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Abstract. Recently we formulated a 2D hybrid stress element from the 3D Hellinger-Reissner principle
for the analysis of thick bodies that are symmetric to the thickness direction. Polynomials have typically
been used for all the displacement and stress fields. Although the element predicted the dominant stress
and all displacement fields accurately, its prediction of the out-of-plane shear stresses was affected by the
very high order terms used in the polynomials. This paper describes an improved formulation of the 2D
element using Fourier series expansion for the out-of-plane displacement and stress fields. Numerical
results illustrate that its predictions have markedly improved.

Key words: hybrid stress element; out-of-plane fields; plane deformation; Fourier-series expansion; 3-D
elastic theory.

1. Introduction

In engineering, classical plane stress and plane strain hypotheses are commonly used for the
analysis of structures depending on their geometric characteristics and the type of loading.
Thickness of the structure plays a major role in the modelling of bodies subjected to inplane
loading. When the thickness is too small, plane stress condition applies, while it is too large, plane
strain condition applies. When the thickness is comparable to other dimensions (i.e., neither too
small, nor too large), three-dimensional analysis becomes inevitable.

Recently Ye (1997) presented a 2D isoparametric element for the prediction of 3D stress and
displacement fields from 2D analysis. We have improved Ye's formulation for the analysis of
homogeneous deformable bodies (either solid or hollow) with moderate thickness that are symmetric
to their thickness direction (Xiao and Dhanasekar 2000, Dhanasekar and Xiao 2001). Our improved
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formulation yielded a four node 2D hybrid stress element with six degrees of freedom per node,
which we termed as a quasi 3D element with 24 stress parameters ()30 formulated the
element Q3D28 using polynomial series expansion for the distribution of the stress and
displacement fields. Higher order terms (suclz’asndz®) were used in the polynomials defining the
out-of-plane shear stresses with a view to satisfying the anti-symmetric distribution of the fields about
the mid-plane and to eliminate the spurious modes of rank insufficiency of the eigenvalue of the
stiffness matrices. Furthermore, traction free conditions on the two external lateral surfaces have been
specifically enforced by appropriate selection of the terms of the polynomials. Traction free
conditions are particularly important for the plane stress bodies to satisfy the compatibility equations.

The quasi 3D element Q3DR4predicted all the displacement and the dominant stress fields
satisfactorily. However, the magnitude of the out-of-plane shear stregses,, is generally
predicted less accurately in comparison with the results of 3D analysis using ABAQUS.

This paper describes an improved re-formulation of the QBG&2dment by using Fourier-series
expansion for the out-of-plane (both the displacement and stress) fields. Traction free conditions on
the external lateral surfaces that are perpendicular to the thickness direction have been imposed in
the assumption of the Fourier series stress function. A new four-node plane hybrid stress element
with 24 stress parameters has thus been formulated from the 3D Hellinger-Reissner principle and is
termed as Q3D24F in this paper.

A cube shaped elastic cantilever solid example has been used to validate the results of the
Q3D243F element in comparison to the Q3dlementand the 3D results from ABAQUS.

2. Displacement and stress fields assumption based on Fourier series expansion

Consider a solid with a plane of symmetyas shown in Fig. 1. Without loss of generality, the
x- andy-axes are located at the mid-section, andztheis along the thickness direction. According
to the modified theory of the plane stress state (Ye 1997, Timoshenko and Goodier 1970), the in-
plane displacement componentsv and the stress componemtg 0y, Ty, 0, are symmetric to the
middle section while the lateral displacemanand the out-of-plane shear stressgst,, are anti-
symmetric to the middlexy) plane when the solid is structurally symmetric to the midglplane
and subjected to only inplane loading.

Fig. 1 A symmetric solid and coordinate system
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Thus the displacement field is assumed as follows:

U(x % 2 = Up(X, y) + Z°us(, y)

V(X ¥ 9 = V(X Y) +Z°Vi(X, Y)

WX Y, 9 = zwo(X, y) + sin(rtz)wy (X, y) (1a)
Where (o, U1), (Vo, V1), (Wo, Wy) are the independent degree of freed@m.  refers to
5 =2
z =+ (1b)

in which h is half thickness of the body, as shown in Fig. 1. The linear and sine temmenisure
that the lateral displacement be anti-symmetric to and be zero at the symmyptane. Note that
the out-of-plane displacement componem) {6 assumed using Fourier series expansion whilst the
inplane componentsi(v) are assumed using polynomials as explained in Section 1.

In order to meet the traction free condition on both the external lateral surfaces, and to satisfy the
symmetric/anti-symmetric conditions, the stresses witbordinator must satisfy

Tyz(xv yv Z)|z:0 = sz(xv ya Z) |z=0 =0

z=+h z=th

(% Yy D] zsn = 0 )

The in-plane stress fields are, therefore, assumed using polynomials as follows:
0% ¥ D = Oy(% Y) + Z 0a(x, Y)
(X ¥ D = Oyo(x Y) + Z 0pu(x, )
T ¥ D = Too( Y) + Z Ta(x, ) (3a)
The out-of-plane stress fields are assumed using Fourier series expansion as follows:
T,% Y, 2 = Z(1+cos(11Z)) Ty 0(X, Y) + Z (1 + cO(71Z)) Ty (X, Y)

T(% ¥, D = Z(L+ cO(MZ)) Tp0(X, ) + Z°(1+ CONTTZ)) Tpa (X, V)

1+ cog(mrz —2[1+ cos(rz
g = Loy (x y) 4 2?10 () (30)

GZ(XY y’

The absence o&° terms in the out-of-plane shear stress functions in comparison to our previous
Q3D24B3 element formulation is an advantage here.

3. Hybrid stress element formulation

We formulate the hybrid stress element by using the 2-field Hellinger-Reissner principle with the
following elemental functional (Pian and Wu 1988, Wu and Bufler 1991)
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Nia(u o) = [* [J(e’[ o'so+ U(Du)}dA o T UOA- [, T udsEdz @)

whereu = [u v MT ando = [0y 0, T,y Ty, Ty z] S is the compliance matriXd is the
differential operator matrixA®® s the area of elemeht S(e’ the part of the element boundary on
which traction is prescribedd  arfd  are the surface and volumetric force vector respectively.

Consider an element with nodes and six degrees of freedom at each node. The displacement of
the element is related to nodal valugpvia the shape functiors

u = Nq (5)
in which,
q = [q(l>T q(2>T q(nf]
N = [N® N® .. N™ (6)

The nodal values and shape functions for an arbitrary inacke

(O (O I()]

g = [uf uf Vo VD wh wi 7
NZNO 0 O 0
(i —
N" =10 o NZN 0 0 (8)

0 0 0 0 zN sin(mZ)N,

whereug, Vo, Wo anduy, vq, wy are terms in the displacement polynomialsv(w) given in Eq. (1).
The strain array relevant to Eg. (5) is

€= Du= Bq )
whereB = [B" B® ... B™] . For an arbitrary node
B = BY + 2B + 22BY + sin(nz)BY’ + cos(n1z)BY’ (10)
and
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The stress is related to the stress paramgteia the stress interpolation functign

o=¢B (11)
where i .
¢x0 72¢><l 0 0
¢y0 72¢yl 0 0
X z* xyl O 0
I (12)

0 0 Z[1+cos(7Z)]$yn Z°[1+cos(nZ)]dyn

0 0 Z[1+cos(nZ)]$,0 Z'[1+cos(1Z)]$,0
[1+co§(n2)| _z|1+co§(n2)|

0 0 > b0 Z > ¢,

=007 071+ o2 g+ -G g, 21+ cotrmIf (297 1+ co(20s |

where,
K23 [Py ] [0 [0 [0 [0 ]
¢y0 ¢yl 0 0 0 0
0 0 0 0
Bo = |Poo| g1= Pl Gzl | 9= o | =\, | ds=| | (19)
O O yz0 yz1l
O O ¢zx0 O ¢le 0
L O . L O L 0 | _¢zo_ L 0 | _¢zl_
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Substituting Egs. (5), (9) and (11) into Eq. (4), and making use of the stationary condition, we
obtain

B = H'Gq (14)

and the discrete equations of equilibrium of elemeht “

K9 = 7 (15)
where the stiffness matrix of eleméstis
K = GH'G (16)
The corresponding load vector is,
_ 0 - -, 0
F = [ NTPdA+ | WN'T ds[tiz (17)

Here the characteristic matrices of the element are,
h h
H=[]o ¢'SpdAdz G = [ ¢'BdAdz (18)

In the areaA® of the Xy plane, we carry out the integration in Eq. (18) using the traditional
numerical Gauss integration rule. However, as the out-of-plane functions were relatively easily
integrable, we integrate the matrices in Eq. (18) analytically iz-theection (‘thickness’ direction).

The integrals along thedirection are given as follows:

C0¢gs¢o C1 ¢$S¢1 C7¢gS¢3 CG¢$S¢5

1
C2015¢, Coh1 593 5Cs915¢s
J’fh ¢TS¢dZ = 2h T T 1 T T
C1092S¢, + C1393SP5 cho¢3s¢5 +C110,S¢,

1
Sym C12¢IS¢4 + ZC11¢ES¢5
[ CopoBy + C1¢gB N T
C191BY + c ¢91BY h? — c3¢1BY

h o To)qo _ i i i ! '
I—h¢ B''dz = 2h ¢-2|—(2CGBg_I)h+ C4Bg)) + ¢-3I—B:GB(2l)h2+ C7Bg) + %C7BS)E (19)

#3(caBS + csB'h) + 9csBYN’ + ;B + BT
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inwhich co=1; ¢ = %; ¢, = %; C, = _721-
_ 3. =207 + 120, _f-6
C4—4n, CS_—57'[4 ; CG——GT[Z,
1 _ 61f —45 _21f-21 _21f—-15
C7 - Cg - 3 Co = 5 ClO = > ;
2 817 2471f 4t
_ 677 — 15077 + 945, _ 3(= 26775-4410rF — 21017 + 417). _3
C11 - 4 ’ Ci2 = 6 ) 137 g
20717 56717 8

As defined by Wu and Bufler (1991), Eq. (15) could not be solved uniguely unless the
displacement and stress parameters are selected appropriately that satisfy the condition given in
Eq. (20).

Ng=Ng—n, (20)

where ng and n, represent the number of element stress and nodal displacement parameters,
respectively anch, is the number of independent rigid body motions which is equal to 3 in the
current case. This means although Q3BR4s a quasi 3D element, only three rigid body motions

in thexy plane are required to be suppressed similar to any other 2D element.

In the formulation of the hybrid stress element, the performance, or the capability of the element
in predicting stresses were improved through the introduction of incompatible displacements (Wu
and Bufler 1991, Wu and Cheung 1995). We added an incompatible displacement field each (as
shown in Eg. (21)) to the compatible displacement field in Eq. (1).

Up(X Y, D = Uga(X, ) + Z°Usa(X, )
VA% ¥y 2 = Voa(X ) + ZV(%, )
Va(X, ¥, 2) = 2y (X, Y) + SIN(TIZ) Wy, (X, ) (21)

Substituting the field into Eq. (4). The stationary condition of the functional provided equilibrium,
compatibility, equilibrium of traction between elements and the prescribed traction constraints when
the integral shown in Eg. (22) vanished.

I-hhfaAw) o'n'éu,dsdz= 0 (22)

in which dA® is the boundary of the element, ani the matrix of the direction cosines of the
unit outward normal to the element boundary.

In this derivation we have used the condition of traction free state on the external lateral surfaces.
By explicitly integrating (22) and by letting the termswgf vy, Wo, Gyo, Oy0, Txyor Tyz0 angd same
as that foruy, vy, wy, 0y, Gy, Ty, @ndyn, We obtain the patch test conditions (PTC) as shown in
Eq. (23) for evaluating the incompatible displacement fields that pass the PTC,



498 M. L. Feng, M. Dhanasekar and Q. Z. Xiao

fdA(e)(o-xOcnl + TyycN2]Uppds = 0
.fdA(e’ ( TxyOcnl + UyOan]VOAdS =0
_fme) (Ty0cN1 + Tyncn]Woyds = 0 (23)

and the stress optimisation conditions (OPC) as shown in Eq. (24) for optimising the trial stresses,
as discussed in Wu and Bufler (1991), Wu and Cheung (1995).

fdA(e;(axohnl + TyonNz]Ugyds = 0
fa.,A(e)(TxyOhnl + OyonNy]Vords = 0
fa.,A(e)(sz()hnl + Ty 00Ny ]Wp,ds = O (24)

It should be noted that the PTC above supercedes the traditional Babuska-Brezzi (BB) condition
as proved by Wu and Buffer (1991), Wu and Pian (1997). Therefore, as the GRB[EEMent
satisfies PTC, the element is stable and is guaranteed to provide converging results with mesh
refinement similar to the Q3Delement (Dhanasekar and Xiao 2001).

4. A 4-noded hybrid stress element

With reference to the usual 4-noded isoparametric element shown in Fig. 2, the shape functions
employed in Eq. (8) are widely used bilinear interpolation functions

N = Z(L+ EE(L+ i) (25)

where €, n) represent the isoparametric coordinatés,rf) represent the isoparametric coordinates
of pointi with the global coordinatesi(y;), i =1, 2, 3, 4.

It is easy to prove that the patch test condition (PTC) and stress optimisation condition (OPC)
formulae in the current case are the same as those derived in Dhanasekar and Xiao (2001). Thus

Fig. 2 A four node isoparametric 2D element
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trial stresses in Dhanasekar and Xiao (2001) are adopted here directly. We thus have the stress
interpolation function for plane stress components

Bro $ra 100 an aé
by | = |1 | = 010 bf'? bi{ (26a)
¢xy0 ¢xyl 001 albll’] a3b36

which are that of the plane hybrid stress element PS (Pian and Sumihara 1984), and
byn byz 1 0bn bd00 O

G0l = |b2a| = |0 1 ayn @€ 0 0 O (26b)
9.0 dn 00 O 0 1¢&¢n

where coefficients; andb; (i =1, 2, 3) are dependent on the element nodal coordinates as follows:

X1 Y1
a; by 1|1 11—1Xy
a byl =7/ 1-11-1 X2 2 (27)
a5 bs 111 g[8

X4 Ya

In the element formulation discussed in Section 3, we définy Eq. (26) and use the assumed
displacements in Eq. (5) and the trial stresses in Eq. (11). Eg. (26) is used as the stress interpolation
functions of plane components and out-of-plane components. The resulting quasi 3D element has 24
stress parameterg), and is therefore designated as Q3BR4

For the current elememt; = 24,n, = 24, and hence the element meets the stability condition of
Eq. (20). A 2x 2 Gauss guadrature is employed for the element formulation. Theoretical analysis
and results of eigenvalue checks show that the element is rank-sufficient. Convergence check using
h-refinement has shown rapid convergence of the dominant displacement and stress fields.

5. Numerical results

In this section, to validate the 2D-hybrid stress element QBB2de compare the results of the
current element Q3DZF with our previous element Q3D24nd an eight node 3D hybrid stress
element in ABAQUS.

A cube shaped elastic cantilever solid of dimensior2X 2 shown in Fig. 3 was considered as
the example problem (the same problem was previously used to validate our original FQ3D24
element). The values of material properties and loading used in this example conform to those used
for the flexural cantilever beam problem normally employed for checking difi-thénement (Wu
and Pian 1997). Accordingly the Young’s modulus and the Poisson’s ratio of the solid were kept as
1500 and 0.25 respectively.
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e

Fig. 3 A cubic cantilever beam

The origin of the coordinate system was chosen at the lower left edge of the middle plane of the
cube. Thexy plane defined the middle section of the cube aagis defined its thickness direction
(from -1 to +1). The lefyz plane was fixed and the vertical load was applied at the top edge of the
right yz plane in the-y direction. The vertical load was 1000 per unit length with its unit consistent
with that of the Young’s modulus.

Due to symmetry about they plane, only half of the solid was used in the 3D ABAQUS analysis.
A 8x8x16 mesh with 1024 brick elements and 1377 nodes was used in the 3D analysis. The
displacement and stress components were monitored at the centre of thg sdlid,( = 1.0,z =
0 to 1.0) as shown in Fig. 3.

The same problem was then modelled using the 2D hybrid stress elementsBE3Da4y the
middle section was required to be meshed in this case ar8 mésh was used. The displacement
and stress were monitored at a pdnfx = 1.0,y = 1.0) that is the projected view of the trace of
the above line on thgy plane. The variation of displacement and stress components through the
thickness was then determined from Egs. (1) and (3). Comparison of the results of the half solid
obtained by a 3D analysis of the ABAQUS program and by the Q3@ad Q3D2#8F methods is
presented in Table 1. The maximum and minimum values predicted by the three types of elements
for all the stress and displacement fields are presented in the table. Also shown in the table (in
columnsE, F, L and M) are the % errors between the predicted values using @ER2d
Q3D243F elements in comparison to that obtained by the ABAQUS 3D element. The following
observations may be made from the values in Table 1:

- The inplane stresses are significantly larger than the out-of-plane stresses along the pattz)1.0, 1.0,

- The dominant stresses (whose values in the order of 100s) have been predicted with less than 5%
error by both the Q3DZland Q3D28F elements.

- With the reduction in the values of the stresses, the % error has increased.

- There is a marked improvement in the % error in the out-of-plane shear strgsseg due to
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Table 1 Comparison of the prediction of the current element with the predictions of our previous element

and a 3D ABAQUS element

Maximum Value

Field @

12 3D_ABAQUS 2D Polynomial ~ 2D_Fourier (gEtchrB:) (I()D/(;Etgczlr?:;)
(A) (B) ©) (D) B F)
Oyx -222.00 -221.48 -223.76 0.24 0.79
Oyy 117.00 118.63 114.13 1.39 2.45
Ty =792.00 -756.79 -761.16 4.45 3.89
0y, 2.00 1.67 1.12 16.45 44.18
Ty, 0.00 0.00 0.00 0.00 0.00
Tox 0.61 0.28 0.47 53.97 22.38
u —-0.0740 —0.0804 —0.0808 8.65 9.14
Y -1.6700 -1.6596 -1.6636 0.62 0.38
w 0.0330 0.0325 0.0323 1.57 2.21
o,

(1.722,230’2) 1370.00 1417.00 1343.70 3.43 1.92

) Minimum Value

Fielil @ . - %Error: %Error:

112 3D_ABAQUS  2D_Polynomial  2D_Fourier 5 % K 1 ©)
(A (©) (H) (K) L (M)
Oyx -351.00 -347.61 -342.69 0.97 2.37
Oyy 38.00 41.48 43.96 9.15 15.67
Ty -887.50 -910.82 -902.18 2.63 1.65
0y, -3.90 -3.62 -3.38 7.30 13.46
Ty, -28.50 -20.71 -23.11 27.33 18.92
Tox -0.37 -1.16 -0.31 213.66 15.45
u -0.1340 -0.1410 -0.1407 5.22 5.03
v -1.7580 -1.7600 -1.7600 0.11 0.11
w —0.0330 -0.0325 -0.0323 1.57 2.21
o,

(1.722,230’2) 0.00 0.00 0.00 0.00 0.00

the Fourier expansion based element Q3R24&ompared to the polynomial expansion based
element Q3D24
- The displacementsi,(v, w) predicted by all the three elements are in good agreement with each
other with the % error remaining less than 10%. There is very little difference between the
predictions of the Q3DZ#and Q3D28F elements.

As the out-of-plane normal stressg,) at the centre of the cube (1.0, 1zD,is very small, it is
difficult to conclude on the benefits of using the Q3PBR4element. Indeed from the data presented
in Table 1 foro, it might appear that the prediction of the Q3PBE4element is worse than the
Q3D243 element. To ensure that this was due to the extremely smaller values at (1), 4..0,
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search in ABAQUS was made to select a path with higher values. afhe path (1.72, 2.%)
provided the maximum out-of-plane normal strgssThis path is also shown in Fig. 3.

The values ofo, predicted by Q3D28 and Q3D2#F along the path (1.72, 2.8), are in good
agreement with the 3D analysis of ABAQUS. The maximum % error is only 3.43% using the
element Q3D28. The Q3D28F element has exhibited even a smaller error of 1.92%. The purpose
of selecting the additional path (1.72, 2ZDjs only to ensure that the use of Fourier series does not
adversely affect the dominant stress fieldg, @y, 1, 0;). The merit of the use of Fourier series
expansion for the out-of-plane fields should only be inferred from the two out-of-plane shear
stresses that were predicted poorly by the element QBDRA further illustrate this point, the
distribution ofr,, 7, predicted by the three element along the path (1.02)1i®,shown in Figs. 4
and 5 respectively. The benefit of using Fourier series expansion becomes evident from these two

graphs.

6. Conclusions

A semi analytical plane, quasi 3D hybrid stress element based on Fourier series expansion
(Q3D243F) was developed from the 3D Hellinger-Reissner principle for solids of uniform thickness
that possess structural symmetry to its middle plane. The element was formulated similar to the
Q3D243 element reported previously (Xiao and Dhanasekar 2000). In the formulation of BBD24
we used polynomials for the distribution of the inplane displacernew) @nd stressd, oy, Ty)
fields and Fourier series expansion for the out-of-plane displacempr@ng stressd,, Ty, Ty
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Fig. 5 Comparison of the distribution af, by the current element with the predictions of our previous
element and a 3D ABAQUS element

fields. Traction free conditions on the external surfaces perpendicular to the axis passing through the
thickness direction were enforced in the selection of the stresses in terms of the polynomial and
Fourier series expansion.

The element Q3DZ3F predicted accurate results of all displacementsy,(w) and dominant
stresses d, 0y, Ty, 0, similar to Q3D24. It improved the prediction of the out-of-plane shear
stresses1(,, T,) markedly. It is therefore concluded that there is advantage in using Fourier series
expansion for the out-of-plane displacement and stress fields rather than the traditional polynomial
series. The current Q3DB#& element is therefore, considered superior to our earlier 8D24
element.
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