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Thermomechanical buckling of rectangular,
shear-deformable, composite laminated plates

Y. S. Get, W. X. Yuanf and D. J. Daweft

Department of Civil Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Abstract. The B-spline finite strip method is developed for the prediction of the buckling of
rectangular composite laminated plates under the combined action of applied uniaxial mechanical stress
and increasing temperature. The analysis is conducted in two stages, namely an in-plane stress analysis in
the pre-buckling stage to determine the pre-buckling stresses, followed by a buckling analysis using these
determined stresses. The buckling analysis is based on the use of first-order shear deformation plate
theory. The permitted lay-up of the laminates is quite general, within the constraint that the plate remains
flat prior to buckling, and a wide range of boundary conditions can be accommodated. A number of
applications is described and comparison of the results generated using the finite strip method is made
with the results of previous studies.
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1. Introduction

A considerable body of literature exists on the buckling of rectangular composite laminated plates
subjected to mechanical loads and a quite recent book, edited by Turvey and Marshall (1995),
contains much information on this subject area. A lesser body of information exists on the buckling
of such plates under thermal loading but within the aforementioned book Tauchert (1995) has
presented a review of work on thermal (and hygrothermal) buckling, and a later study by Dawe and
Ge (2000) includes reference to numerous pertinent works. The problem of buckling under the
combined action of thermal and mechanical loading has been considered by relatively few
investigators but is of importance and is the focus of attention in the present paper.

In dealing with the combined problem the critical buckling temperatures for initially-stressed,
thick, simply supported plates were determined using the Galerkin method byetCaki(1982),
for isotropic plates, and by Yang and Shieh (1988) for anti-symmetric cross-ply laminates. A study
of the buckling of composite laminated plates subjected to combined thermal and axial mechanical
loadings was presented by Noor and Peters (1992) using a mixed finite element approach in the
context of Reissner-Mindlin first-order shear deformation plate theory (referred to simply as SDPT
here). This approach was extended by Noor and Peters (1993) to embrace postbuckling behaviour,
incorporating a multi-parameter reduction method (as in their earlier work) in determining stability
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boundaries and postbuckling responses. Sai Ram and Sinha (1992) investigated the effects of
temperature and moisture on the stability of composite laminated plates subjected to in-plane loads.
They used a finite element method (FEM) in the context of SDPT, incorporating reduced lamina
material properties at elevated temperatures, and considered symmetric and anti-symmetric laminates
with simply-supported and clamped boundaries.

The B-spline finite strip method (B-s FSM) in the context of SDPT is developed here for the
analysis of the thermomechanical buckling of rectangular laminates. The B-s FSM was introduced by
Cheung and Fan (1983) in studying the static behaviour of box girder bridges in the context of
classical plate theory (CPT). More recently, it has been developed in the context of both CPT and
SDPT for a range of types of application which include mechanical buckling of both single plates
and complicated plate structures (Dawe and Wang 1994, 1995, Dawe 1995, Wang and Dawe 1997)
and thermal buckling of single plates (Dawe and Ge 2000). The present report extends this successful
analysis approach, in the context of SDPT, to the study of thermomechanical buckling behaviour
and presents description of a number of applications for which earlier, comparative results are
available.

2. Finite strip method
2.1 Preamble

The flat rectangular plate under consideration, of ledgtm the x-direction), widthB (in they-
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b

Fig. 1 A finite strip
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direction) and thickneds (in the zdirection) is modelled with a number of finite strips of the type
shown in Fig. 1, of widttb < B. In general the plate may be a laminate formedN dayers of
unidirectional fibre-reinforced composite material. From a stress-free state the plate may be
subjected to a temperature risg, y) which does not vary through the thickness but may be non
-uniform in the plane of the plate, and/or to mechanical loguliy)gper unit width at its ends= 0,

A as indicated for a strip in Fig. 1.

It is assumed that under the action of increasing temperature and/or mechanical loading the plate
remains flat as in-plane stresses develop progressively, until these stresses reach a critical level at
which out-of-plane, bifurcational buckling occurs. This assumption has implications for the range of
laminate lay-ups that can be accommodated. It naturally includes all symmetrically laminated, or
balanced, plates but it does not necessarily exclude all anti-symmetric unbalanced plates. Pertinent
to this, Leissa (1986) and Qatu and Leissa (1993) have shown that specific unbalanced laminates
with particular boundary conditions will remain flat when acted upon by particular distributions of
in-plane stress. This statement includes anti-symmetric angle-ply laminates with simply supported or
clamped edges when subjected to uniform or linearly-varying in-plane direct stresses. It also
includes anti-symmetric cross-ply laminates with clamped edges when subjected to uniform in-plane
direct stresses. Hence there is justification for including some in-plane to out-of-plane coupling
terms in the laminate constitutive equation at the onset of buckling (as will be done below).

In line with the assumption of bifurcational buckling there is a need to determine, in the first
stage, the pre-buckling distribution of membrane stresses. Such determination may be trivial in
situations where stresses are clearly uniform or may be complicated in other situations where it is
necessary to conduct a plane stress, finite strip analysis to determine the non-uniform, pre-buckling,
in-plane stress distribution. In either situation the pre-buckling stresses are taken forward to the
second stage of the analysis where they enter into the plate geometric stiffness matrix in an
eigenvalue buckling calculation. The two distinct stages of calculation are described separately in
what follows but it is noted that the same number and width of strips is used in each stage.

2.2 Pre-buckling plane stress analysis

The displacement field of a finite strip in the pre-buckled state is assumed to be of the form

ud _ ""'N; O | ‘0 n+1
0o= % 015 g or 38=%Nsq @
VO =10 Nif| o o, |d'D =

Here theN; = Ni(y) are standard Lagrangian shape functions of degreening across the strip
which has i§ + 1) reference lines at which degrees of freedom are located. The finite strip shown in
Fig. 1 corresponds tm=3 (i.e., a cubic strip) with four (numbered) reference lines. The
®, = d(x) are modified B-spline function bases of dedteanning along the strip ardf andd’
are column matrices of degrees of freedom associateduvetid v, respectively. The spline knots
are equi-spaced along the strip length, wgtspline sections and+ 1 knots in the lengtid, as
shown in Fig. 2a, plus other knots outside each end of this length which are required for the
purposes of completing the definition of a function and prescribing end conditions. The individual
local spline functions®,(x) of polynomial degrée(for k=1 to 5) are defined algebraically
elsewhere (Dawe and Wang 1992) : here Fig. 2b shows a local cubpliri function K= 3)
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Fig. 2 Spline representation: (a) spline sections and knots; (b) local cubic spline functions; and (c) a
combination of cubic spline functions.

whilst Fig. 2c shows the juxtaposition of such local functions to form a complete function. The
modified B-spline function basi®,(x) incorporates revisions to the original function basis, so as
to facilitate the specification of end conditions. Such revisions can be made in more than one way
but here they follow the procedures of Dawe and Wang (1992)k E@®, for instance, and in
representingu (with similar considerations applying to the representationv)pfthe ®,(x)
corresponds to a definition of the column maik of degrees of freedom associated with the
displacement, as

d' = {Uy Uy Oy Oy...lg_1 Ug UG} 2)

Here a; to a4, are generalised coefficients, andu,’ are values af anddu/dx at spline knot 0,
andug andu," are similarly defined at kngt

The linear stress-strain relationships of an individual, orthotropic layer, related %o ythexes,
have the form

57D i
EUVE = Q12 Q2 Qg E g—a,T E 3)
Ofxy Q16 Q26 Qes Dyxy_ZGXyTD

where a,, a, and a,, are thermal expansion coefficients= T(x, y) is the temperature rise;, oy
andt,, are the stresses, tlig (r, s= 1, 2, 6) are transformed layer stiffness coefficients, &né,
and y, are the linear strains which are defined as

_ du Y _du, v

EX - aX, gy - ayv yxy - ay 0)( . (4)
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The corresponding constitutive equations for the laminate plane stress behaviour are

ENX E Da D A1 Arp Age %gx E E ay M
ONy E th/zma [dz_ A, Ay Age|LIIEy E Toay
EnyD DTxyD Ass Az Ace| LVxy[ Szaxym

]

or

F=L(e-a) (6)

Heree ande are the column matrices of elastic and thermal strains, respechiyeédy;andN,, in
F are the membrane direct and shearing forces per unit length; and the stiffness coefficients
appearing irL are defined by

s = [0, Qusdz rs=1286. (6)

During the deformation process the change in total potential energy of a finite strip is
MmM=uUu+vVv @)

whereU is the strain energy and is the potential energy of the applied loading at the two ends
x=0,A.
The strain energy can be expressed as (Dawe and Ge 2000)

U =U;-2Uy+ U (8)
where
U, = ;J’bg/zZJAeTLedxdy, 9
Uz = 37 [ eTLedxdy, (10)
Us = 5% [FelLedxdy (11)

Using Egs. (1) and (3) the elastic stragnsan be expressed as

) N®, O .

n+

e= 0 N @O
iZl P
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u n+1

B,d, (12)

i=1

]|

where the prime ()" denotes differentiation with respect tor ak(x) and with respect tg for
Ni(y). It then follows (Dawe and Ge 2000) thét can be written in the form
1

U, = d'kd (13)
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with typical submatrix; (i, j = 1, 2--- n + 1) of the strip stiffness matrix defined as

b/2

_ T
ki = [, J’:Bi LB, dxdy (14)

and whered is the column matrix of all strip degrees of freedom. It also followsUhatan be
written as

U, = %det (15)

with the typical submatrix; of the thermal loading column matfixdefined as

fa = [0, [o Bl Ledxdy. (16)

In e (see Eq. 5) the variation allowed forover the strip surface is th@itcan vary across the
strip (with y) as a polynominal function of degree three, using Lagrangian interpolation, and can
vary linearly (withx) along the strip.

The third partUs, of the strain energy need not be considered in any further detail since it is not
a function of the strip freedonts and hence will play no part when the total potential energy is
minimised.

The potential energy of the applied mechanical loading is

b/2 b/2

V== [, P(Uy=ody+ [, P(U)c= ady. 17)

Clearly the integrations are made only over the ends of the finite strip and the effective expression
for u in each of the integrations is the particular reduced form of the general expressiggifen
in Eg. 1) that applies at the end. Thus

b/2 b/2

On+1 O On+r O
V=LY NO)-ddly+ [,y N(@),- oy (18)
which can be written in the form

v =-d",, (19)

where the typical submatrify,; of the mechanical loading column matfjxis defined as a column
matrix of zeros except for entries of

2 PN(@=ody  and 72, (@)= ady

in the first and last-but-one positions (i.e., in positions corresponding & x=0 andx=A,
respectively).
The total potential energy of a finite strip now becomes, using Egs. (6), (7), (12), (14) and (18),

n= %did —d"f,—df, + U, (20)
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The integrations involved in evaluatig f, andf,, are performed analytically in thedirection
and numerically in the-direction through Gaussian integration with four points per spline section.

For the complete plate an expression of the same form applies, but written in terms of the plate
stiffness matrixK, degrees of freedor®, thermal load column matri¥, and mechanical load
column matrix F,, rather than their lower-case equivalents in Eq. (20). The plate matrices are
obtained by appropriate super-imposition of the strip matrices in the standard direct stiffness
procedure. If it is assumed th&t D, F; andF,, denote plate matrices after the prescribed kinematic
boundary conditions have been applied, then the minimisation of the plate total potential energy
gives the set of equations

KD=F+ Fn. (21)

Solution of these equations for the degrees of freeDois obtained using Gaussian elimination.
When D is known, and hencd for each strip, the forces per unit length N, and N,, can be
determined using Eqgs. (4) and (5). The corresponding pre-buckling stresses are deap“ceq,"as
and rxy" , respectively, and are obtained from the forces per unit length by dividing by the plate

thicknessh.
2.3 Buckling analysis

In the second-stage analysis the flat laminated plate is subjected to the pre-buckling membrane
stresses whose distributions are available from the first-stage analysis described above. Now
ordinarily the situation will not be that the temperature and the end thrust increase directly
proportionally in some known fashion until buckling occurs. Rather, two practical situations are
considered here. The first situation is that the temperature increases a known amount (which is less
than that which will cause buckling on its own) and it is required to find the critical value of end
thrust which will then cause buckling. The second situation is that the end thrust is known (at a
level not leading to buckling on its own) and it is required to find the critical value of temperature
rise which will then cause buckling. Hence, in the pre-buckling stage what is required is two
separate solutions for Eq. (21) and the subsequent determination of stresses :Foré fand a
specified magnitude (unity say) of end thrust, and the otheF ferO and a specified magnitude
(again unity say) of temperature increase. Then the total pre-buckling stresses moving forward to the
buckling analysis will comprise an initial specified (in distribution and magnitude), or “dead”, stress
system plus an imposed, or “live”, system whose distribution is known but whose magnitude which
will cause buckling is not. Thus we will have a pre-buckling stress system of the form

0

o’ = o5+ Ao; (22)

where subscript® andL denote the dead and live systems, respectivelg, a load factor and
o’ = {0 o, 1,,} etc.

The aim now in the second stage of the analysis is to determine the critical valteabtauses
out-of-plane buckling. The buckling analysis is conducted in the context of Reissner-Mindlin first-
order shear deformation plate theory. In this stage the displacements (and quantities derived from
them) that occur are to be regarded as perturbation displacements, i.e., are to be regarded now as the
changes of displacements that occur at the moment of buckling. In &wadv are such changes
but the displacements relating to out-of-plane deformation, i.e., the deflectod the rotations of
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the plate normaly and ¢4, (see Fig. 1), are total displacements since there are no out-of-plane
displacements in the first analysis stage.

The perturbation displacement field for the buckling problem is assumed to be

Ou O NNOo O OO0 0 0 0 |OguO
O O - O O
Ov O ONOOO|O®D O 0 0 |OdO
O O n+t N 0,0
w 0= 0 0NoOO||[0O Od 0 0 |UTD
O 0 & - EFMD
D0 00O0NO||O O 0® O 0
%UD _ Edwxﬂ

*H 000 O0N/[0O 0O 0@, U

which again is of the form

5= _nilNisq

where the definitions of the various quantities is along similar lines to that following Eq. (1). Here
again theN; are Lagrangian shape functions in thdirection. Thed, andb,_; are modified B-
spline function bases of degrelkesand k — 1, respectively, in the-direction : a lower degree of
spline representation is used for the longitudinal variation yof than for the other four
displacement quantities so as to avoid any shear-locking problem that may otherwise occur while
analysing thin plates (Dawe and Wang 1992, 1994, 1995, Dawe 1995, Wang and Dawe 1997).

The in-plane (perturbation) stress-strain relationships of the individual layer, related to the
laminate axes, are as in Eq. (3) but without the thermal contributions. These relationships are now
augmented by the relationships

(23)

Oty
0 0=
OT2x0]

(24)
Qg5 Qss| Vax[d

between the through-thickness shear stregsemd 1, and the corresponding shear straipsand
Vix Where theQs (r, s=4, 5) are transformed stiffness coefficients. The strain-displacement
relationships are now

|:Q44 Q45} Eyﬂ%

PV VO R P Ve T
Ex—d—X+ZdX, sy—d—y+zﬁy, Yay ;y+d_X+ZDdy+ ox 0

ow ow
yyz:E'i'wy’ sz=&+‘l/x- (25)

The laminate constitutive equations are obtained through the use of the stress-strain and strain-
displacement equations with appropriate integration through the thickness. The form of these
equations is assumed here to be
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where, clearly, new definitions &, L ande apply from those given in the first-stage analysis. Here
N, N, andN,, are the membrane direct and shear forces per unit leMgtivl, and M,, are the
bending and twisting moments per unit length; @dndQ, are through-thickness shear forces per
unit length. The laminate stiffness coefficients appearirlg @éme defined in the usual way as

(Aw By Dis) = [, Qu(1,2 A)dz 151,26 (27)

and

h/2

A = krksj_h/erst r,s=4,5 (28)

wherein thekks are prescribed shear correction factors. The constitutive relationships of Eq. (26)
embrace a range of types of laminate which can correspond to a bifurcational buckling problem,
dependant upon the nature of the pre-buckling stress field and the laminate boundary conditions
(Leissa 1986, Qatu and Leissa 1993), as mentioned earlieB,Jstiffness coefficient is omitted

from L simply because its presence would not be compatible with a plate remaining flat prior to
bifurcational buckling taking place. In general, not all the stiffness coefficients appeaking Eq.

(26) will be present for any one laminate, of course.

The strain energy of a finite strip in the buckling analysis can be expressed in the same form as
given earlier forU; in Eqg. (9), but now witi. ande as given in Eq. (26), of course. The column
matrix e can be expressed in the form of Eq. (12) but now with new definitiods @ in Eq. (23),
and ofB;, as recorded in the Appendix. Furthgrcan be expressed in the form of the right-hand
side of Eq. (13) with the typical sub-matkx of the strip stiffness matrik given again by Eq. (14).

In evaluatingk direct integration is used in thedirection and numerical integration in tke
direction, as in the pre-buckling analysis.

The comprehensive expression for the potential en&fgyof the applied in-plane stresses
o’ ay" and rxyo (arising from the first stage of the analysis) acting on the finite strip is (Dawe and
Wang 1994, 1995)
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Vo = B e v, o et oo, ot
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Using the displacement field of Eq. (23) in conjunction with Eq. (29) makes it possible ultimately
to expressd/, in the form

1
Vg = édigd (30)
whereky is the strip geometric stiffness matrix of which the typical submaégsixi, j=1, 2 -
n+1)is

b/2

: : e o
kgy = h[*2, E[GLF Gy + G3F Gy + G3F Gy + 15(GiF Gy + GyF st)dedy (31)
with

(32)

and with matrice$s;; to G5 defined in the Appendix. Since the pre-buckling stresses have the form of
Eqg. (22) the strip geometric stiffness matrix can be split into those parts corresponding to the dead
stresses and to the live stresses, with the incorporation of a load factor for the live stresses, i.e.,

Ky = Koo+ AKg.. (33)

In evaluatingky, Gaussian numerical integration is used in bothxthandy-directions, typically
with five points both across a strip and per spline section along a strip.
The strip total potential energy in the buckling stage is

1 1
M= U=V, = 5d7kd =507 (kep + Akg)d. (34)

For the complete plate a similar expression applies in terms of whole-plate miéfri€gs Ky
and D which are assembled in the direct stiffness manner and which are assumed to relate to the
situation after the kinematic boundary conditions have been applied. On minimising the energy, the
set of equations for the eigenvalue problem governing plate buckling becomes

(K-Kgo—AKy)D = 0. (35)

Solution for critical values of is achieved using the iterative Sturm sequence-bisection procedure
and the corresponding eigenvector, representing the buckling mode, is determined through the use of
a random force vector.
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3. Applications
3.1 General remarks

The developed computer program arising from the analysis described above allows the user the
choice of a number of types of spline finite strip model, i.e., models based on the assumption in the
displacement field of different degrees, of crosswise Lagrangian interpolation and different
degreesk, of longitudinal spline function. However, in the few applications that are described here,
only one type of model is used, correspondingr o3 andk = 3, i.e., cubic interpolation across a
strip, with four equi-spaced reference lines, and piecewise-cubic spline representation along a strip
(except forys, where suchepresentation is piecewise-quadratic).

The range of boundary conditions that could be accommodated in the developed capability is
broad but, for the applications described here, attention is restricted to plates which have the same
type of condition on all four edges, and this condition is one of four kinds. For an edge running
parallel to they-axis, i.e., atx=0, A, the types of kinematic condition applied in the buckling
analysis are defined as

S1 conditionu =v =w = = 0;
S2 conditiony =w = ¢, =0;
S3 conditionu =w = ¢4 = 0;
C1 conditionu =v=w = ¢4 =y4=0;

and conditions on an edge running parallel toxtagis are obtained by replacingv, ¢ andyx by
v, U, Y4 andy, respectively.

The shear correction factors are assumed to have the value 5/6 in the described applications, to be
consistent with the presented results of earlier studies based on the use of first-order SDPT.

3.2 Buckling of isotropic plates under pure mechanical and pure thermal loading

Here the two extreme situations of buckling under pure mechanical loading with no temperature
effect, and buckling under pure thermal loading with no initial mechanical stress, are considered.
The aim is to establish the nature of the convergence properties of the developed FSM in relatively
simple situations where comparative solutions are available. The plates considered are square and
isotropic, with Poisson’s ratio = 0.3 and coefficient of thermal expansiarF 2x10°. In the case
of pure mechanical loading the plate is S2 simply supported and subjected to uniform uniaxial stress
o, . Two thickness ratios are considered separatelyAlles 10 andA/h = 100. In the case of pure
thermal loading, two types of boundary condition on all edges are considered separately, i.e., the S3
simply supported and the C1 clamped conditions. The thickness ratio i&/kheh00.

The FSM results are presented in Table 1 in the form of convergence studies with respect to the
number of stripdNS and the number of spline sectiogs,Comparative results from several sources
are also recorded in Table 1. The buckling coeffickrih Table 1 is related to the critical stress
(0,°)er by the equationd,’ .)=KmEH/[12(1 - v?)A?F. The result of Srinivas and Rao (1969) is an
exact solution to the full three-dimensional elasticity equation. The result quoted in Timoshenko and
Gere (1961) is exact within the confines of classical plate theory. The results of Gowda and Pandali
(1970) correspond to use of the Rayleigh-Ritz method (RRM) in the context of CPT and the results
of Thangaratham and Ramachandran (1989) correspond to use of the FEM using semiloof elements.
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Table 1 Buckling of isotropic square plates : convergence of valu¢sao T,

) Buckling coefficientk Critical temperaturd,
Solution method — —
Ah =10 A/h =100 S3 conditions  C1 conditions
FSM,NS=8:
g=2 3.737 4.004 63.35 168.52
g=4 3.732 3.998 63.23 168.07
gq==6 3.731 3.997 63.22 167.55
qg=8 3.731 3.997 63.22 167.47
g=10 3.731 3.997 63.22 167.45
FSM,q=8:
NS=2 3.737 4.006 63.35 168.52
NS=4 3.732 3.998 63.23 167.80
NS=6 3.731 3.997 63.22 167.52
NS=8 3.731 3.997 63.22 167.47
NS= 10 3.731 3.997 63.22 167.45
Exact 3-D (1) 3.741 - - -
Exact CPT (2) 4.000 4.000 - -
RRM CPT (3) - - 63.27 168.71
FEM (4) - - 63.33 167.70

(1) Srinivas and Rao (1969), (2) Timoshenko and Gere (1961), (3) Gowda and Pandalai
(1970), (4) Thangaratnam and Ramachandran (1989).

From Table 1 it is clear that the FSM results converge very rapidly with respect tg dadiNS
particularly for simply supported plates. The FSM results compare closely with the existing
comparative solutions except, as expected, that the CPT resultféorthe plate withA/h=10 is
significantly higher than both the SDPT FSM and three-dimensional elasticity results due to the
neglect of through-thickness shearing effects.

3.3 Thermomechanical buckling of 16-layer, symmetric laminates

Noor and Peters (1992) have considered the thermomechanical buckling of symmetrically-laminated
rectangular plates. In their work the plates in general are subjected to a uniform uniaxial stress and
a uniform temperature rise. A mixed finite element formulation is used in the context of first-order
SDPT : the fundamental unknowns consist of generalized displacements and stress resultants, each
of which is represented with bi-quadratic Langrangian shape functions. An efficient multiple-
parameter reduction method is used in conjunction with the FEM models. In the presented examples
the plates considered are square, with side length 254 mm, and with S2 simple support conditions.
The individual plies have a thickness of 0.127 mm and properties, with relation to fibre axes 1
(along) and 2 (across), defined as

E; = 130.3 GPaEk; = 9.377 GPaG;, = Gi3 = 4.502 GPa,
Gy; = 1.724 GPay,, = 0.33,0;1 = 0139X1CF/OC, ar = 9.0x10%°C

Amongst the examples considered are those which concern a 16-layer angle-ply plate,ef [+45]
construction and a 16-layer quasi-isotropic plate of [+45/@/€)nstruction. These constructions,
each of total thickneds=2.032 mm, are the ones considered here.
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Fig. 3 Stability boundary of 16-layer quasi-isotropic and angle-ply laminates under combined thermal and

mechanical loading.

Table 2 Buckling of 16-layer, square plates under combined loading : critical vahyeanofg,

N, Solution Quasi-isotropic plates Angle-ply plates
(NO)er method Mode 1 Mode 2 Mode 1 Mode 2
Pure axial compression : valuesgpf

1.0 FSM 28.71 36.83 37.63 37.66

1.0 FEM* 28.74 36.92 37.64 37.69
Pure temperature rise: valuesgpf

0 FSM 50.07 104.4 36.26 71.97

0 FEM* 50.13 104.7 36.28 71.92
Combined loading : values of

0.75 FSM 13.20 49.96 11.35 21.28

0.75 FEM* 13.21 50.16 11.37 21.36

0.5 FSM 25.90 72.25 20.64 40.75

0.5 FEM * 25.92 72.46 20.66 40.82

0.25 FSM 38.17 93.20 28.82 58.54

0.25 FEM * 38.22 93.42 28.84 58.60

*Noor and Peters (1992)

The FEM results of Noor and Peters are presented in terms of two parameters which are defined as

o = AxTo AZH?, gp = Ny AZEh®

where T, is the uniform temperature rise até’ = ho, is the uniform axial compressive stress
resultant. For particular combinations qafand g, an instability will occur. Noor and Peters (1992)
present the stability boundary épa— g, space which separates areas of stability and instability. This

is reproduced here in Fig. 3 for the 16-layer angle-ply and quasi-isotropic plates: the stable region
for each plate is the region beneath the appropriate curve, of course. On the same figure are shown
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the results obtained for these applications when using the present FSNN8&itl= 8). It is clear
that there is very close comparison between the sets of FSM and FEM results.

Noor and Peters (1992) also calculate the lowest two critical valugsaotig, for the two plates
for a few different values of the ratib,/(N,).,  whe(®l,)., is the buckling stress resultant
corresponding to pure axial compression. These numerical results are recorded in Table 2 together
with results generated using the present FSM, againN@thqg= 8. The FSM results are generally
slightly lower than the corresponding FEM results but the comparison is very close, with the
greatest difference being approximately 0.4%.

3.4 Thermomechanical buckling of 4-layer, symmetric and anti-symmetric, cross-ply plates

FSM results are presented here which pertain to the mechanical buckling of plates which have an
initial thermal stress field due to a uniform temperature change. These results are compared to those
of Sai Ram and Sinha (1992) who considered the buckling of various four-layered, graphite-epoxy
laminates of different aspect ratios, with both S1 simply supported and C1 clamped edges, using a
finite element method. The element used by Sai Ram and Sinha is an eight-node, 40 degree-of-
freedom quadrilateral, employing quadratic serendipity shape functions in defining each of the five
displacement-type quantities. The properties of this shear-deformable (first-order SDPT) element are
evaluated using Gaussian quadrature. The change in material properties at elevated temperatures was
considered and Table 3 shows the assumed variatigpn Bf andG,, with temperature, as recorded
by Sai Ram and Sinha. Other material properties are that

Gi3 = Gz, Gos = 0.55;,, Vi, = 0.3,a;, = -0.3x10%°K, a, = 28.1x10°%°K.
In all their applications Sai Ram and Sinha use a 4x4 mesh of equal rectangular elements to model
an entire plate, and present no evidence of quality of convergence of calculated buckling loads with

Table 3 Elastic moduk,, E; andG;, of a graphite - epoxy lamina at different temperatures

Elastic moduli TemperaturesK
(GPa) 300 325 350 375 400 425
E, 130 130 130 130 130 130
E, 95 85 8.0 75 7.0 6.75
G 6.0 6.0 55 50 4.75 45

Table 4 Buckling of four-layer, cross-ply square plate afi25ritical values ofA

Solution method A Solution method A
FSM,NS=8: FSM,q=8:
q=2 0.4536 NS=2 0.4467
g=4 0.4467 NS=4 0.4467
q=6 0.4467 NS=6 0.4467
q=28 0.4467 NS=8 0.4467
FEM * 0.4488 FEM * 0.4488
RRM * 0.4477 RRM * 0.4477

*Sai Ram and Sinha (1992)
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increase in the number of elements used. As a precursor to their presentation of results they have
made comparison with a result which they calculated using a Rayleigh-Ritz method of Whitney and
Ashton (1971). This comparison is for the buckling under uniform uniaxial compressivedggtress of
a S1 simply supported, square, 0/90/90/0 symmetric cross-ply plate which is heated from the base
temperature of 30& up to 323K, i.e., T=25°K. For this particular case the lamina properties are
assumed to be unaffected by temperature. FSM results have been generated using the present
approach for this case in convergence studies with varying valu®S @ind g. The complete
collection of all results is recorded in Table 4 : these results are values of a non-dimensional critical
load factorA = (N,).,/[(N)e/]7=300« I-€., the ratio of buckling load at the elevated temperature
(which in this example is 32K) to buckling load at 30K. It can be seen from the table that, for
this relatively simple situation in which the buckled mode shape has one half-wave in each co-
ordinate direction there is very close agreement between the three sets of results, and that the FSM
results demonstrate very fast convergence. In what follows the FSM results have been generated
usingNS=qg =8 (and the FEM results of Sai Ram and Sinha are for a 4 x4 mesh).

Continuing with square laminates, Sai Ram and Sinha have presented graphical results for the
change ofA when the temperature changes from its base ofk30p to 425K (or T varies from
0°K to 125K). Here we study two plates, one of the same 0/90/90/0 symmetric cross-ply
construction considered above, and the other of 45/-45/45/-45 anti-symmetric angle-ply construction.
In both cases, plates with all edges S1 simply supported and all edges C1 clamped are considered.
Figs. 4 and 5 show the comparison between the FEM results copied from Sai Ram and Sinha
(1992) (from Figs. 10 and 13 of that reference) and those calculated using the present FSM
approach. It can be seen that generally there is close comparison between the two sets of results,
although exceptionally for the clamped 0/90/90/0 plate (see Fig. 4a) the comparison is less close,
with the A values predicted by the FEM being significantly greater than those predicted by the FSM.

Finally, some further, tabulated results are available from the work of Sai Ram and Sinha for 0/90/
0/90 anti-symmetric cross-ply plates, for aspect ratdB, of 0.5 and 2.0 and for thickness ratios,
A/h, of 10, 20, 30 and 40. These results relate to valued obrresponding to a number of
prescribed temperature ris@s For clamped boundary conditions the FEM results are recorded,

4
A
075
+ AM=10,FSM ® A/h=20, FSM ¢ Ah=10,FSM ® A/h=20, FSM Ras
+ Ah=30, FSM x A/h=40, FSM 4 Ah=30,FSM x A/h=40, FSM T
AIh=10, FEM —~~ A/h=20, FEM Ah=10, FEM --- Ah=20, FEM
- AIh=30, FEM --—- Ah=40, FEM - Ath=30, FEM ---- Ath=40, FEM
05 + + + } 05 + + 4
300 325 350 375 400 425 300 325 350 375 400 425
TCK) TCK)

(a) (o)

Fig. 4 Effect of temperature on the non-dimensional critical fo&ak (0/90/90/0) laminates with (a) clamped
C1 boundary, and (b) simply supported S1 boundary.
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1
A
075 +
* Ah=10,FSM ® A/h=20, FSM * Ah=10,FSM ® A/h=20, FSM
+  A/h=30,FSM x A/Mh=40, FSM +  A/h=30,FSM x A/Mh=40, FSM
Ah=10, FEM --- A/h=20, FEM Ah=10, FEM --- A/h=20, FEM
-+ Afh=30, FEM ---- A/h=40, FEM -+ Alh=30, FEM --~- A/h=40, FEM
05 + -+ } + 05 +— t + 4
300 326 350 375 400 425 300 325 350 375 400 425
T(°K) TCK)

(@) (b)

Fig. 5 Effect of temperature on the non-dimensional critical lbddr (45/-45/45/-45) laminates with (a)
clamped C1 boundary, and (b) simply supported S1 boundary.

Table 5 Effect of temperature increaBen non-dimensional critical load for 0/90/0/90 clamped rectangular

plates

Aspect ratioThickness 1allo 1=k T=25K T=50K T=75K T=100K T= 125K

10 1000 0985 0940 0892 0864 0837

(1000  (0.988)  (0.951)  (0911)  (0.888)  (0.865)

20 1000 0978 0945 0912 0890  0.870

05 (1000)  (0.980)  (0.954)  (0.928)  (0.909)  (0.893)

' 30 1000 0967 0931 0897 0872  0.849

(1.000)  (0.970)  (0.940)  (0.912)  (0.890)  (0.871)

40 1000 0953 0907 0865 0833  0.803

(1.000)  (0.958)  (0.918)  (0.882)  (0.854)  (0.828)

10 1000 0989 0922 0854 0817  0.781

(1L000)  (0.994)  (0.931)  (0.865)  (0.828)  (0.792)

20 1000 0981 0940 0892 0864  0.837

0 (1.000)  (0.989)  (0.946)  (0.900)  (0.873)  (0.848)

' 30 1000 0982 0946 0909 0885  0.864

(1L000)  (0.985)  (0.951)  (0.916)  (0.894)  (0.873)

40 1000 0978 0945 0912 0890  0.870

(1.000) (0.982) (0.951) (0.919) (0.898) (0.880)
*Upper value is FSM result, lower value in parentheses is FEM result (Sai Ram and Sinha 1992)

within parentheses, in Table 5 together with results generated using the present FSM approach. It
can be seen from the table that the comparison between the two sets of results is quite close
although, at least for the larger valuesTgf not as close as seen earlier for square plates. The
greatest difference between any two comparative values is about 3.35%. Perhaps the main reason for
the relative lack of closeness is that the 4x4 FEM mesh is insufficiently fine in situations where, as
now, the buckling mode shape has more than one half-wave in the direction of the longest plate edge.
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4. Conclusions

The scope of the B-spline finite strip method has been extended to allow the prediction of the
buckling of rectangular composite laminated plates subjected to combined thermal and mechanical
loading. The analysis makes allowance for through-thickness shear effects at the buckling stage and
permits consideration of laminates with a range of types of lay-up and of boundary conditions. The
method has been applied to the solution of a number of specific problems and has been shown to
have good convergence properties to values which generally compare closely with the results of
previous studies.

The analysis described herein is of a linear nature, taking place in two distinct stages, namely a
pre-buckling stage in which only in-plane behaviour is involved in a perfectly flat configuration
(with appropriate restriction on the type of lay-up) and the bifurcational buckling stage wherein out-
of-plane displacements develop. The general problem of the full-range response of a plate to
thermomechanical loading is nonlinear, of course, but this general problem can also be studied using
the B-spline finite strip method, and this will be described in a future publication.
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Appendix

MatricesB; and Gy to Gs; of Section 2.3 are defined as

N, O O O 0
0 N 0 0 O
NOND, 0 O 0
B=| 0 0 0 O_Nid_D.'(_l
0 0 0 N® 0
0 0 0 N® N o
0 0 NoN®, O
| 0 0 N® 0 Ny
Gy = Niclikoooo,GZiZONiqik 000
N/ ®.00 00 [0 N & 000
Ggi:OONiqikoo,Gm:OOONiqf o
|0 0N/ @00 00 ON &0
G, =000 ONiaik',l
0000N &

where the prime (’)denotes differentiation with respect xofor ®,(x) and ®,_1(x) and with
respect toy for Ni(y).





