
Recently, Huang and his co-workers (1998) proposed the Hilbert-Huang transform (HHT) method,

which consists mainly of the empirical mode decomposition (EMD) and the Hilbert transform (HT).
The most powerful feature of the HHT method is its ability to analyse non-linear and nonstationary
time histories in the frequency-time domain. Vincent et al. (1999) applied the EMD method for
structural damage detection and compared the results with those obtained from the wavelet analysis
(WA). They demonstrated that both the EMD method and the WA method could identify the time at
which the structural stiffness was suddenly lost, but one of the advantages of using the EMD
method was its adaptive nature. Yang and Lei (1999, 2000) successfully applied the HHT method
together with the random decrement technique (RDT) to identify the modal parameters of linear
structures based on the measured response data. They concluded that the HHT method offers a
simple, effective and accurate tool for parametric identification of linear structures. However, the
example structures considered in their work are generally those with well-separated modal
frequencies. The applicability of the HHT method to identify the structures with closely spaced
modes of vibration has not been investigated yet. 

Thus, the objective of this paper is to explore the possibility of using the HHT method to identify
the modal damping ratios of a structure with closely spaced modes of vibration. The principle of the
HHT method is briefly introduced first. The procedure of using the HHT method for modal
damping ratio identification suggested by Yang and Lei (1999) is adopted with some modification
concerning an intermittency check. The dynamic response of a 2DOF system under an impact load
is then computed for a wide range of dynamic properties from well-separated modal frequencies to
very closely spaced modal frequencies. The natural frequencies and modal damping ratios identified
by the HHT method are compared with the theoretical values and those identified using the FFT
method. Finally, a 36-storey shear building with a 4-storey light appendage on its top subject to an
ambient ground motion is analysed using both the HHT method and the FFT method to further
examine the applicability of the HHT method for the system with closely spaced modes of
vibration. 

2. Hilbert-Huang transform (HHT)

The Hilbert-Huang transform (HHT) method is a two-step data analysing method (Huang et al.
1998). The first step is the empirical mode decomposition (EMD) method by which a complicated
time history can be decomposed into a series of intrinsic mode functions (IMF) that admit well-
behaved Hilbert transforms. This decomposition is based on the direct extraction of the energy
associated with various intrinsic time scales of the time history itself. For instance, suppose x(t)
denotes the measured structural response time history to be analysed. The upper and lower
envelopes of x(t) are constructed by connecting the local maxima and minima of x(t), respectively,
using a cubic spline function. The upper and lower envelopes can also be constructed using other
types of spline functions such as a taut spline function, but the improvement was found marginal
(Huang et al. 1998). The mean of the two envelopes is then computed and subtracted from the
original time history. This procedure is termed a sifting process. The difference between the original
time history and the mean value, c1, is called the first IMF if it satisfies the following two
conditions: (1) within the data range, the number of extrema and the number of zero-crossings are
equal or differ by one only; and (2) the envelope defined by the local maxima and the envelope
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defined by the local minima are symmetric with respect to the mean. The difference between x(t)
and c1 is then treated as a new time history and subjected to the same sifting process, giving the
second IMF. The EMD procedure continues until the residual response becomes so small that it is
less than a predetermined value of consequence, or the residual response becomes a monotonic
function. The original time history x(t) is finally expressed as the sum of the IMFs plus the final
residual, 

     (1)

where N is the number of IMF components; and rN is the final residual. 
To avoid any mode mixing during the sifting process, a criterion was suggested by Huang et al.

(1999) to separate the waves of different periods into different modes based on the period length.
The criterion, termed the intermittency check, is then designed as the lower limit of the frequency
that can be included in any given IMF component. It can be achieved by specifying a cutoff
frequency ωc for each IMF during its sifting process, in which the data having frequencies lower
than ωc will be removed from the resulting IMF. The intermittency check, however, should be
applied with care, for any addition criterion introduced in the sifting process implies an intervention
with a subjective condition.

Having obtained the IMF components from the time history x(t), the second step of the HHT
method is implemented by performing the Hilbert transform (HT) to each IMF component. The
Hilbert transform of a real-valued function y(t) in the range  is a real-valued function

 defined as (Bendat and Piersol 1986)

     (2)

where H denotes the Hilbert transform operator. An analytical signal associated with y(t) can then
be defined in complex terms as 

     (3)

     (4)

where A(t) and θ(t) are defined as the amplitude and instantaneous phase angle of y(t), respectively;
and i is the imaginary unit. The instantaneous frequency ω(t) is then given by

     (5)

It is pointed out by Huang et al. (1998) that the definition of instantaneous frequency for a signal
has physical significance only if it is an IMF. This is the reason why a signal should be decomposed
into the IMFs using the EMD method before applying the Hilbert transform.

After implementing the Hilbert transform to each IMF component cj (t) ( j = 1, 2, ...,N ), the
original time history, excluding the final residual, can then be expressed as the real part (Re) of the
sum of the Hilbert transforms of all the IMF components. 
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     (6)

where aj (t) and ωj (t) are the instantaneous amplitude and frequency of the i th IMF component.
Thus, the amplitude is not only a function of time but also a function of frequency. The frequency-
time distribution of the amplitude is designated the Hilbert amplitude spectrum, H(ω, t), or simply
the Hilbert spectrum, from which the inherent characteristics of a non-linear and/or nonstationary
time history can be identified.

3. HHT for damping ratio identification

3.1 Linear SDOF systems

The Hilbert transform (HT) has long been used to study linear and non-linear dynamic systems
and to identify their modal parameters in the frequency-time domain (Feldman 1985, 1994,
Hammond 1987). For a linear SDOF system under the impulsive loading, the impulse displacement
response function of the system v(t) = 0 for t < 0 and

     (7)

where ω0 is the natural circular frequency of the system; ξ is the damping ratio; ωd is the damped
natural circular frequency; and A0 is a constant that depends on the intensity of impulsive loading
and the mass and frequency of the system. For convenience of applying the Hilbert transform, the
impulse response function can be extended to the negative domain by considering its mirror image.

     (8)

By applying the HT method, the signal z(t) for v(t) can thus be obtained using Eq. (3).

     (9)

For a special case in which ξ is small and ω0 is large, the amplitude A(t) and the phase angle θ(t)
for the SDOF system can be obtained as follows (Yang and Lei 1999).

   (10)

   (11)

By introducing the logarithmic and differential operators to Eqs. (10) and (11) respectively, one
obtains

   (12)

   (13)
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Therefore, the damped natural circular frequency ωd can be identified from the instantaneous
frequency ω (t). With the identified ωd and the slope −ξω0 of the straight line of the decaying
amplitude A(t) in a semi-logarithmic scale, the damping ratio ξ can be identified from the function
ωd = . Considering that the instantaneous frequency may fluctuate around its mean value
due to the amplitude variation of the signal (Huang 1998) and that the requirement for small
damping ratio may limit the application of the HT method, Yang and Lei (1999) suggested the
following procedures for the system identification of SDOF systems based on the HT method: (1)
determine the damped frequency ωd from the slope of the phase function θ(t) using a linear least-
squares fitting technique; and (2) determine the damping ratio ξ by applying the linear least-squares
fitting technique to the decaying amplitude A(t) in a semi-logarithmic scale. 

3.2 Linear MDOF systems

For a linear MDOF system, its dynamic displacement response v(t) caused by the external
excitation P(t) can be expressed as the superposition of modal displacement responses. 

   (14)

where N is the number of modes of vibration involved; vj (t) is the jth modal displacement response
vector; Φj is the j th mode shape; and Yj (t) is the j th modal response which can be computed from the
following uncoupled modal equation.

   (15)

where ξj and ωj are the j th modal damping ratio and natural circular frequency, respectively; and
Pj (t) and Mj are the jth modal force and modal mass, respectively.

To identify ξj and ωj ( j = 1, ..., N) of a MDOF system from the measured response time histories
of the system under impulsive loading, the HHT method can be applied. The measured response
time history is decomposed into the IMFs using the EMD method with the intermittency check to
obtain modal response time histories. For the MDOF system with closely spaced modes of
vibration, the cutoff frequencies used in the sifting process with the intermittency check are
determined from the power spectrum of the measured response time history. Then, for each of
identified modal response time histories, the HT identification procedure for a SDOF system can be
applied to identify the modal parameters ξj and ωj. If the response time histories of a MDOF system
are measured under ambient excitation other than impulsive loading, the random decrement
technique (RDT) is applied to each of the modal response time histories identified by the EMD
method with the intermittency check to obtain the modal free response time histories. Then, the HT
identification procedure for a SDOF system is applied to each of the modal free response time
histories to identify the modal parameters ξj and ωj . 

4. Application to 2DOF systems 

To explore the possibility of applying the aforementioned HHT method to identify the modal
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damping ratios of a structure with closely spaced modal frequencies, a 2DOF system under an
impulsive load, as shown in Fig. 1, is studied for a wide range of dynamic properties from well-
separated modal frequencies to very closely spaced modal frequencies. For the simplicity, the
impulsive load is applied to one mass only and the Rayleigh damping model is employed for the
system. The equation of motion of the 2DOF system can be easily established as follows:

(16)      
       

where m1 and m2 are the two masses; k1 and k2 are the two stiffness coefficients; δ(t) is the
impulsive load; it is equal to 1 when t = 0 and equal to zero when ; and the damping factors a
and b are given by

    (17)

where ω1 and ω2 are the two undamped natural circular frequencies of the 2DOF system. The two
modal damping ratios are assumed the same for the two modes of vibration. Three typical levels of
modal damping ratio ξ(1%, 3% and 5%) are considered in this investigation to see the effects of the
modal damping ratio on the applicability of the HHT method. By changing the structural parameters
m1, k1, m2 and k2 of the system, the difference (space) between the two natural frequencies are
altered. To present a measure of the space (difference) between the two undamped natural
frequencies f1 and f2, a space index (MSC NASTRAN 1983) is adopted here. 

   (18)

The index γ varies in a [0, 1] range; a large value corresponds to well-separated modes of
vibration while a small value denotes closely spaced modes of vibration. The maximum index
considered in this application is 0.75 with f1 = 1.10 Hz and f2 = 7.71 Hz, and the minimum index is
0.046 with f1 = 3.39 Hz and f2 = 3.72 Hz. The space index less than 0.046 is hardly achieved for the
2DOF system investigated.
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Fig. 1 Two-degrees-of-freedom (2DOF) system
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The impulse responses of the two masses can be computed according to Eqs. (14) and (15). The
HHT method is applied to the impulse acceleration response time histories of mass 2 to identify the
two modal damping ratios, which are then compared with the preset theoretical values and those
identified by the traditional FFT method. Since it is a 2DOF system, only one cutoff frequency for
the first IMF component is designed in the implementation of intermittency check during the EMD.
The cutoff frequency is decided in such a way that it corresponds to the trough of the response
power spectrum between the two natural frequencies. 

Let us first examine the case of the system with well-separated modes of vibration. The structural
parameters are m1 = 1 kg, m2 = 2 kg, k1 = 2256 N/m, and k2 = 250 N/m. The two undamped natural
frequencies are calculated as f1 = 1.68 Hz and f2 = 7.99 Hz, and accordingly the space index is 0.66.
The preset theoretical value for the two modal damping ratios is 5%. Fig. 2 and Fig. 3 depict the
acceleration response time history of mass 2 and its power spectrum. From the power spectrum, the
two natural frequencies and modal damping ratios can be easily identified using the FFT method in
conjunction with the bandwidth method. The results are listed in Table 1. To identify the modal
damping ratios of the system using the HHT method, the EMD method with the intermittency check
is applied to the acceleration response time history of mass 2 with the cutoff frequency of 4.39 Hz,
resulting in a total of 5 IMF components. The first and second IMF components are plotted in Figs. 4a
and 4b, respectively, together with the theoretical second and first modal responses of mass 2 of the

Fig. 2 Acceleration time history for well-separated
modes of vibration 

Fig. 3 Power spectrum for the time history shown in
Fig. 2 

Table 1 2DOF system with well-separated modal frequencies

Damped Frequency (Hz) Damping ratio

Theoretical 
Value FFT HHT Theoretical 

Value
Bandwidth 

Method HHT

First Mode 1.68 1.71 1.68 5% 4.62% 5.02%
Second Mode 7.98 7.99 7.99 5% 4.81% 5.01%
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system correspondingly. The differences between the IMF component and the corresponding model
response are also plotted in Figs. 4a and 4b. It is noted that the first IMF component is the same as
the second modal response of mass 2 of the system and the second IMF component is almost the
same as the first modal response of mass 2 of the system. This implies that the first two IMF
components identified by the EMD method have definite physical characteristics. Then, by applying
the Hilbert transform to the first two IMF components, the instantaneous phase angle and amplitude
of each IMF component can be obtained as a function of time. Figs. 5a and 5b display the
instantaneous phase angle and amplitude of the first IMF component together with the fit lines using
the linear least-squares fit technique. Finally, the modal damping ratios and natural frequencies can

Fig. 4 The IMF components and the modal responses (well-separated modes): (a) The first IMF component
and the second modal response, (b) The second IMF component and the first modal response

Fig. 5 Instantaneous functions of the first IMF component (well-separated modes): (a) Phase angle and linear
least-squares fit, (b) Amplitude and linear least-squares fit
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be identified from the slopes of the two fit lines, and the results are listed in Table 1. It is seen from
Table 1 that the natural frequencies identified by the HHT method and the FFT method both are
very close to the theoretical values. The modal damping ratios identified by the FFT method are
slightly smaller than the theoretical values, but the modal damping ratios identified by the HHT
method are very close to the theoretical values. 

Now, let us examine the system of very closely spaced modes of vibration. The structural
parameters are selected as m1= 11.6 kg, m2 = 0.1 kg, k1= 3256 N/m, and k2 = 30 N/m. The two
modal damping ratios are set as 5%. The two undamped natural frequencies are computed as
f1 = 2.58 Hz and f2= 2.85 Hz. The space index of the frequencies is thus 0.050. Fig. 6 and Fig. 7
show, respectively, the acceleration response time history of mass 2 of the system and its power
spectrum. It is seen from the power spectrum that there are two peaks corresponding to the two
damped natural frequencies. However, these two peaks are too close to each other to identify the
two modal damping ratios using the bandwidth method. Thus, the HHT method is applied to the
acceleration response time history of mass 2 to identify the modal damping ratios. The cutoff
frequency used in the EMD is 2.68 Hz, which corresponds to the trough of the response spectrum
between the two peaks. A total of 6 IMF components are obtained after having a proper sifting
process in the EMD. The first and second IMF components are plotted in Figs. 8a and 8b,
respectively, together with the second and first modal responses of mass 2. It is seen that due to the
closely spaced modes of vibration, the first two IMF components deviate from the theoretical modal
responses to some extent. The instantaneous phase angles and amplitudes obtained by the HHT
method and their linear least-squares fits are shown in Figs. 9a and 9b for the first IMF component
and in Figs. 10a and 10b for the second IMF component. Clearly, the phase angle for each mode is
almost a linear function of time, but the amplitude as a function of time deviates from a linear
function in the semi-logarithmic coordinate, in particular for the second IMF component. The
natural frequencies and modal damping ratios identified by the HHT method are listed in Table 2
together with the theoretical values. It is seen that the natural frequencies identified by the HHT
method and the FFT method are quite close to the theoretical values. The two modal damping ratios

Fig. 6 Acceleration time history for closely spaced
modes of vibration

Fig. 7 Power spectrum for the time history shown in
Fig. 6
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identified by the HHT method are larger than the theoretical values but differ by less than 7%. The
FFT method together with the bandwidth method, however, fails to identify the modal damping
ratios. 

It is interesting to know how sensitive the modal damping ratios identified by the HHT method
are to the cutoff frequency. A series of cutoff frequencies are thus selected around 2.68 Hz for the
system of very closely spaced modes of vibration and below 7.7 Hz for the system of well-
separated modes of vibration, and the identified modal damping ratios are shown in Fig. 11a and
Fig. 11b correspondingly. For the system of very closely spaced modes of vibration, it is
encouraging to see that the cutoff frequency has almost no effects on the two modal damping ratios
within a range from 2.65 to 2.72 Hz. However, when the cutoff frequency is out of this range, that
is, when it further approaches to either the first natural of frequency of 2.58 Hz or the second

Fig. 8 The IMF components and the modal responses (closely spaced modes): (a) The first IMF component
and the second modal response, (b) The second IMF component and the first modal response

Fig. 9 Instantaneous functions of the first IMF component (closely spaced modes): (a) Phase angle and linear
least-squares fit, (b) Amplitude and linear least-squares fit
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natural frequency of 2.85 Hz, the two modal responses cannot be successfully separated by the
EMD and accordingly the two modal damping ratios cannot be satisfactorily estimated. For the
system of well-separated modes of vibration, it is seen from Fig. 11b that when the cutoff frequency

Table 2 2DOF system with very closely spaced modal frequencies

Damped Frequency (Hz) Damping ratio

Theoretical 
Value FFT HHT Theoretical 

Value
Bandwidth

method HHT

First Mode 2.58 2.56 2.53 5% ----- 5.34%
Second Mode 2.85 2.87 2.88 5% ----- 5.13%

Fig. 10 Instantaneous functions of the second IMF component (closely spaced modes): (a) Phase angle and
linear least-squares fit, (b) Amplitude and linear least-squares fit

Fig. 11 Sensitivity of the modal damping ratio identification to the cutoff frequency: (a) 2DOF system with
closely spaced modes of vibration, (b) 2DOF system with well-separated modes of vibration
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is less than 7.3 Hz, the cutoff frequency again has almost no effects on the modal damping ratios
identified by the HHT method. Only when the cutoff frequency is greater than 7.4 Hz, that is, when
it further moves towards the second natural frequency of 7.99 Hz, the influence of cutoff frequency
on the two modal damping ratios become more and more significant.  

To examine further the applicability of the HHT method for the identification of modal damping
ratios, the first modal damping ratio of the 2DOF system with various spaced modal frequencies is
identified using both the HHT method and the FFT method. The identified results are plotted, in
terms of the relative damping ratio error against the space index, in Figs. 12a, 12b, and 12c for the
cases of the theoretical modal damping ratio of 1%, 3% and 5%, respectively. The relative damping
ratio error is defined as the ratio of the absolute value of the difference between the identified
damping ratio and the theoretical value to the theoretical value. It is seen that for the case of 1%
modal damping ratio, the modal damping ratio identified by the HHT method is almost the same as
the theoretical value and independent of the space index. The relative damping ratio error caused by
the FFT method, however, increases with the decrease of space index but the relative error is smaller
than 0.7%. For the case of 3% modal damping ratio, the modal damping ratio identified by the HHT
method is almost the same as the theoretical value if the space index is less than 0.13. Then, with the

Fig. 12 Variation of damping ratio error with space index; (a) ξ = 1%,  (b) ξ = 3%, (c) ξ = 5%
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decrease of space index, the relative error increases but it is less than 3% within the concerned range.
The deviation of the modal damping ratio identified by the FFT method increases with the decrease
of space index but the maximum error in the concerned space index range is less than 7%. For the
case of 5% modal damping ratio, the FFT-based bandwidth method fails to identify the modal
damping ratio when the space index γ becomes less than 0.053 but the HHT method is still
workable. Though the relative damping ratio error becomes large for the case of 5% modal damping
ratio, it is less than 10% when γ is larger than 0.05 and when the HHT method is used. 

The above results clearly demonstrate that the HHT method is superior to the FFT method in the
identification of modal damping ratios of the structure with closely spaced modes of vibration. The
above results also manifest that the error involved in the modal damping ratio identification is larger
for the systems of closely spaced modes of vibration than for the systems of well-separated modes
of vibration. For the systems of closely spaced modes of vibration, the error then increases with the
increasing modal damping ratio. This is the inherent nature of the problem: when the two natural
frequencies are too close and when the corresponding two modal damping ratios are larger, the
vibration energy in these two modes of vibration is mixed and cannot be clearly separated.
Moreover, in consideration of the complex nature of the modal damping in a real structure, a 10%
error in the modal damping ratio may be still acceptable in practice for most cases. 

5. Application to shear building with light appendage

Toward the real application of the HHT method to civil engineering structures, a 36-storey
building with a 4-storey light appendage on is top (see Fig. 13) is analyzed. All the 36 floor units in
the main building are assumed to be identical. The mass of the building is lumped at the horizontal
rigid floors and the columns are assumed to be massless so that the building can be seen as a shear
type of building for the simplicity of investigation. The structural parameters of the building are: the
lumped mass at each floor is 1.29×106 kg; the elastic shear stiffness in each storey is 109 N/m. The

Fig. 13 Shear building with light appendage
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light appendage is modeled as a lumped mass system of four-degrees-of-freedom. The four lumped
masses are the same, each having a mass ratio of 0.02 to the lumped mass at the building floor, i.e.,
2.58×104 kg. The stiffness of the appendage is 0.03% of the storey shear stiffness of the building,
i.e., 3×105 N/m. The first four undamped natural frequencies of the system are found to be 0.184,
0.196, 0.542, 0.573 Hz. The space index is 0.032 for the first two natural frequencies and 0.028 for
the third and fourth natural frequencies. For the structural damping of the system, an extended
Rayleigh damping model is adopted and given by (Clough and Penzien 1993)

   (19)

where M and C are the mass and damping matrix of the system, respectively; Φj is the jth mode
shape vector; Mj, ξj and ωj are the jth modal mass, modal damping ratio, and undamped natural
circular frequency of the system, respectively; N is the number of modes of vibration; and T denotes
the matrix transposition. To achieve the damping matrix C for the system, the modal damping ratios
in the first four modes of vibration (N = 1, 2, 3, 4) are assumed to be identical as 1% and the other
modal damping ratios are taken as zero.

The shear building with a light appendage is subjected to ambient ground motion. The ambient
ground motion is modeled as a white-noise random process, which is then converted to the ground
motion time history with a peak acceleration of 0.04 m/s2 (see Fig. 14a). The dynamic response of
the system to the ground motion is computed. Fig. 14b depicts the acceleration response at the top
of the appendage and Fig. 15 shows its power spectrum. It is seen from Fig. 15 that the first two
spectral peaks are very close to each other and the third and fourth spectral peaks are also close to
each other. Nevertheless, the bandwidth method can be still applied to the response spectrum to
estimate the first four natural frequencies and modal damping ratios but with some degrees of
uncertainty. The results are listed in Table 3. 

To apply the HHT method, the acceleration response at the top of the appendage is decomposed
into the IMFs using the EMD method with the intermittency check. The cutoff frequencies used for

C M
2ξ jω j

Mj

-------------ΦjΦj
T

j 1=

N

∑ M=

Fig. 14 Ground motion and acceleration response time histories: (a) Ground motion, (b) Acceleration response
at the top of appendage
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the first 5 IMF components are 0.9, 0.7, 0.559, 0.4 and 0.1923 Hz in sequence, which are decided
from the troughs of the Fourier spectrum shown in Fig. 15. According to the experience gained
from the 2DOF systems, a relatively large variation of the cutoff frequency around 0.9, 0.7 and 0.4
Hz will have little effects on the identified results, but the allowable variation of the cutoff
frequency around 0.559 and 0.1923 Hz is limited. The first four modal response time histories
identified by the EMD method are plotted in Fig. 16. Since these modal responses are the total
modal responses other than the free modal responses, the random decrement technique (RDT) is
then applied to the total modal responses to obtain the free modal responses to which the HT
method can be applied. When applying the RDT to each of the total modal responses, a threshold
level should be selected to obtain N segments. The j th free acceleration modal response  can be
then obtained from the ensemble average of all segments as

    (20)

where  is the j th total acceleration modal response; tk is the starting time for each segment; and
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Fig. 15 Power spectrum of the time history shown in Fig. 14b

Table 3 Shear building with light appendage

Damped Frequency (Hz) Damping ratio

Theoretical 
Value (Hz) FFT HHT Theoretical 

Value
Bandwidth 

method HHT

Mode1 0.1836 0.1892 0.1833 1% 1.23% 1.01%
Mode2 0.1956 0.1953 0.1936 1% 1.52% 1.13%
Mode3 0.5419 0.5416 0.5505 1% 1.80% 1.09%
Mode4 0.5727 0.5722 0.5706 1% 1.86% 1.07%
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m∆t = t with t being the duration of each segment. For the particular shear building, the time
duration used is 45 seconds for the first two modal responses and 15 seconds for the third and
fourth modal responses. The number of segments is 125, 104, 338 and 364 for the first, second,
third, and fourth modal responses, respectively. The time interval ∆t is 0.01 second. Finally, the
application of the HT method to each of the free modal response time histories yields the
instantaneous phase angle and amplitude functions. Figs. 17a and 17b shows, respectively, the
instantaneous phase angle and amplitude functions from the first free modal response and their
linear least-squares fits. The damped natural frequencies and modal damping ratios of the building
obtained using the HHT method are given in Table 3 together with the theoretical values and those
identified using the FFT method.

It is seen that the first four natural frequencies of the building are satisfactorily identified by both
the HHT method and the FFT method. The first four modal damping ratios of the building are also
adequately identified by the HHT method with the maximum error of 13%. The FFT method,
however, overestimates the modal damping ratios by more than 85%. Thus, it can be concluded that

Fig. 16 The first four total modal responses: (a) First mode, (b) Second mode, (c) Third mode, (d) Fourth
mode
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the HHT-based method is superior to the FFT-based bandwidth method in the identification of
modal damping ratios of the structures with closely spaced modes of vibration. The HHT method
performing in the frequency-time domain seems to be a promising tool for system identification of
civil engineering structures. As for the computation efforts required for the identification in this
example, the HHT method needs more computational efforts than the FFT method.

6. Conclusions

The application of the Hilbert-Huang transform to the identification of modal damping ratio of the
structures with closely spaced modes of vibration have been investigated using different types of
structures of a variety of dynamic properties under different types of excitations. The natural
frequencies and modal damping ratios identified by the HHT method are compared with the preset
theoretical values and those from the FFT-based bandwidth method. The results show that the FFT-
based bandwidth method sometimes fails to identify modal damping ratios when the two modal
frequencies are too close to each other but the HHT method is still workable. The modal damping
ratios identified by the HHT method are more accurate than those from the FFT-based bandwidth
method. The HHT method performing in the frequency-time domain seems to be a promising tool
for the identification of modal damping ratios of the structures with closely spaced modes of
vibration. 

Acknowledgements 

The writers are grateful for the financial support from the Hong Kong Polytechnic University
through its Area of Strategic Development Programme in Structural Health Monitoring and Damage
Detection and its Young Professor Scheme to the second writer.

Fig. 17 Instantaneous functions of the first free modal response (shear building): (a) Phase angle and linear
least-squares fit, (b) Amplitude and linear least-squares fit
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