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Abstract. This paper considers the buckling and post-buckling behavior of empty metal storage tanks
under wind load. The structures of such tanks may be idealized as cantilever cylindrical shells, and the
structural response is investigated using a computational model. The modeling employs a doubly curved
finite element based on a theory by Simo and coworkers, which is capable of handling large
displacements and plasticity. Buckling results for tanks with four different geometric relations are
presented to consider the influence of the ratios between the radius and the height of tRéL3halhd
between the radius and the thickne&t)( The studies aim to clarify the differences in the shells
regarding their imperfection-sensitivity. The results show that thin-walled short tanks,Rilith 3,

display high imperfection sensitivity, while tanks withLR= 0.5 are almost insensitive to imperfections.
Changes in the total potential energy of tanks that would buckle under the same high wind pressures are
also considered.

Key words: buckling; cylindrical shells; finite elements; postbuckling; tanks; total potential energy;
wind load.

1. Introduction

This paper considers the buckling and postbuckling response of wind loaded, thin-walled
cylindrical tanks, and the sensitivity of such buckling response to the influence of small geometric
deviations from the cylindrical shape. The research reported here focuses on the short tanks
employed to store oil, water and petrochemical products in the Caribbean islands, in many parts of
the United States, and in other geographical regions subject to high winds. The short cantilever
cylinder is commonly employed in large capacity tanks to store oil, withRatiof the order of 2
to 3, andR/t of the order of 1000-2000, wheReis the radius of the cylindel, is the height of the
tank anct is the shell thickness.
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The failure of wind-loaded cantilever cylinders has been reported and investigated since the 1960s.
For example, the collapse of oil-storage tanks in England in 1967 was reported by Kendilirpi
(1975), but failures of this kind have also occurred in many other areas of the world that are subject
to high wind conditions without being reported in the open literature.

The literature on the buckling of cantilever cylindrical shells under wind load has mainly
concentrated on tanks that are not short. Pressure coefficients for tanks with dome roof (Maher
1966) or flat roof (Purdyet al 1967) were reported from wind tunnel experiments in the 1960s. A
fine set of wind tunnel experiments was done by Johns and co-workers during the 1970s (Kundurpi
et al 1975), who tested small scale cylinders withL1R<5 and 37&R/t<555. Resinger and
Greiner (1982), Uematsu and Uchiyama (1985), and Megtsah. (1987) reported other tests on
cylinders carried out in wind tunnel facilities. Schmadtal (1998) published post-buckling results
from tests on PVC and steel cylinders under internal suction, and also under a static simulation of
wind by means of a pressure that varies over segments of the shell; all cylinders included ring
stiffeners on top, except for one case WitlR =1 andR/t = 2500, which was tested under internal
pressure.

Recent computational research in this field includes the work of Sclenidt (1998), who
developed design strategies based on the use of ring stiffeners as a way of preventing global
buckling (i.e, buckling modes that have large displacements around the top edge). Their design
recommendations are supported by computational results for perfect cylindrical shells. Greiner and
Derler (1995) included the influence of imperfections using different patterns for the shape of the
geometric deviation. For short shells it was found that imperfection sensitivity was highest for
imperfections with the shape of the eigenmode associated to the lowest bifurcation load.

In all those studies the effects of wind were computed from a static analysis; however, one may
question if the buckling process of tanks under wind is static or dynamic. The authors studied the
nonlinear dynamic response of short tanks and found that inertia effects were not significant in this
class of shells, so that static nonlinear studies could well be carried out to estimate instability under
wind pressure (Flores and Godoy 1998).

The purpose of this work is not to formulate design specifications for tanks. In this point the
authors agree with other researchers (Schetidil 1998) about the need to provide a reinforcing
ring as a way to prevent global buckling. But here the performance of already built tanks is
considered, and many shells that failed during recent hurricanes do not have rings to stiffen the
upper edge. The following sections describe the computer model and results for several geometries
of cantilever shells, by assuming geometrical imperfections and geometrically nonlinear analysis.
The lower edges of the shells were assumed to be clamped.

2. Computational model

The authors studied cantilever cylinders with different geometric relations, in order to highlight
the differences in the buckling and post-buckling behavior depending on the geometric parameters,
and to learn about their imperfection sensitivity. Of those, only four cases are discussed here, for
reasons that will be clear in the following section.

The discretization of the shell is carried out using alternatively a four-node quadrilateral element
with bilinear interpolation, and a six-node triangle (Floetsal. 1995) based on a shell theory
developed by Simo and co-workers (1990, 1992). In all cases a full two-dimensional analysis of the
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shell is carried out, so that no uncoupling of the solution in terms of isolated modes is performed.

To avoid transverse shear locking phenomena, assumed strain models (derived using the Hu-
Wazhizu variational principle) are considered according to the general methodology described by
Onateet al. (1993). For coarse meshes membrane locking can occur in initially curved quadratic
triangles. To avoid this locking, an approximation similar to Of@teal. (1993) was adopted,
assuming linear variation of the mid-surface membrane strains (Eibes1995). These elements
have an excellent performance in geometric non-linear problems &irab 1990, Floreset al.

1995) and can also consider elastic-plastic behavior using the material model developed by Simo
and Kennedy (Simet al. 1992).

The elements were implemented in a computer code called ALPHA (Flores 1996) with
capabilities for geometrically non-linear static and dynamic problems including large deformation
plasticity. Using this model one can consider geometric imperfections and large displacements in
post-critical paths. The code also has the possibility of computing limit and bifurcation points from
a non-linear fundamental path using extended system (Wriggers and Simo 1990) and a numerical
derivative of the tangent matrix.

The boundary conditions in all the problems studied in this work were clamped at the base and free
at the upper edge, without any reinforcing ring. This configuration is representative of what has been
observed in many tanks that buckled during hurricanes in the last decade in the Caribbean islands.

The pressure distribution on the walls of the tank was assumed as in other works (Flores and
Godoy 1998), with a unit value (1 Nfjron the windward meridian, and this pressure is assumed to
have a constant value in elevation at each meridian (see Fig. 1). The circumferential pressure
distribution is assumed in the form (Rish 1967):

p= A.icicos(ie)

where the Fourier coefficients am=0.387 ¢;=-0.338 ¢,=-0.533 c3=-0.471 ¢,=—-0.166 c5=

Pressure

0 30 60 90 120 150 180
Theta angle [deg]

Fig. 1 Wind-pressure distribution assumed around the circumference
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0.066 c;=0.055. Previous results obtained by the authors (Flores and Godoy 1998) indicate that
buckling is not so sensitive to the exact pressure distribution around the circumference, and is
highly dependent on the pressure on the windward meridian. Such pressure is scaled by means of a
load parametel.

To perform the computations, first a bifurcation buckling analysis was carried out to obtain the
lowest bifurcation load parameter (eigenvalue) and the associated buckling mode (eigenvector). This
provided an estimate of the values of the critical loads that can be expected in a nonlinear analysis,
together with the possible modes; however, such values are not directly employed in the final
nonlinear solution. Classical eigenvalue analysis provides unsafe values of buckling loads for some
geometric shell configurations.

Second, a static nonlinear analysis is carried out to obtain the load-displacement response for
several imperfection amplitudes. The present approach does not uncouple the solution using the
classical eigenvalue analysis; instead, the response of the shell is followed with all possible
deflection patterns being active and the results take multimode behavior into account. This has the
advantage that there is no need to have a preferred basis to compute the nonlinear deflection of the
shell; on the other hand, this analysis has the limitation that one does not obtain the details of how
modes interact (Godoy 2000).

In the following, ¢ denotes the amplitude of a geometric imperfection. The casewithis the
perfect cylindrical shell, while cases wit§#0 represent imperfect geometries, with the
imperfection shape given by the eigenmode associated to the lowest bifurcation load in a perfect
analysis under wind pressure, and the maximum amplitude of the imperfection is gi§ef Hey
load factorA® is the maximum reached by a shell for 0, while for each imperfect shell"® is
the maximum load reached fér£ 0. The topic of the detailed shape of the geometric imperfection
that is more dangerous in terms of load capacity reduction of the shell is not considered in this
paper. However, other studies for pressure-loaded cylinders (see, for example, Yamada and Croll
1993) have shown that the dominant imperfection shape is that given by the lowest classical critical
mode.

The computer model employed is capable of representing both elastic and plastic material
conditions; however, in the present studies plasticity was only reached for very large post-buckling
displacements, so that no further consideration will be given to it in the remainder of the paper.

3. Buckling behavior of thin walled cantilever shells under wind

Results from the analysis of four geometries of tanks, witl=@RBL < 3 and 125G R/t < 2000,
are reported in this section to highlight the main features of the buckling behavior of typical tanks.
The shorter tank haR/L = 3, and results foR/t = 2000 are presented in Fig. 2. In Fig. 2a, the load
factor A employed to increase the unit pressure distribution (normalized with respéctsiplotted
versus the out-of-plane displacementt the top of the shell for a meridian located %afr@m the
direction of the wind. This is the point in the upper edge with maximum displacement in the
eigenmode. The critical load parameter computedt fof is A°=2282 and the equilibrium path is
linear up to a maximum value reached MA°=1. This indicates that in the short tanks the
geometrically nonlinear behavior is well represented by a bifurcation analysis. The post-buckling
equilibrium states occur along a descending, unstable path.

The imperfection-sensitivity diagram is shown in Fig. 2b, and out of the four cases considered,
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Fig. 2 Results for a tank witR/L = 3 andR/t =2000. (a) Equilibrium paths; (b) Imperfection sensitivity; (c)
Energy contributions. Thin lines are membrane contribution; thick lines are bending contributions.
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this one shows the largest drop in the maximum load. For an imperfection with ampglited2
the maximum load obtained?™ is only 60% of the maximum load in the perfect sRél*{= 0.6 A°).

Next, the energy is plotted in Fig. 2c for values of increasing }da8l The membrane energy
contribution is seen to dominate the strain energy with an almost constant value until bifurcation is
reached, and then it increases along the post-critical path. The bending contribution to the total
energy has low levels along the fundamental path (lower than 0X0B the post-critical path,
for a value ofA = 0.9 A the two energy components provide the same contributions to the total
potential energy, and then bending dominates for larger postcritical displacements. The energy level
at which the two contributions become the same tends to increase with the amplitude of the
imperfection considered.

The results for two intermediate cases are shown in FiR/B=2 andR/t=1750) and Fig. 4
(R/L=1 andR/t=1500). The other extreme geometry among the cases considered in this section is
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Fig. 3 Results for a tank witR/L =2 andR/t=1750. (a) Equilibrium paths; (b) Imperfection sensitivity.
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Fig. 4 Results for a tank witR/L =1 andR/t = 1500. (a) Equilibrium paths; (b) Imperfection sensitivity.
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a cylindrical shell withR=0.5 L and R/t=1250. The results in Fig. 5a show curves for different
imperfections that are much closer among them than in the shorter cylinder. Even for the perfect
shell, £=0, the behavior is clearly nonlinear and a limit point is reacheti=at558 for large
deflections W/t=17), where the displacementis measured at the top of the shell for a meridian
located at 17 from the wind direction. This is consistent with the limit point behavior found by
Kundurpi et al (1975) in wind tunnel tests. However, the results of those authors are not directly
comparable with those of Fig. 5 because they investigated thicker shells Rifp t®55). The
imperfection sensitivity in this case is much lower than in the short shell, with valag8010.95 A°
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Fig. 5 Results for a tank witR/L = 0.5 andR/t=1250. (a) Equilibrium paths; (b) Imperfection sensitivity;
(c) Energy contributions. Et=0; &t =1/3, .. &t=1;.... ét=2

for &/t=2. As in most limit-point problems, this cylinder is not significantly sensitive to initial
imperfections. The energy components are given in Fig. 5c. For the perfect shell, the membrane
energy does not significantly increase up to the limit point, but it is the bending contribution that
increases fon>0.9 A°. At the critical point the two components of the energy reach approximately
the same values.

The results for the energy in the shell in Fig. 2, which is sensitive to imperfections, indicate that
as the imperfection amplitude is increased, then there is a significant increase in the membrane
energy required to maintain equilibrium prior to buckling. For example, for the largest imperfection
amplitude computed, the membrane energy is initially Afer0) about four times the value in the
perfect case. On the other hand, the change in membrane energy in Fig. 5 (which is not sensitive to
imperfections) is not significant.

According to Croll, “it is the membrane contributions to this initial resistance that are most likely to
be lost in the buckling of highly optimized structures, like shells” (Yamada and Croll 1993, pp. 290).
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Fig. 6 Displacement pattern for a shell WRhL = 20 andR/t = 1750. (a) Perfect shell; (b) Imperfect shell,
&/t =2, forw/t = 10

This is shown in Fig. 2c in the postbuckling range: for example) f00.8 there is a drop in the
membrane energy from the perfect case to the imperfect case. Such a loss must be compensated by
an increase in the bending energy in the postbuckling range, which is also shown in Fig. 2c. This
effect is small in the shell of Fig. 5c, which is not sensitive to imperfections.

The displacement pattern of the buckling mode for one case (the sheRAkith2.0 andR/t =
1750)is shown in Fig. 6a foé =0. Foré =2t andw/t = 10 the pattern of displacements (Fig. 6b)
is essentially the same as in the perfect case (Fig. 6a). This means that the nonlinear postbuckling
response of the shell under wind occurs without a change in the buckling mode.

4. Discussion

The present study shows that, from the mechanics point of view, “tanks” are not just one class of
problem, and that according to their geometric features they may display very different buckling
behavior and imperfection sensitivity under wind.

A common feature of the tanks studied in the previous section is that for the geometric parameters
considered, the wind pressure required for buckling in the imperfect shell with an imperfection
amplitudeé/t = 2 is approximately the same, as shown in Table 1. This wind pressure is consistent
with the wind velocity expected to occur in the Caribbean islands and in the east coast of the United
States ¥ =55.6 m/s or 125 miles/h). Notice that this wind velocity is much higher (twice) than
what is considered a “normal” German wind load condition 28.2 m/s), as stated by Schmdtal
(1998).
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Table 1 Maximum load facto™® reached by the shell under wind, for an imperfecfien2t

R/L R/t é AT AC AT
3.0 2000 ? 0.583 1331
2.0 1750 ? 0.617 1360
1.0 1500 ? 0.772 1391
0.5 1250 ? 0.951 1481
aa ]
2.5
2.0 1 L ]
=
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Fig. 7 Buckling constraints for imperfect tanks with imperfection ampligude2 t

The results are summarized in Fig. 7 in order to identify which geometric features of the shell
lead to buckling. A buckling constraint for shells wift =2 may be established in terms of the
geometry of the shell as reflected R¥L andR/t. For example, a shell designed for windsvof
55.6 m/s withR/L = 1.5 andR/t = 1500 would not be expected to buckle, while for the sRhhe
ratio but withR/t = 1800 the graph indicates that the shell would buckle.

The imperfection sensitivity of the short tanks considered in this paper is lower than in the axially
loaded shells, but it is of the same order as in the cylinders under uniform lateral pressure. Thus, it
would be very convenient to be able to estimate lower bounds to buckling loads based on the
mechanics of behavior observed in the buckling process. Croll has developed a “reduced energy
theory” to account for the imperfection-sensitivity of shells by means of a reduction in the
membrane energy contributions (see Croll 1995, and the references cited there). It is in shorter tanks
under wind that a reduced energy approach may be most helpful, as shown by the energy
contributions in Fig. 2c. The development of such reduced energy approach for wind-loaded shells
is seen as a topic for future research.
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