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Transient linear elastodynamic analysis in time domain 
based on the integro-differential equations
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Abstract. A finite element formulation for the time-domain analysis of linear transient elastodynamic
problems is presented based on the weak form obtained by applying the Galerkin's method to the integro-
differential equations which contain the initial conditions implicitly and does not include the inertia terms.
The weak form is extended temporally under the assumptions of the constant and linear time variations of
field variables, since the time-stepping algorithms such as the Newmark method and the Wilson θ -method
are not necessary, obtaining two kinds of implicit finite element equations which are tested for numerical
accuracy and convergency. Three classical examples having finite and infinite domains are solved and
numerical results are compared with the other analytical and numerical solutions to show the versatility
and accuracy of the presented formulation.
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1. Introduction

Elastodynamics is one of the main subjects which attract a number of researchers in engineering
applications. To analyze the elastodynamic problems, numerical tools such as the FEM(finite
element method) (Bathe 1996, Hughes 1987) and the BEM(boundary element method) (Banerjee
1994, Dominguez 1993) are inevitably necessary. It is said that the BEM is comparatively suited to
the problems with infinite and semi-infinite domains and requires the reduced dimensionality, but
less versatile in handling the complex geometry, inhomogeneity, and complicated material behaviour
than the FEM.

Until now, many works of the elastodynamics by those methods have been reported in numerous
literatures (Belytschko and Hughes 1983, Argyris and Mlejnek 1991, Harari et al. 1996, Beskos
1997) mainly for the purpose of improving the numerical accuracy and stability, which have been
analyzed in the time domain, the Laplace domain, and the Fourier domain (Bedford and Drumheller
1996, Manolis 1983). 

In the FE analysis of linear transient elastodynamic problems in time domain, the FE formulations
have been traditionally derived based on the principle of virtual displacements or the weak form of
the governing differential equations(the Galerkin's method) (Reddy 1993). As an alternative to the
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traditional methods, there are variational principles in time such as the Hamilton's principle
(Achenbach 1975, Washizu 1975) and the Gurtin's variational principle (Gurtin 1964, Oden and
Reddy 1976, Zienkiewicz 1991). 

In this paper, the simplified time-domain FE formulation for linear transient elastodynamic
analysis is presented by using the modified Gurtin's variational principle, where the weak(or
variational) form is obtained by applying the Galerkin's method to the integro-differential equations
which are equivalent to the governing differential equations. The resulting weak form includes only
one convolution operator while the variational form obtained by taking the first variation of the
Gurtin's variational functional includes two convolution operators. Contrary to the traditional
elastodynamic FE formulations, the presented weak form does not include the inertia terms so that
the time-stepping algorithms such as the Newmark method and the Wilson θ -method (Bathe 1996)
are not necessary. The weak form is approximated temporally using the globally constant and linear
time interpolation functions on the discretized time axis (Israil and Banerjee 1990, Wang et al.
1997), resulting in the implicit FE equations taking account of the past dynamic history. But the
time-stepping procedures of former elastodynamic applications by the Gurtin's variational principle
used the quadratic interpolation (Nickell and Sackman 1968) and the Hermitian interpolation in time
(Atluri 1973) within a (local) time step, resulting in the explicit FE equations where the current
results are used as the initial values of next time step. 

To show the accuracy and versatility of the proposed method, classical three examples about plane
wave, cylindrical wave, and wave diffraction with finite and infinite domains are solved and
numerical results are compared with the analytical and numerical solutions by other researchers.

2. Weak formulation 

The governing equations for the linear elastodynamic analysis of an elastic body are given as
follows: 

i) Equations of motion 

(1)

where σij is the stress tensor, ρ the mass density, fi the body force vector per unit mass, ui the
displacement vector, xi the position vector, t the time variable,  the partial derivative
with respect to the spatial variable, and  the acceleration.

ii) Strain-displacement relations

(2)

where ε ij is the small strain tensor.
iii) Stress-strain relations 

(3)

where the material is assumed homogeneous and isotropic and Dijkl  is the elasticity tensor.
Boundary and initial conditions are given by

σ i j j, ρfi+ ρu··i=

σ i j j, ∂σi j ∂xj⁄≡
u··i ∂ 2u ∂t2⁄≡

ε i j
1
2
--- ui j, uj i,+( )=

σ i j Dijkl εkl=
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 on Γu,  on Γt

ui = u0i ,   at  t = 0  (4)

where ti is the traction which satisfies the Cauchy's stress formula , Γu and Γt are the
portions of the boundary (Γ = Γu + Γt) where the displacement and traction are specified as  and

, respectively, and u0i and  are the prescribed initial values.
Application of the Laplace transform to the equations of motion (1) yields

 (5)

where s is the Laplace transform parameter,  the initial velocity and ui (0) the initial
displacement, and the Laplace transform of a function u(x, t) is defined by 

(6)

where x is the position vector, and u(x, t) = 0 for t < 0. 
Division of Eq. (5) by s2 yields 

(7)

By the inverse transformation of Eq. (7) into the time domain, we obtain 

(8a)

or

(8b)

where g = g(t) = t, and the operator *  means the convolution of two functions of space and time u
and v which is defined by

 (9)

The integro-differential equations Eq. (8) which contain the initial conditions implicitly and no
inertia terms are equivalent to the original differential equations Eq. (1), and known as the Euler
equations of the Gurtin's variational functional (Gurtin 1964, Oden and Reddy 1976). 

In this paper, the weak formulation for a transient time-domain finite element analysis is constructed
by applying the Galerkin's method to Eq. (8) instead of Eq. (1) traditionally adopted. Then,

(10)

where Ω represents the spatial domain. 
By the application of the Gauss' theorem and Cauchy's stress formula and employing the relations
σij δui, j = σij δεij and arranging, the first term of Eq. (10) can be written as 

(11)

ui ûi= ti t̂i=

u·i u·0i=

ti σ i j nj≡
ûi

t̂i u·0i

σ i j j, ρ f i+ ρ u·i 0( )– sui 0( )– s2ui+{ }=

u·i 0( )

L u( ) u x s,( ) u x t�( )e st– dt
0

∞
∫= =

1

s2
----σ i j j,

1

s2
----ρf i+ ρ 1

s2
----u·i 0( )–

1
s
---ui 0( )– ui+

 
 
 

=

t* σ i j j, t* ρfi+ ρ tu·i 0( )– ui 0( )– ui+{ }=

g* σ i j j, g* ρfi ρ tu·i 0( )– ui 0( )– ui+{ }–+ 0=

u* v u x t τ–,( )v x τ,( )dτ
0

t∫=

g* σ i j j, ρ g* fi tu·0i u0i+( )+{ } ρui–+[ ]δuidΩ
Ω∫ 0=

g* σi j j, δuidΩ
Ω∫ g* tiδuidΓ

Γ∫ g* σ i j δεi j dΩ
Ω∫–=
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Substituting Eq. (11) into Eq. (10) and rearranging, the weak form for a time-domain finite
element analysis of transient linear elastodynamic problems is obtained as

 (12) 

For reference, the traditional weak formulation (Achenbach 1975) based on the equations of
motion Eq. (1) is given by 

(13) 

Note that inertia terms are disappeared in Eq. (12) in contrast to Eq. (13), so that the time-
stepping algorithms such as the Wilson θ -method and the Newmark method (Bathe 1996) to
approximate the acceleration and velocity are not necessary, instead only the time interpolation
functions to approximate the dependent variables(displacement and stress) in the discretized time
axis are required, resulting in simplified numerical procedure comparing to the traditional
formulation. Also Eq. (12) is an implicit time-integral formulation since the displacements at a time t
are calculated by taking account of the past dynamic history up to and including the time t (see Eq.
(24)). But formerly they (Nickell and Sackman 1968, Atluri 1972) solved it using the time-stepping
procedure where the current results are used as the initial values of next time step. 

3. Finite element approximation

The finite element equations for the transient linear elastodynamics are derived based on Eq. (12)
under the assumptions of homogeneous initial conditions and no body forces. Then, 

 (14) 

Now, Eq. (14) is extended temporally under two kinds of assumptions, i.e., the constant and linear
time variations, on the discretized time axis, which method is commonly adopted in the
elastodynamic BEM formulations (Israil and Banerjee 1990, Wang et al. 1997).

3.1 Constant time variation 

In the development of Eq. (14), it is first assumed that the time axis is divided equally and the
dependent variables remain constant during a time step. Then, the stresses may be approximated by
linear combinations of the spatial and time functions as follows.

 (15)

where n is the arbitrary time node, N the current time node,  the spatial distributions of the
stress at an arbitrary time tn, and Φn(t) the global time interpolation functions defined by 

g* σ i j δε i j dΩ
Ω∫ ρuiδuidΩ

Ω∫ ρ tu·0i u0i+( )δuidΩ
Ω∫–+

g* tiδuidΓ
Γ∫ g* ρfiδuidΩ

Ω∫+=

σ i j δεi j dΩ
Ω∫ ρu··iδuidΩ

V∫ tiδuidΓ
Γ∫ ρfiδuidΩ

Ω∫+=+

g* σi j δε i j dΩ
Ω∫ ρuiδuidΩ

Ω∫+ g* tiδuidΓ
Γ∫=

σ i j x t,( ) Φn t( )σ i j
n x( )

n 1=

N

∑=

σ i j
n x( )
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     otherwise  (16)

where tn = n∆t (n = 1, 2, 3, ..., N). 
Then, the convolution in the first term on the left-hand side of Eq. (14) can be integrated

analytically as follows: 

(17)

Substitution of Eq. (17) into Eq. (14) yields 

(18)

The convolution on the right-hand side of Eq. (18) can be also integrated analytically if the
tractions are expressed or approximated in terms of the time variable. Here we assume that tractions
are applied suddenly and kept constant in time. i.e., 

(19)

where H(t) is a Heaviside step function. 
Then, the right-hand side of Eq. (18) becomes 

(20)

Substituting Eq. (20) into Eq. (18), the final system of linear algebraic equations is obtained as

 (21)

where [N ] is the shape function, [B] the strain-displacement and [D] the elasticity matrix, and these
notations may be referred in Zienkiewicz (1991). 

Φn t( ) 1, tn 1– t tn≤ ≤=

Φn t( ) 0,=

g* σ i j g t τ–( )σ i j τ( )dτ
0

t∫ t τ–( ) Φn τ( )σ i j
n x( )dτ

n 1=

N

∑0

t∫= =

σ i j
n x( ) t τ–( )Φn τ( )dτ

0

t∫
n 1=

N

∑=

σ i j
n x( ) t τ–( )dτ

tn 1–

tn∫
n 1=

N

∑=

σ i j
n x( ) N n–

1
2
---+ 

  t2∆
n 1=

N

∑=

N n–
1
2
---+ 

  t2 σ i j
n x( )δε i j dΩ

Ω∫∆
n 1=

N

∑ ρuiδuidΩ
Ω∫+ g* tiδuidΓ

Γ∫=

ti x t,( ) t̂i x( )H t( )=

g* tiδuidΓ
Γ∫

t2

2
--- t̂i x( )δuidΓ

Γ∫=

1
2
--- t2∆ B[ ]T D[ ] B[ ]dΩ ui{ }N ρ N[ ]T N[ ]dΩ ui{ }N

Ω∫+
Ω∫

t2

2
--- N[ ]T t̂i x( )dΓ

Γ∫= t2 N n–
1
2
---+ 

 
n 1=

N 1–

∑ B[ ]T D[ ] B[ ]dΩ ui{ }n

Ω∫∆–
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After simplifying Eq. (21), the FE equations for the case of the constant time variation are
obtained as follows: 

(22)

where [K ] is the stiffness matrix, [M] the mass matrix, {F} and the force vector:

 (23)

Eq. (22) can be expressed in abbreviated form as 

(24)

where  represents the effect of past dynamic history on the current time node, and 

In Eq. (24), the coefficient matrix of the displacement vector  is constant so that the
computational work at every time step is just computing the traction load  with t = N∆t and
updating the hereditary effect .

After solving Eq. (24) for the displacements, the stresses are obtained by 

(25)

where {δ } is the nodal displacement vector. 

3.2 Linear time variation 

When the dependent variables are assumed to vary linearly during a time step, the stresses may be
approximated as follows.

(26)

where φ1(t) and φ2(t) are the local time interpolation functions at an arbitrary time step and defined
by

for  

φ1(t) = 0, φ2(t) = 0  otherwise (27)

Then, the convolution in the first term on the left-hand side of Eq. (14) can be integrated
analytically using Eq. (26) as before:

1
2
--- t

2
K[ ]∆ M[ ]+ ui{ }N t2

2
--- F{ } 1

2
--- t

2
K[ ] 2N 2n– 1+( ) ui{ }n

n 1=

N 1–

∑∆–=

K[ ] B[ ]T D[ ] B[ ]dΩ, M[ ] ρ N[ ]T N[ ]dΩ, F{ } N[ ]Tt̂i x( )dΓ
Γ∫=

Ω∫=
Ω∫=

K[ ] ui{ }N F t( ){ } R{ }N 1–
+=

R{ }N 1–

K[ ] 1
2
--- t

2
K[ ]∆ M[ ]+ , F t( ){ } t2

2
--- F{ }, R{ }N 1– 1

2
---– t

2
K[ ] 2N 2n– 1+( ) ui{ }n

n 1=

N 1–

∑∆===

K[ ]
F t( ){ }

R{ }N 1–

σ{ } D[ ] ε{ } D[ ] B[ ] δ{ }= =

σi j x t,( ) φ1 t( )σ i j
n 1– x( ) φ2 t( )σ i j

n x( )+{ } H t tn 1––( ) H t tn–( )–( )
n 1=

N

∑=

φ1 t( )
tn t–

t∆
-----------= , φ2 t( )

t tn 1––
t∆

-----------------= tn 1– t tn≤ ≤
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 (28) 

where .

Substituting Eqs. (28) and (20) into Eq. (14), the FE equations for the case of the linear time
variation are obtained as follows:

(29) 

Note that two equations for dynamic analysis (22) and (29) are similar to the FE equations for
static analysis except updating the past dynamic history. Thus, The FE program for dynamic
analysis can be constructed only with small modifications of the FE code for static analysis.

4. Numerical examples

In order to show the accuracy and versatility of the presented method three examples with finite
and infinite domains are solved, and computed results at some positions are compared with the
other numerical results by the FEM or BEM and with the analytical solutions. In discussing the
numerical results, the normalized time steps βi are used and defined by

 (30)

where ci is the dilatational or P-wave velocity, ∆t the time step and li the characteristic length. 

4.1 Elastic bar subjected to a sudden uniform load

A rectangular elastic bar with one end fixed is subject to a sudden uniform load σ0H(t) at the free
end. For numerical analysis, the bar(L/a = 4) is discretized by three-dimensional isoparametric linear
finite elements as shown in Fig. 1. 

Numerical implementations were performed, respectively, for six kinds of meshes which consist of
2, 4, 8, 16, 32 and 64 equally divided finite elements and for three time steps such as

 and , l1 = element length, the Poisson's ratio ν = 0) to

g*σ i j g t τ–( )σi j τ( )dτ
0

t∫=

t τ–( ) φ1 t( )σi j
n 1– x( ) φ2 t( )σ i j

n x( )+{ }
n 1=

N

∑ H t tn 1––( ) H t tn–( )–( )dτ
0

t∫=

t τ–( )
tn τ–

t∆
------------σi j

n 1– x( )
τ tn 1––

t∆
------------------σ i j

n x( )+
 
 
 

dτtn 1–

tn∫
n 1=

N

∑=

1
t∆

----- σi j
n 1– x( ) t τ–( )

tn 1–

tn∫ tn τ–( )dτ σi j
n x( ) t τ–( )

tn 1–

tn∫ τ tn 1––( )dτ+
 
 
 

n 1=

N

∑=

t2 σ i j
n 1– x( )A n N,( ) σ i j

n x( )B n N,( )+{ }
n 1=

N

∑∆=

A n N,( ) 1
6
--- 3N 3n– 2+[ ], B n N,( ) 1

6
--- 3N 3n– 1+[ ]==

1
6
--- t

2
K[ ]∆ M[ ]+ ui{ }N t2

2
--- F{ } t

2∆ K[ ] N n–( ) ui{ }n

n 1=

N 1–

∑–=

β i

ci t∆
l i

---------=

β1 c1 t∆ l1⁄ 0.25, 0.5,= = 1.0 c1 E ρ⁄=(
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examine the numerical accuracy and convergence of the presented formulation under the
assumptions of the constant and linear time variations. 

In Figs. 2 and 3, the axial displacements at the free end and the normal stresses at the mid-length
are depicted normalized with respect to the static solution (us = σ0L/E) and uniform external load (σ0),
respectively, and compared with the analytical solution (Miles 1961) for the case of the constant
time variation, where the characteristic time t1 is defined as t1 = L/c1. It is shown that numerical
results always converge closely and consistently to the analytical solution as the time step goes
smaller and/or the mesh becomes finer. Numerical results of Fig. 2 were obtained using the mesh
with 16 finite elements and those of Fig. 3 were obtained using the time step β1 = 0.5, and so more
accurate results can be obtainable using the finer mesh and the smaller time step, respectively. For
the large time step or the coarse mesh, the numerical results approach to the static solution after a
long time elapses because of the cumulative errors due to numerical damping. 

The same arguments as above were recomputed for the case of the linear time variation and best
results were obtained for the time step β1 = 1.0 and meshes with 2, 4 and 8 finite elements. But the
numerical divergence was observed for some other time steps and this tendency is found also in

Fig. 1 Elastic rectangular bar subjected to sudden uniform load

Fig. 2 Axial displacements at the free end for constant
time variation

Fig. 3 Normal stresses at the mid-length for constant
time variation
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next examples. Numerical results shown in Figs. 4 and 5 were obtained using the mesh with 4 finite
elements. 

This kind of example has been treated by many researchers, but here the numerical results
analyzed using the BEM, respectively, by Israil and Banerjee (1990) (L/a = 2, 12 quadratic
boundary elements and c1∆t/l = 1.0) and by Carrer and Mansur (1999) (L/a = 2, 24 linear boundary
elements, c1∆t/ l = 0.6) are adopted for the purpose of comparisons.

4.2 Cylindrical cavity subjected to a sudden internal pressure

A cylindrical cavity with radius r0 is imbedded in an infinitely extending medium, and subjected
to a suddenly applied uniform pressure p0H(t). The FE model for numerical analysis is shown in
Fig. 6, where capitalizing on the symmetry of the problem an infinite domain is approximated by
one-quarter of the circular cylinder which consists of an artificial outer boundary b/r0 = 11 and two-
dimensional 200 isoparametric quadratic quadrilateral finite elements.

Chou and Keonig (1966) solved this problem using the method of characteristics under the
condition of plane stress and there the material data of ν = 0.3, E = 205 × 106 kN/m2 and
ρ = 7.85 × 103 kg/m3 were used, which are also adopted in this computation. 

Figs. 7 and 8 show the tangential and radial stresses at three radial points r /r0 = 1.0, 2.0, and 3.4
with β2 = 0.25 for the case of the constant time variation, where the cylindrical wave velocity is
defined by c2 = [E/ρ(1 − ν 2)]1/2, l2 = r0 and the characteristic time t2 = l2/c2. Good agreements are
observed between two solutions as a whole, and it is shown also that the numerical results approach
asymptotically to the static solution as the time goes further. But the peak stresses due to the arrival
of the wave front are estimated a little lower than the analytical solution. Through the thorough
examination on the convergence of numerical results due to the variations of the time step and mesh
size, it was found that the presented formulation with the constant time variation brings on

Fig. 4 Axial displacements at the free end for linear
time variation

Fig. 5 Normal stresses at the mid-length for linear
time variation
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unconditionally stable numerical results if too large time steps or coarse meshes are not used. 
Numerical implementations were also performed for the case of the linear time variation, and it

was observed that numerical results are converged only within the limits of β2 = 0.1~0.45 for the

Fig. 6 Finite element mesh for cylindrical cavity subjected to sudden internal pressure

Fig. 7 Tangential stresses under sudden internal
pressure for constant time variation

Fig. 8 Radial stresses under sudden internal pressure
for constant time variation
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mesh of Fig. 6. In general, the convergence depends on the time step, mesh size, element property,
and the dimensionality of the problem. The numerical results shown in Figs. 9 and 10 were obtained
using the time step of β2 = 0.4 and are compared with the FEM results by Fu (1970), where the
peak stresses are described better comparing to the case of the constant time variation. 

The analytical solution for the tangential stress at the inner boundary decreases to a value of −1.24
and then increase to its static value of −1.0, while the current results −1.253 and −1.024, respectively. 

4.3 Wave diffraction by a cylindrical cavity

A long cylindrical cavity in an infinite elastic medium is impinged upon by a compressional P-
wave whose front is parallel to the axis of cavity. This problem is solved first analytically by Baron
and Matthews (1961) and later Pao and Mow (1972), and numerically using the BEM by Manolis
and Beskos (1981), Kobayashi (1987), etc.

For the FEM analysis, this problem is modeled as in Fig. 11, where only a half of an infinite
domain is discretized by 238 isoparametric quadratic finite elements since the dynamic problem is
symmetric about the x-axis only, and the artificial boundary is constructed far away from the circular
cavity to avoid the undesirable reflection. In BEM analysis, only the boundary is discretized, and
Manolis and Beskos (1981) found the stress distribution by superimposing the stress field produced
by the P-wave in the medium without the hole to the stress field produced by the applications of
corrective tractions on the boundary of the cavity in order to render the cavity surface traction free.
But, in this paper the FE equations are solved directly without resorting to the superposition. 

In Figs. 12, 13, and 14, the dynamic stress concentration factors σθ /σ0 at the boundary of the
cylindrical cavity are depicted for the polar angles of θ = 90o, 0o, and 180o, respectively, where the
material data of ν = 0.25, E = 205 × 106 kN/m2, and ρ = 7.85 × 103 kg/m3 are used in the computation.
It appears that the BEM results follow the analytical solution by Pao and Mow (1972), while the

Fig. 9 Tangential stresses under sudden internal
pressure for linear time variation

Fig. 10 Radial stresses under sudden internal pressure
for linear time variation
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current results follow the analytical solution by Baron and Matthews (1961). The discrepancies
between them may be explained as the former was solved under the plane stress condition but the
latter under the plane strain condition. Good agreements are shown between the current and Baron
and Matthews' results, especially for θ = 90o, where the current results of the stress concentration
factor varies from −2.92 at the bottom to the asymptotic static value −2.72, while those values of the
analytical solution varies from −2.92 to −2.667, respectively. Current results shown in Figs. 12, 13,
and 14 were obtained under the constant time variation with the parameters c3∆t / l3 = 0.2,

Fig. 11 Finite element mesh for wave diffraction by cylindrical cavity 

Fig. 12 Tangential stresses by wave diffraction at
θ = 90o

Fig. 13 Tangential stresses by wave diffraction at
θ = 0o
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, l3 = r0, and the characteristic time t3 = l3/c3.
The FE analysis by the NASTRAN which is a commercially available package for the general

engineering analysis and which finite element formulations are based on the differential equations of
motion has also been performed for the same mesh and time step, which results are shown in the
previous figures for comparison. It is shown that they are deviated further from the analytical
solution by Baron and Matthews (1961) than the current results and show a waving behaviour after
some time passes on, but the current results approach stably to the static solution. It is conjectured
that these good characteristics are originated from the presented time-integral formulation especially
for the constant time variation, because in case of the linear time variation some oscillated results
have been observed along those by the constant time variation, which are not plotted in the previous
figures for brevity. 

 

5. Conclusions

The linear transient elastodynamic problems have been analyzed in the time domain by using the
FEM, for which the simplified FE formulation is presented based on the integro-differential
equations which contain the initial conditions implicitly and does not include the inertia terms. It is
extended temporally under the assumptions of the constant and linear time variations, and two kinds
of implicit FE equations are derived and tested for the numerical accuracy and convergency of the
proposed method. It is found that the time-stepping procedure under the constant time variation
results in unconditionally stable numerical results while the time-stepping procedure under the linear
time variation converges only within certain time step limits even though the latter approximation
describes the abrupt jump better. Several examples with finite and infinite domains were solved
successfully with good accuracy, being certified that the proposed method may become one of
competitive methods for the numerical analysis of the transient linear elastodynamics. 

c3 E 1 ν–( ) ρ 1 ν– 2ν2–( )⁄[ ]
1 2⁄

=

Fig. 14 Tangential stresses by wave diffraction at θ = 180o
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