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 A robust nonlinear mathematical programming model for 
design of laterally loaded orthotropic steel plates
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Abstract. The main objective of the present paper is to address a formal procedure for orthotropic steel
plates design. The theme of the proposed approach is to recast the design procedure into a mathematical
programming model. The objective function to be optimized is the total weight of the structure. The total
weight is function of its layout parameters and structural element design variables. Mean while the
proposed approach takes into consideration the strength and rigidity criteria in addition to other
dimensional constraints. A nonlinear programming model is developed which consists of a nonlinear
objective function and a set of implicit/explicit nonlinear constraints. A transformation method is adopted
for minimization strategy, where the primal model constrained problem is transformed into a sequence of
unconstrained minimization models. The search strategy is based on the well-known Fletcher/Powell
algorithm. The finite element technique is adopted for discretization and analysis strategies. Mindlin
theory is selected to simulate the finite element model and a selective reduced integration scheme is
exploited to avoid a shear lock problem.
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1. Introduction

In the modern design of steel structures, it is important not only to ensure the safety of the
structure, but also to make sure that it is economically optimal. This optimality can be achieved by
utilizing efficiently the steel and consequently reducing the dead weight of the structure. Most of the
design approaches depend, heavily and basically, on the experience of the practitioner. Therefore, a
formal design procedure would be useful. The main objective of the present research work is to
address an optimal design procedure, which overcomes the inconsistencies of ad-hoc approaches
and minimizes the effect of the subjectivity of practitioners. The kernel of the proposed procedure is
the finite element method as an analysis engine.

The orthotropic steel plate as shown in Fig. 1, consists of a top steel plate stiffened longitudinally
and transversely by ribs. All members of the structure are welded together. It is quite obvious that
the economy criterion of such plates is an inverse function of weight to strength ratio, which means
that achieving minimum (optimal) weight and relatively high strength leads to a great economy. The
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cost of steel structures consists of the costs of material, manufacturing and erection. Obviously, the
costs of manufacturing and erection are directly related to the weight of the structure material.
Therefore, the least weight satisfying stresses, deflection and environmental conditions will
consequently load to the minimum cost. Accordingly, the structure of least weight can be considered
as an optimal one.

The structural optimization research over several decades of intensive study has proved to be an
effective tool for designers, Atrek (1984). Any structural optimal design model is characterized by
the nature of the design variables, state variables, objective function, constraints, structural method
used to analyze the current design and the design strategy adopted to evaluate the variations in
design variables. In this work the method of structural analysis is kept independent of the numerical
method of optimization, the later simply uses the output of the former and provides it with new
input data. The numerical methods of structural optimization are mainly classified into two
categories, the first one is a direct approach and known by optimality criteria methods. The other
approach is indirect and called by transformation methods. The optimality criteria methods need
both the objective function and constraints to be explicit functions of the design variables while the
transformation methods can deal with any type of functions where the objective and constraints
functions are merged together into one augmented function to change the optimization problem to a
sequence of unconstrained minimization ones.

The optimality criteria methods are used for trusses and frames by Dobbs et al. (1978), Fleury
(1978 & 1986), Sander (1978), Gellatly (1971), Saka (1991 & 1992) and Hayaliogla (1992). In
these methods the authors tried to make the constraints in explicit forms in design variables.

Due to nonlinearity of the objective and constraints functions in addition to the implicit nature of
some constraints, the transformation methods are more convenient for such problems, Haug and
Arora (1979). The transformation methods are globally convergent which means that they have been

Fig. 1 Orthotropic steel plate
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proven to converge to a local minimum for any given initial design. Among these methods, there are
the sequential unconstrained minimization techniques (SUMTs) in which the problem is reduced to
a sequence of unconstrained minimization problems.

The SUMTs-formulation are used for frames by Kanagasundran (1990), cylindrical tanks by
Thevendran (1992) and stiffened panels by Patel (1980) and Lund (1974). Systematic search
methods are used by Ezeldin (1991) for reinforced concrete beams and by Ostwald (1990) for
sandwich cylindrical shells.

Very few papers have been published about the optimization of steel stiffened panels or
orthotropic plates. In the present paper the SUMT (interior penalty method) is adopted in the
framework of finite element method as a discretizing engine to formulate an optimal weight design
model for orthotropic plates. The weight function is subjected to a set of constraints relevant to both
strength and design criteria. Three models for the optimization of orthotropic plates are introduced
depending on the design variables. A comparison for the three models is discussed for the same
example. The optimum weight for an example with different layouts is given by using the third
model.

2. Discretization strategy

The top plate is discretized into a grid of nonconforming plate bending elements, Hughes (1987);
while the stiffeners (ribs) are discretized into isoparametric beam elements. We assume five degrees
of freedom at each node of the finite element grid; {u0, v0, w0, θx0, θy0} assuming that the plate is
highly rigid in the plane rotation. The displacements {U, V, W} at any point can be expressed in
terms of the midplane displacements {u0, v0, w0} and the transverse rotations {θx0, θy0} according to
Mindlin theory, Deb (1988) and Palani (1992) as follows:

U(X, Y, Z) = u0(X, Y) − zθ x  (1)

V(X, Y, Z) = v0(X, Y) − zθ y  (2)

W(X, Y, Z) = w0(X, Y)  (3)

Where X, Y, and Z are the reference axes and z is the distance of the point to the midplane of the
plate in Z-direction. This displacement field is applied for plate and beam elements considering the
transverse shear effect. The selective reduced integration scheme, Hughes (1987), is used to
overcome the shear locking computational problem.

The degrees of freedom at each node (i) of a stiffener in X-direction as shown in Fig. 2 are
transformed to be consistent with the plate frame of reference by the following relationship:

 (4)

Where ex is the eccentricity of X-stiffener from the mid plane of the top plate. Similarly the
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degrees of freedom for each node (i) of a stiffener in Y-direction are given by Eq. (5).

 (5)

3. Optimization strategy

The orthotropic steel plate consists of the following elements: 1) top plate acts as a flange for
other members 2) longitudinal ribs welded to the top plate and cross-ribs and 3) cross ribs which
are welded to the top plate and the boundary. The weight of the orthotropic plate is a nonlinear
objective function in the design variable as will be shown in the different models. This objective
function is subjected to linear constraints using bounds on the design variables and implicit
constraints on deflection and stresses. 

Due to this implicit nature of constraints and nonlinearity of the objective function, the
transformation methods are convenient for such type of problems. In these methods, the problem is
casted as follows:

Minimize f (x) = weight
Subject to gi(x) ≤ 0.0, i = 1, 2, ..., m
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Fig. 2 Plate with an Eccentric X-Stiffener
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Where f (x) is the objective function in terms of the design vector x; gi(x) are the constraints and
m is the total number of constraints. Both the objective function f (x) and the constraints g(x) are
transformed into one augmented function φ (x, R):

Fig. 3 Algorithm flow chart (*Refer to Fletcher & Powel algorithm in Appendix)
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(6)

Where the last part of the right hand side represents the penalty function and R is the penalty
parameter.

The optimal solution is obtained through a sequence of minimization of a set of unconstrained
problems, depending on an initial feasible design vector x0 and the penalty parameter R. For
iteration j = 1, 2, …, the unconstrained problems depicted by Eq. (6) are solved by taking Rj = R(j − 1)/
10 considering R0= 10. Giving xj − 1 as a starting design vector, the unconstrained function φ j(x( j − 1),
Rj ) is minimized to obtain xj by any search strategy such as Fletcher and Powell algorithm, Rao
(1984). Appendix contains the details of Fletcher and Powell search algorithm. 

A flow chart of the optimization procedure is illustrated in Fig. 3. Three models for the
optimization of orthotropic plates are introduced to study the sensitivity of design variables.

4. Case studies

Three different models are developed. For each model, the objective function and constraints are
described comprehensively. 

4.1 Model I

In this model the weight of an orthotropic plate shown in Fig. 4 is taken as follows:

Wt = γ0[A0 B0 x(1) + Nsx(2) x(3) B0 + Nc A0(x(4) x(5) + x(6) x(7))]

Where γ0 is the specific weight of the steel material and x is the design vector, which is
considered as follows:

φ x R,( ) f x( ) R
1–

gi x( )
------------

i 1=

m

∑+=

Fig. 4 A simply supported stiffened plate
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x(1) : the top plate thickness (tplate).
x(2) : the longitudinal rib thickness (ts).
x(3) : the longitudinal rib depth (ds).
x(4) : the cross rib web thickness (twc).
x(5) : the cross rib web depth (dwc).
x(6) : the cross rib flange width (bfc).
x(7) : the cross rib flange thickness (tfc).
Ns : the number of longitudinal ribs.
Nc : the number of cross ribs.
A0, B0 : the length and width of the plate.

The problem is stated as follows:

Minimize f(x) = Wt

Subject to gi(x) ≤ 0.0, i = 1, 2, ..., m

Where gi(x) are the constraints which can be categorized as follows:
a) The design variables constraints:

gj(x) = 1.0 − ≤ 0.0, j = 1, 2, …, NDV

b) Deflection constraint:

gNDV+ 1(x) =  − 1.0 ≤ 0.0

c) Stress constraint:

 gNDV+ 2(x) =  − 1.0 ≤ 0.0

Where NDV is the number of design variables, xjmin is the minimum allowable dimension of
design variable x( j), δmax & δall are the maximum and allowable deflections and fmax & fall are the

x j( )
xj min

----------

δmax

δall

---------

fmax

fall

--------

Table 1 Initial and final design values versus the iterations process for a square stiffened plate Model I

Iterations

Design
variables

Case

tplate

(mm)
ts

(mm)
ds

(mm)
twc

(mm)
dwc

(mm)
bfc

(mm)
tfc

(mm)

1/4 
weight
(kg)

Lower bound 2 1 20 1 30 20 1
Initial value 15 2 50 3 120 40 3 32.852
Initial Gradient 16.793 −8.184 −0.2558−12.965  −1.05 −1.748 −18.268

4 Finals  3.2925 4.221 49.636 2.4299 119.79 40.383 23.016 14.881
8 2.4632 2.633 49.097 1.4779 119.36 39.452  6.283 7.796
12 2.3285 2.477 49.08 1.0955 119.35 31.399  5.8534 7.1356
16 2.2591 2.2906 49.066 1.0237 119.35 31.348  5.804 6.8859
20 2.2441 2.2744 49.008 1.0181 119.35 31.341  5.8007 6.8464
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maximum and allowable stresses.
A square stiffened plate given by Fig. 4 is considered as an example to be optimized. The plate is

subjected to uniformly distributed lateral load of 1.0 kg/cm2, modulus of elasticity 2.1 × 106 kg/cm2

and Poisson’s ratio equals 0.3. The allowable deflection and stress equal 0.5 cm and 1400 kg/cm2

respectively. The initial and final values of the design variables are given in Table 1 for different
iterations. The Ns and Nc are taken 3 in this example.

4.2 Model II

In this model the depth of longitudinal rib and the depth and flange width of cross ribs are
excluded from the design variables and taken as constant values equal 5.0, 12.0, and 4.0
respectively. In this case the objective function is considered as follows:

Wt = γ0[A0 B0 x(1) + Ns B0 x(2) ds + Nc A0 (x(3) dwc + bfc x(4))]

Where:
x(1) : the top plate thickness, (tplate).
x(2) : the longitudinal rib thickness, (ts).
x(3) : the cross rib web thickness, (twc).
x(4) : the cross rib flange thickness, (tfc).

The same constraints of Model I are considered except that the thickness of different elements are
considered only as design variables.

The same previous example is considered and the initial and final designs are given in Table 2.

4.3 Model III

In this model the depth of longitudinal ribs and the depth and flange width of cross ribs are
considered as ratios of their thicknesses instead of taken them as constant values as in Model II. In
this case the objective function is considered as follows:

Wt = γ0[A0 B0 x(1) + Ns B0 α1x(2)2 + Nc A0(α2 x(3)2 + α3 x(4)2)]

 
Table 2 Initial and final design values versus the iterations process for a square stiffened plate Model II 

Iterations

 Design variables

Case

tplate

(mm)
ts

(mm)
twc

(mm)
tfc

(mm)
1/4 weight

(kg)

  Lower bound 2 1 1 1
Initial value 15 2 3 3 32.852

4 Finals 3.2894 4.2023 2.412 22.99 14.81
8 2.4519 1.9866 1.422 11.201  9.039
12 2.3145 2.2498 1.0813  4.698  7.0748
16 2.2806 2.2496 1.0309  4.369  6.895
20 2.2513 2.1846 1.0184  4.3551  6.806
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Where:
x : the design vector as given in Model II,
α1 : the depth to thickness ratio of longitudinal rib,
α2 : the depth to thickness ratio of the web of cross rib,
α3 : the width to thickness ratio of cross rib flange.

α1, α2, and α3 are taken according to the considered specifications. The same constraints of
Models I and II are considered. The same previous example is considered and the initial and final
designs for α1 = 40, α2 = 120, and α3 = 10 are given in Table 3 and for α1 = 25, α2 = 80, and α3 = 20
are given in Table 4.

5. Discussion of the results of different models

From Table 1, it is noticed that the gradients of the objective function with respect to the
thicknesses are high which indicates that it is sensitive to these thicknesses. Also, it is noticed that
the depth of ribs and the flange width of cross T-rib are slightly changed versus the iterations while
the thicknesses are significantly changed. From Table 2, it is noticed that in Model II very slight

 Table 3 Initial and final design values versus the iterations process for a square stiffened plate 
Model III alternative 1 

Iterations

Design variables

  Case

tplate

(mm)
ts

(mm)
twc

(mm)
tfc

(mm)
1/4 weight

(kg)

 Lower bound 2 1 1 1
Initial value 15 2 3 3 37.268

4 Finals 3.1189 2.0965 1.6646 4.7840 10.461
8 2.3701 1.6471 1.2582 3.8373    7.2757
12 2.1535 1.5019 1.2220 3.5618    6.5593
16 2.1223 1.4940 1.1759 3.5876    6.4257
20 2.1145 1.4968 1.1763 3.5885    6.4130

Table 4 Initial and final design values versus the iterations process for a square stiffened plate 
Model III alternative 2

Iterations

Design variables

  Case

tplate

(mm)
ts

(mm)
twc

(mm)
tfc

(mm)
1/4 weight

(kg)

 Lower bound 2 1 1 1
Initial value 15 2 3 3 35.325

4 Finals 2.8325 2.6923 1.6612 4.2625 10.0650
8 2.3531 2.2829 1.4395 3.3505 7.6830
12 2.1575 2.1243 1.3576 3.3038 7.0515
16 2.1289 2.1254 1.3207 3.2967 6.9442
20 2.1225 2.1227 1.3138 3.2904 6.9165
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changes occurred in the final design variables and the weight compared with the results of Model I,
but a great reduction in the consumed time is achieved. Therefore the thicknesses of different
elements are to be considered as design variables in the design of orthotropic plates. 

From Table 3, it is noticed that the optimum weight of Model III for α1= 40, α2 = 120, and α3 = 10 is
about equal the value of Model II given in Table 2 but the values of design variables are changed
according to the changes of the depth of longitudinal stiffener and the depth and flange width of
cross ribs (floorbeams). The depth ds in Models I & II equals 5.0 cm while in Model III equals
40 × 0.14968 = 5.987 cm. The depth dwc in Models I & II equals 12.0 cm while in Model III equals
120 × 0.11763 = 14.115 cm. The flange width bfc in Models I & II equals 4.0 cm while in Model III
equals 10 × 0.35885 = 3.5885 cm.

When changing the ratios values α1, α2, and α3 to be 25, 80 and 20 respectively, the final
optimum weight in this case given in Table 4 is nearly the same as the previous values given in
Table 3. The design variables have a remarkable change due to changing in the α ratios. This
indicates that these ratios affect on the thickness values to obtain the same optimum weight.
Therefore the values of the above α ratios are maintained general and according to the used
specifications.

The weight of one quarter of the stiffened plate is plotted versus the different iteration in Fig. 5
showing the design history for the four cases. The optimum weight reaches nearly the same value
after a few iterations and the curves have the same decreasing trend and there are no unexpected
point. The active constraints in all cases are the stress, which equals 1399.9 kg /cm2, the web
thickness of cross rib and the thickness of the top plate as given in Tables 1-4.

6. Parametric study

To study the effect of the number of longitudinal and cross ribs (Ns, Nc) on the optimum weight of
a stiffened plate (orthotropic plate), the computer program is modified to change these numbers

Fig. 5 Weight vs. Iterations (Design history)
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automatically by taking the upper and lower numbers for longitudinal and cross-ribs. After solving
all combinations the output is the minimum weight for each combination and the optimum of these
combinations.

6.1 Example

A simply supported orthotropic plate of length 600 cm and width 400 cm as shown in Fig. 6 is
considered. The plate is uniformly laterally loaded by 0.1 kg /cm2, modulus of elasticity equals
2.1 × 106 kg/cm2, Poisson’s ratio equals 0.3. The depth to thickness of longitudinal rectangular ribs
equals 10, the depth to thickness of cross-ribs web equals 40, and the flange width to its thickness
ratio equals 15, within the range of the Egyptian code of practice (1993). The minimum thickness

Fig. 6 A simply supported orthotropic plate
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for all elements is taken equal to 0.40 cm. The number of longitudinal ribs (Ns) ranges from 3 to 7
and the number of cross-ribs (Nc) ranges from 2 to 7. The results are given in Table 5. 

From Table 5, it is clear that the optimum weight occurs at Ns equals 5 and Nc equals 6. Also, it is
noticed that for a fixed number of Nc or Ns and increasing the other number, the weight decreases
up to a value and then increases, therefore the optimum weight of an orthotropic plate depends on
the numbers Nc & Ns.

7. Conclusions 

An optimal model is addressed for the design of laterally loaded orthotropic plates.
Transformation method is adopted for minimization procedure in the framework of a finite element
model.

Three different cases are worked out to illustrate the versatility of the proposed model. A
sensitivity analysis for a set of the design variables is conducted. The effects of the number of
longitudinal and cross ribs on the optimal weight of orthotropic plate are studied.

References

Atrek, E. (1988), New Directions in Optimum Structural Design, John Willey & Sons.
Deb, A. and Booton, M. (1988), “Finite element models for stiffened plates under transverse loading”, Comput.

Struct., 28(3), 361-372.
Dobbs, M.W. and Nelson, R.B. (1978), “Minimum weight design of stiffened panels with fracture constraints”,

Comput. Struct., 8, 753-759.
Egyptian Code of Practice for Steel Construction and Bridges (1993).
Ezeldin, A.S. (1991), “Optimum design of reinforced fiber concrete subjected to bending and geometrical

constraints”, Comput. Struct., 41(5), 1095-1100.
Fleury, C. (1986), “Structural optimization, a new dual method using mixed variables”, Int. J. Numer. Method

Eng., 23, 409-428.
Fleury, C. and Gerdian, M. (1978), “Optimality criteria and mathematical programming in structural weight

optimization”, Comput. Struct., 8, 7-17.
Haug, E.J. and Arora, J.S. (1979), “Applied optimal design, mechanical and structural systems”, Wiely-

Interscience, New York.
Hayalioglu, M.S. and Saka, M.P. (1992), “Optimum design of geometrically nonlinear elastic-plastic steel frames

with tapered members”, Comput. Struct., 44(4), 915-924.

Table 5 Optimum weight for different Nc and Ns 

Ns

Nc
3 4 5 6 7

2 589.4 485.3 393.0 327.8 340.3
3 529.4 442.8 357.9 312.1 321.4
4 418.6 384.9 327.1 318.4 313.8
5 390.6 364.7 312.1 316.5 320.2
6 367.0 348.5 306.5 318.0 319.7
7 346.8 334.3 312.7 321.0 322.2



 A robust nonlinear mathematical programming model for design of laterally... 235

Hughes, T.J.R. (1987), The Finite Element Method, Linear Static and Dynamic Finite Element Analysis, Prentice
Hall, Inc., Englewood Cliffs, N.J.

Kanagasundaram, S. and Karihaloo, B.L. (1990), “Optimum design of frames under multiple loads”, Comput.
Struct., 36(3), 443-489.

Lund, S. (1974), “Application of optimization methods within structural design-problem formulations”, Comput.
Struct., 4, 221-232.

Ostwald, M. (1990), “Optimum weight design of sandwich cylindrical shells under combined loads”, Comput.
Struct., 37(3), 247-257.

Palani, G.S., Iyer, N.R. and Appa Rao, T.U.S. (1992), “An efficient finite element model for static and vibration
analysis of eccentrically stiffened plates/shells”, Comput. Struct., 43(4),  651-661.

Patel, J.M. and Patel, T.S. (1980), “Minimum weight design of the stiffened cylindrical shell under pure
bending”, Comput. Struct., 11, 559-563.

Rao, S.S. (1992), “Optimization theory and applications”, Second Edition, A Halsted Press Book, (1984),
Comput. Struct., 44(4), 925-936.

Saka, M.P. (1991), “Optimum design of steel frames with stability constraints”, Comput. Struct., 41(6), 1365-
1377.

Sander, G. and Fleury, C. (1978), “A mixed method in structural optimization”, Int. J. Numer. Method Eng., 13,
385-404.

Thevendran, V. and Thambiratnam, D.P. (1986), “Minimum weight design of cylindrical water tanks”, Int. J.
Numer. Method Eng., 23, 1679-1691.

 

Appendix

Fletcher-Powell Algorithm

a) For iterations j = 1, 2, ..., maxpi choose  x0 as an initial feasible design vector and R1 equals 1.0, 

Minimize φ (xj − 1, Rj) = f (x) + Rj

to obtain xj considering Rj = R( j − 1)/10.

b) For k = 0, 1, 2, …, itlim compute the direction Sk.

Sk = −Hk ∇φT(xk, R)

∇ indicates the gradient of the function φ w.r.t. design variables.

c) By using the cubic interpolation, calculate the step size 

α = αk to minimize φ (xk + αSk, R).

d) Compute the new design vector 

xk + 1 = xk + α k · Sk

e) Calculate the new matrix Hk + 1 as follows:

• Compute yk = ∇φ T(xk + 1, R) − ∇ φT (xk, R)
• σ k = α k · Sk

1–
gi x( )------------

i 1=

m

∑
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matrix Ak = 

matrix Ck = 

The new matrix Hk + 1 will take the following formula:

Hk + 1 = Hk + Ak + Ck

Where k indicates the indirection index.

f) Check the convergence according to the following Euclidean norm criterion of the gradient of augmented
function φ:

Where N is the number of design variables and EPS is the convergence limit. Due to the implicit nature
of φ (x, R), one can use the first two terms of Taylor’s expansion as a method to calculate the gradient of
the augmented function φ with respect to design variable xi as follows:

If the convergence criterion is satisfied, the vector xk + 1 would be considered as feasible design vector for
the next iteration j + 1 and then go to step (g), otherwise return to step (b).

g) As Rj
ç 0 check the iteration number if it reaches the limit number then terminate the process and take

xk + 1 as the solution, otherwise return to step (a).

σk σk( )T⋅
σk( )T

yk⋅
----------------------

Hk yk ykT H kT⋅ ⋅ ⋅
ykT Hk yk⋅ ⋅

---------------------------------------

∂ϕ x R,( )
∂xi

--------------------- 
 N 2

i 1=

∑ EPS≤

∂ϕ x R,( )
∂xi

--------------------- φ xi xi∆ R,+( ) φ xi R,( )–
x∆ i

---------------------------------------------------------=




