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Computation of dynamic stiffness and flexibility for
arbitrarily shaped two-dimensional membranes

J. T. Chen† and I. L. Chung‡

Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung, Taiwan

Abstract. In this paper, dynamic stiffness and flexibility for circular membranes are analytically derived
using an efficient mixed-part dual boundary element method (BEM). We employ three approaches, the
complex-valued BEM, the real-part and imaginary-part BEM, to determine the dynamic stiffness and
flexibility. In the analytical formulation, the continuous system for a circular membrane is transformed
into a discrete system with a circulant matrix. Based on the properties of the circulant, the analytical
solutions for the dynamic stiffness and flexibility are derived. In deriving the stiffness and flexibility, the
spurious resonance is cancelled out. Numerical aspects are discussed and emphasized. The problem of
numerical instability due to division by zero  is avoided by choosing additional constraints from the
information of real and imaginary parts in the dual formulation. For the overdetermined system, the least
squares method is considered to determine the dynamic stiffness and flexibility. A general purpose
program has been developed to test several examples including circular and square cases.
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1. Introduction

Stiffness and flexibility matrices play important roles in structrual analysis (Hibbeler 1997). This
concept is easily extended to dynamic stiffness and flexibility if harmonic response is considered
(Clough and Penzien 1975). Many approaches including analytical method, finite element method
(FEM) and boundary element method (BEM), are considered to determine the stiffness and
flexibility. Various analytical dynamic stiffnesses for simple structures were found in the textbook of
structural dynamics. In FEM, Paz and Lam (1973, 1975), derived the closed-form solution for
general stiffness matrix of a Bernouli-Euler beam and extended the solution to a series form. It is
interesting to note that the procedure in deriving stiffness by Mario and Lam is contrary to the
derivation by using the multiple reciprocity method (MRM) (Chang et al. 1998, Yeih 1999). The
effects of shear deformation and rotatory inertia were considered by Banerjee (1996). Later, the
effect of axial force was addressed (Banerjee 1998). The dynamic stiffness for two and three-
dimensional cases can be found in Luco et al. (1972), Lysmer et al. (1969) and Wolf et al. (1994).
The dynamic stiffness can be determined by using indirect BEM (Zhao et al. 1997) or direct BEM
(Wearing et al. 1996). Both of the methods employed the complex-valued kernels. The response of
physical system subjected to harmonic loading has been extensively studied (Reid et al. 1995).
Many studies on response analysis in resonant systems can be found. Linear response analysis was
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carried out to investigate the influence of plate motion on a liquid free surface resonance amplitude
in a cylindrical container with a rigid wall (Chiba 1997). The resonant virbration of nonlinear cyclic
symmetric structures was studied by Ishibashi et al. (1996) and Samaranayake et al. (2000). The
zeros and poles for the structural system are imbedded in the dynamic stiffness and flexibility. The
value which makes zero for the denominator of dynamic stiffness indicates the resonance frequency
or critical wave number, while the value which makes zero for the numerator is an important
information for structural control. A zero for flexibility is a pole for stiffness. In case of resonance,
the amplitude of response will become infinite. Recently, Chen et al. (1999, 2001) developed the
real-part BEM and the imaginary-part BEM to slove the Helmholtz eigenproblem. Although
spurious eigensolutions appear, they can be filtered out by using some techniques, e.g., residue
method (Chen et al. 2000, Liou et al. 1999), singular value decomposition (SVD) (Yeih et al. 1999),
generalized singular value decomposition (GSVD) (Wu 1999), and domain partition technique (Chang
et al. 1999). After comparing with the available techniques as mentioned, an efficient method was
employed to separate the true and spurious eigensolution using fewer dimension of matrix
computation (Chung 2000). We focus on the derivation of stiffness and flexibility for free-free
structures in this paper. Since the efficient technique can promote the rank of influence matrix,
overdetermined system will be obtained.

In this paper, we will construct the dynamic stiffness and flexibility for free-free structures by
using the complex-valued BEM, real-part and imaginary-part BEMs as shown in Fig. 1. True and
spurious resonances can be analytically derived. Theoretically speaking, the spurious resonant
systems can be cancelled out with each other in an analytical form of zero division by zero. It is not
straightforward to cancel out the zero term clearly in real computation due to numerical instability.
In determining the stiffness, matrix of rank deficiency results in the difficulty of matrix inversion.
To deal with this problem, additional constraints from the real and imaginary-part information of
dual frame are employed. For this overdetermined system, the method of least squares technique is
employed to calculate the generalized inverse in conjunction with SVD technique. Two examples,

Fig. 1 Methods for determining the dynamic stiffness and dynamic flexibility
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namely the circular and square cases, are illustrated to show the validity of the present method.

2. Review of the dual BEM for a two-dimensional interior membrane problem

Consider a membrane problem which has the following governing differential equation:

(1)

where  is the Laplace operator, D is the domain of membrane, x is the domain point, k is the
wave number, which is the angular frequency over the speed of sound, and u(x) is the displacement.
The solution can be described by the following boundary integral equation (Chen and Chen 1998):

(2)

where the complex-valued kernel, Tc(s, x), is defined by

(3)

in which ns represents the outnormal direction at the boundary point s and Uc(s, x) is the
fundamental solution. The second equation of the dual boundary integral formulation for the domain
point x can be derived as follows (Chen and Chen 1998):

(4)

where

(5)

(6)

in which nx represents the outnormal direction at the point x. By moving the field point x in Eq. (2)
to the smooth boundary, the boundary integral equation for the boundary point can be obtained as
follows:

(7)

where C.P.V.  is the Cauchy principal value and R.P.V. is the Riemann principal value. By moving
the field point x in Eq. (4) to the smooth boundary, the boundary integral equations for the
boundary point can be obtained as follows:

(8)

where H.P.V. is the Hadamard (Mangler) principal value. By discretizing the boundary B into
boundary elements in Eqs. (7) and (8), we have the algebraic system as follows:
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π{u} = [Tc]{ u} −[Uc]{ t}, (9)
π{ t} = [Mc]{ u} −[Lc]{ t}, (10)

where {u} and {t} are the column vectors composed by the displacement and normal flux, [Uc],
[Tc], [Lc] and [Mc] matrices are the corresponding influence coefficient matrices resulting from the
U, T, L and M kernels, respectively. The detailed derivation can be found in Chen and Chen (1998).
Eqs. (9) and (10) can be rewritten as

(11)

(12)

where  and . For simplicity, the circular domain is adopted here
and the explicit forms for the complex-valued Uc, Tc, Lc and Mc kernels can be expressed as

(13)

(14)

(15)

(16)

where r is the distance between x and s,  is the first kind Hankel function of zeroth order.
Based on the polar coordinate, the field point and source point can be rewritten as x=(ρ, φ) and
s=(R, θ) as shown in Fig. 2 where degenerate kernels can be employed.

3. Methods for deriving dynamic stiffness and flexibility matrices of 2-D circular
membrane with a unit radius

For a circular membrane, the governing equation for a circular membrane is the Helmholtz

Tc[ ] u{ }= Uc[ ] t{ },

Lc[ ] t{ }= Mc[ ] u{ },

Tc[ ]= Tc[ ]−π I[ ] Lc[ ]= Lc[ ]+π I[ ]

Uc s,x( )= iπ–
2

--------H0
1( ) kr( ),

Tc s,x( )= iπ–
2

--------
∂H0

1( ) kr( )
∂R

----------------------- ,

Lc s,x( )= iπ–
2

--------
∂H0

1( ) kr( )
∂ρ

----------------------- ,

Mc s,x( )= iπ–
2

--------
∂2H0

1( ) kr( )
∂ρ∂R

-------------------------,

H0
1( )

Fig. 2 The definitions of ρ, θ, φ, r and R
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equation. Employing the SVD technique, we can rewrite the UT equation,

(17)

into

(18)

where   is the conjugate transpose, Σ is the diagonal matrix composed of singular values, Φ and Ψ
are the left and right unitary matrices, repectively. Similarly, the LM equation,

(19)

can be expressed by

(20)

By using the Green’s third identity, we can derive the UT equation and LM equation. Moving the
field point to the boundary, we have the complex-valued UT equation,

(21)

where  and  are the complex-valued matrices. Eq. (21) can be rewritten as 

(22)
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(24)

      (25)

       (26)
   

in which 2N is the number of boundary elements and J is the first kind Bessel function. Similarly,
the complex-valued LM equation can be expressed as

(27)

where  and  are the complex-valued matrices. Eq. (27) can be decomposed into

(28)
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(29)

For the real-part UT equation, we have

(30)

where  and  are the real-valued matrices. Eq. (30) can be decomposed into
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in which Y is a matrix composed of the second kind Bessel function. Similarly, we have the
imaginary-part UT equation,

(34)

where  and  are the imaginary-part matrices. Eq. (34) can be decomposed into

(35)

The real-part LM equation has the following form

(36)

where  and  are the real matrices. Eq. (36) can be decomposed into

(37)

where

(38)

Similarly, we can obtain the imaginary-part LM equation, 

(39)

where  and  are the imaginary-part matrices. Eq. (39) can be decomposed into

(40)

4. Numerical instability due to division by zero 

In determining stiffness using Eqs. (17) and (19), the dynamic stiffness matrix can be derived as

[K] = [U]−1[T] = [L]−1[M]. (41)

In the same way, the dynamic flexibility matrix can be obtained as

[F] = [T]−1[U] = [M]−1[L]. (42)
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˜
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From the complex-valued UT Eq. (22), the dynamic stiffness matrix can be determined by

[K] = k (43)

Theoretically speaking, the H and H−1 matrices cancel with each other. In the numerical
implementation, no difficulty will be encountered since H is never singular. The wave number of
true resonance occurs in case of Jn(k) = 0 in the denominator of J since it is a pole for the system.
From the complex-valued LM Eq. (28), the dynamic stiffness matrix can be determined by

[K] = k (44)

Theoretically speaking, the  and  matrices cancel with each other as mentioned earlier. In
the numerical implementation, the stiffness matrix can be easily calculated since  can be
inversed. The wave number of true resonance occurs in case of Jn(k) = 0 in the denominator of J
since it is a pole for the system. Similarly, the dynamic stiffness matrix can be determined by using
the real-part UT formulation

[K] = k (45)

by using the imaginary-part UT formulation,

[K] = k (46)

by using the real-part LM formulation,

[K] = k (47)

and by using the imaginary-part LM formulation,

[K] = k (48)

Although the matrices and their inverses can cancel out each other in the analytical formulation of
the bracket in Eqs. (45)-(48), it is not straightforward in the numerical computation. This is the
cause of spurious contamination due to the numerical instability. There is a potential possibility of
numerical overflow due to division by zero. Because the spurious eigenvalue is not a rational
number, the computer may work and a reference solution may be obtained. This is the reason why
spurious resonance occurs.

It is interesting to summarize all the results of Eqs.(43)-(48) in Fig. 3. Finally, the analytical
solution for the dynamic stiffness matrix [K] is expressed as

[K] = k (49)

Then the dynamic flexibility matrix [F] is expressed as

[F] = (50)

Φ1J
1– H 1– HJ ′ΦΦ1

T
.

Φ1J
1– H ′( ) 1– H ′J′ΦΦ1

T

H ′ H ′( ) 1–

H ′

ΦJ 1– Y 1– Y[ ]J′ΦΦT,

ΦJ 1– J 1– J[ ]J′ΦΦT,

ΦJ 1– Y′( ) 1– Y′[ ]J′ΦΦT,

ΦJ 1– J′( ) 1– J′[ ]J′ΦΦT.

ΦJ 1– J′ΦΦT.

1
k
---ΦJ′ 1– JΦT.
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5. Construction of the dynamic stiffness matrix for filtering out spurious roots by
adding constraints

In this section, we consider an efficient mixed-part dual BEM using the least squares (LS)
approach. In the numerical stage for Eq. (30), the [Ur(ks)] and [Tr(ks)] matrices are both singular and
rank deficient at the same value of ks. For the spurious eigenvalue of multiplicity one, we have 

Rank[Ur]=Rank[Tr]=2N−1. (51)

For the spurious eigenvalues of multiplicity two, we have

Rank[Ur]=Rank[Tr]=2N−2. (52)

However, the rank deficiency occurs and results in numerical instability due to division by zero
since [Ur] and [Tr] have the same spurious poles. To deal with the problem, many approaches can
be considered by adding either one of the three equations;

[Ui(ks)]2×2N{ t} 2N×1=[Ti(ks)]2×2N{u} 2N×1, (53)

[Lr(ks)]2×2N{ t} 2N×1=[Mr(ks)]2×2N{u} 2N×1, (54)

[Li(ks)]2×2N{ t} 2N×1=[Mi(ks)]2×2N{u} 2N×1. (55)

To filter out spurious resonance using the least squares method, we can merge Eq. (30) with either
one of Eqs. (53)-(55) together to calculate the dynamic stiffness matrix. Therefore, we have

 [G(ks)](2N+2)×2N{ t} 2N×1=[H(ks)](2N+2)×2N{u} 2N×1, (56)

where [G(ks)] and [H(ks)] are the matrices with a dimension of (2N+2) by 2N, which can be
assembled by Eq. (30) and any one additional matrix of Eqs. (53)-(55) as shown below:

Fig. 3 Dynamic stiffness and flexibility matrices for a circular membrane using the dual BEM formulation
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[G(ks)](2N+2)×2N = , (57)

[H(ks)](2N+2)×2N = , (58)

for the real-part UT equations by adding the imaginary-part UT equations. We can also have

[G(ks)](2N+2)×2N = , (59)

[H(ks)](2N+2)×2N = , (60)

for the real-part UT equations by adding the real-part LM equations and

[G(ks)](2N+2)×2N = , (61)

[H(ks)](2N+2)×2N = , (62)

for the real-part UT equations by adding the imaginary-part LM equations. By employing the least
squares technique, we have a minimun norm

(63)

where R2N denotes the vector space of real 2N-vectors. Thus, we have

Rank[G(ks)]=Rank[H(ks)]=2N. (64)

Since the rank is promoted to 2N, there is a unique least squares LS solution, tLS, which satisfies the
symmetric positive definite linear system,

(65)

According to Eq. (65), the dynamic stiffness matrix [K] can be expressed as

[K]=[GTG]−1[GTH], (66)

and the dynamic flexibility matrix [F] can be determined by

[F]=[GTH]−1[GTG]. (67)

Ur ks( )
Ui ks( )

2N 2+( ) 2N×

Tr ks( )
Ti ks( )

2N 2+( ) 2N×

Ur ks( )
Lr ks( )

2N 2+( ) 2N×

Tr ks( )
Mr ks( )

2N 2+( ) 2N×

Ur ks( )
Li ks( )

2N 2+( ) 2N×

Tr ks( )
Mi ks( )

2N 2+( ) 2N×

G ks( ) t
˜

H ks( )u
˜

– 2
t R2N∈
lim ,min

G ks( )[ ]2N 2N 2+( )×
T G ks( )[ ] 2N 2+( ) 2N× tLS{ }2N 1× = G ks( )[ ]2N 2N 2+( )×

T H ks( )[ ] 2N 2+( ) 2N× u{ }2N 1×
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6. Numerical examples 

Case 1: Circular membrane (dynamic stiffness) 
A circular membrane with a radius 1m is considered. In this case, an analytical solution of the

dynamic stiffness element, k11, versus k is shown in Fig. 4. Twenty elements are adopted in the
boundary element mesh. Since two alternatives, the UT or LM equations, can be used to collocate
on the boundary, six approaches from the UT and LM methods in choosing independent equations
can be obtained. Fig. 5 shows the numerical solution for the dynamic stiffness element, k11, versus k
using the complex-valued UT BEM. In a similar way, Fig. 6 shows numerical solution for the
dynamic stiffness element, k11, versus k using the complex-valued LM BEM. It is interesting to find
that the results of Fig. 5 using the complex-valued UT, match well and agree with the analytical
solution in Fig. 4. However, the true resonance contaminated by spurious resonance is found in Fig.
6 for the dynamic stiffness element, k11, versus k if only the real-part UT equation is chosen. The
true resonance occurs at the positions of zeros for Jn(kt) while the spurious resonance occurs at the
positions of zeros for Yn(ks) where kt and ks denote the true and spurious eigenvalues. In a similar
way, Fig. 7 shows the numerical solution for the dynamic stiffness element, k11, versus k using the
imaginary-part UT equation. The true resonance occurs at the positions of zeros for Jn(kt) while the
spurious resonance has the same positions of zeros for Jn(ks). In the range of smaller k values, the
ill-posed behavior is present. This result can explain why the data in the lower range of k value was
not provided in (Kang et al. 1999). The numerical instability stems from the auxilliary source-free
system in the imaginary-part formulation. Using the present approach, two additional equations
from the imaginary-part UT formulation in conjunction with the real-part UT matrice are employed
to filter out the spurious resonance of Yn(ks)=0 as shown in Fig. 8. Fig. 9 shows that the spurious
resonance is successfully filtered out by choosing the real-part LM equation in conjunction with the
real-part UT equation. These results match well with the analytical prediction.

Fig. 4 Analytical solution of the dynamic stiffness
element k11 versus k (circular case)

Fig. 5 Numerical solution of dynamic stiffness element
k11 versus k using the complex-valued UT BEM
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Case 2: A square membrane (dynamic stiffness) 
In this case, a square membrane of area 1 m2 is considered. Twenty-eight elements are adopted in

the boundary element mesh. Since two alternatives, the UT or LM equations, can be used to
collocate on the boundary, four cases from the UT and LM methods can be considered. Fig. 10
shows the numerical solution for the dynamic stiffness element, k11, versus k using the complex-
valued UT BEM. No spurious resonance occurs in Fig. 10 as predicted theoretically. However, the

Fig. 6 Numerical solution of the dynamic stiffness
element k11 versus k using the real-part UT
BEM

Fig. 7 Numerical solution of the dynamic stiffness
element k11 versus k using the imaginary-part
UT BEM

Fig. 8 Numerical solution of the dynamic stiffness
element k11 versus k by using two additional
equations from the imaginary-part UT formulation
in conjunction with the real-part UT equation

Fig. 9 Numerical solution of the dynamic stiffness
element k11 versus k by using two additional
equations from the real-part LM formulation
in conjunction with the real-part UT equation
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true resonance contaminated by spurious resonance is obtained in Fig. 11 for the dynamic stiffness
element, k11, versus k if only the real-part UT equation is chosen. Using the present approach, two
additional equations from imaginary-part UT formulation in conjunction with real-part UT base are
employed to filter out the spurious resonance as shown in Fig. 12.

Case 3: Circular membrane (dynamic flexibility) 
The analytical solution of the dynamic flexibility element, F11, versus k is shown in Fig. 13.

However, the true resonance contaminated by spurious resonance is found as shown in Fig. 14 for
the dynamic flexibility element, F11, versus k if only the real-part UT equation is chosen. The true

Fig. 10 Numerical solution of dynamic stiffness
element k11 versus k using the complex-
valued UT BEM (square case)

Fig. 11 Numerical solution of the dynamic stiffness
element k11 versus k using the real-part UT
BEM

Fig. 12 Numerical solution of the dynamic stiffness
element k11 versus k by using two additional
equations from the imaginary-part UT
formulation in conjunction with the real-part
UT equation

Fig. 13 Analytical solution of the dynamic flexibility
element F11 versus k (circular case)
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resonance occurs at the positions of zeros for (kt) while the spurious resonance occurs at the
positions of zeros for Yn(ks). Using the present approach, two additional equations from the
imaginary-part UT equation in conjunction with the real-part UT base are employed to filter out the
spurious resonance in Fig. 15.

7. Conclusions

In this paper, we employed the complex-valued BEM, real-part and imaginary-part kernels to
construct the same dynamic stiffness and flexibility matrices. The numerical instability of dynamic
stiffness has been successfully predicted analytically and filtered out numerically. The spurious
resonances, which occur at the positions of the zero division by zero was filtered out using an
efficient mixed-part dual BEM by adding constraints. The proposed method for determining the
dynamic stiffness and flexibility is time saving with fewer dimension in comparison with the
complex-valued BEM. Two examples, namely the circular and square membranes, have been used
as illustrative examples and good results were obtained.
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Fig. 14 Numerical solution of the dynamic flexibility
element F11 versus k using the real-part UT
BEM

Fig. 15 Numerical solution of the dynamic flexibility
element F11 versus k by using two additional
equations from the imaginary-part UT
formulation in conjunction with the real-part
UT equation
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