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Abstract. Based on the orthotropic hypoelasticity formulation, a triaxial constitutive model of concrete
is proposed. To account for increasing ductility in high confinement of concrete, the ductility enhancement
is considered using so called the strain enhancement factor. It is also developed a three-dimensional finite
element model for reinforced concrete structural members based on the proposed constitutive law of
concrete with the smeared crack approach. The concrete confinement effects due to the beam-column joint
are investigated through numerical examples for simple beam and structural beam member. Concrete at
compression fibers in the vicinity of beam-column joint behaves dominant not only by the uniaxial
compressive state but also by the biaxial and triaxial compressive states. For the reason of the severe
confinement of concrete in the beam-column joint, the flexural critical cross-section is observed at a small
distance away from the beam-column joint. These observations should be utilized for the economic design
when the concrete structural members are subjected to high confinement due to the influence of beam-
column joint.

Key words: compressive strength of concrete; hypoelastic model; finite element analysis; concrete con-
finement due to beam-column joint. 

1. Introduction

In the design of reinforced concrete structural members, the uniaxial compressive strength of
concrete obtained from cylinder test is one of the most important design variables as the
compressive strength criteria of concrete. In ACI design standard (1999) or in the case of cross-
sectional analysis using equivalent rectangular stress block theory (Hognestad et al. 1955) or in a
fiber model (Kaba et al. 1984), generally, it is considered that concrete at compression fibers in
structural member is only in a uniaxial compressive state except the confinement effect by
transverse reinforcement. However, it is well known that the compressive strength of concrete is
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highly dependent on existing various confinement effects, and the axial compressive strength of
concrete is increased with the increment of hydrostatic pressure. Under very high confining stresses,
extremely high compressive strengths have been recorded. It gives a question that the stress state
can be different with uniaxial stress state in flexural critical cross-section of concrete members. It is
because the flexural critical region of member, in general, exists near the beam-column joints as
shown in Fig. 1, and concrete in that region can be confined by beam-column joint. As shown in
the figure, concrete at point A in a simple beam is expected to behave as the uniaxial compressive
state, but concrete at point B in a structural member is expected to behave as the multiaxial
compressive state. From a previous study on compressive strength of concrete prism with several
height/width ratios by Hotta and Cho (1999), it was known that the compressive strength of
concrete prism was highly dependent on the restraint effect according with several height/width
ratios of specimen. Takiguchi, et al. (1992, 1994, 1995, 1996) conducted a series of experimental
tests of reinforced concrete beam-column members under several loading conditions and it was to
make clear that the characteristic of the compressive strength of concrete was inconstant in the
critical section of the members according with the various loading and topology conditions.

The purpose of this study is to investigate the compressive strength of concrete in the vicinity of
the flexural critical regions of reinforced concrete structural beam and column members using three-
dimensional finite element models. In the experiments of reinforced concrete members, it is difficult
to measure the actual triaxial stresses in concrete. The nonlinear finite element analysis of
reinforced concrete members with a triaxial constitutive law of concrete can give not only abundant
information on the triaxial stress state of concrete, but also easily understanding about confining
effect on the compressive strength of concrete in members. Due to that, it is developed a triaxial
constitutive law of concrete based on the orthotropic hypoelasticity model for three-dimensional
finite element formulation and the validation studies for numerical results have been presented to
compare with the experimental results. Using developed finite element model, concrete confinement
effects to the flexural strength of reinforced concrete beam member in the beam-column joint have
been studied mainly based on the observation of numerical results, with limiting to the case of no

Fig. 1 Compressive stress states of concrete in flexural critical regions
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transverse shear reinforcement. These observations give some benefits that there will be actually
economies in design practice for structural beam members resulting from concrete confinement due
to the influence of beam-column joint.

2. Concrete model in compression

The presented three-dimensional stress-strain relationship of concrete is based on an orthotropic
hypoelastic formulation with a stress-equivalent uniaxial strain relation. It includes the effects of
triaxial nonlinear stress-strain behavior, dilatancy, and the compressive crushing of concrete.

2.1 Orthotropic hypoelastic formulation

In structures where the stress state at every point is defined by three principal stresses, concrete
can be characterized during loading as a nonlinear orthotropic medium with the directions of
orthotropy coincident with the principal stress directions. In this approach, the incremental stress-
strain relations of concrete in multiaxial stress state for an orthotropically anisotropic material, as
developed by Elwi and Murray (1979) for concrete under axisymmetric stress conditions, can be
written as 

 (1)

where  and  are the vector of stress and strain increments, respectively, [C] is the
constitutive matrix. The following constraints must be fulfilled to ensure the symmetric condition of
the compliance tensor:

 (2)

By incorporating the above conditions, consequently, the incremental stress-strain relationship of
concrete in the local coordinate system of axes (1, 2, and 3) in the explicitly symmetric form is 
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and the subscripts 1, 2, and 3 stand for the axes of orthotropy; ε and γ are normal and engineering
shear strains, respectively; Ei is the tangential modulus of elasticity with respect to the orthotropic
direction i (i = 1, 2, 3); νij is the Poisson’s ratio in direction i due to uniaxial stress in direction j (i,
j = 1, 2, 3); and Gij is the shear modulus of elasticity in plane i-j which is assumed to be invariant
with respect to transformation to any non-orthotropic set of axes which results in: 

 (8)

 (9)

 (10)

2.2 Equivalent uniaxial strains

For the incremental stress-strain relation in Eq. (3), it is necessary to describe the determination of
the nine incremental moduli. To this end, the concept of equivalent uniaxial strain, as proposed by
Darwin et al. (1977), is adopted in the material model. By the transformation of Eq. (3), the
equivalent uniaxial strains dεui can be expressed in terms of the actual incremental strains dεi as

 (11)

The equivalent uniaxial strain increments can be evaluated from Eq. (3) and Eq. (11) in simple form

 (12)

Eq. (12) shows that the equivalent uniaxial strain increment represents the strain increment in the i-
direction that the material would exhibit under a uniaxial stress increment with the other stresses
kept equal to zero.
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Fig. 2 Uniaxial stress-strain curve of concrete
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2.3 Uniaxial stress-strain curve and Poisson’s ratio

For the uniaxial compressive stress-strain relationship of concrete, as shown in Fig. 2, Saenz
(1964)’s curve is adopted to describe the compressive ascending region of concrete. In the
compressive descending region of concrete, stress is reduced linearly, and concrete is crushed if any
point reaches at ultimate stress, ff. On the other hand, a significant volumetric expansion of concrete
subjected to higher strains has been observed during experiments. Based on results reported by
Kupfer et al. (1973) the following equations are used to describe the variation of Poisson’s ratio.

 (13)

 (14)

2.4 Ultimate strength surface of concrete

The ultimate strength surface of concrete in triaxial stress space is described in this study by the
four parameter surface proposed by Hsieh et al. (1979) and is expressed as,

 (15)

where,

 (16)

 (17)

and

a = 2.018, b = 0.9714, c = 9.1421, d = 0.2312  (18)

From the ultimate surface, the strength enhancement in triaxial state is modeled by modifying the
peak stress of the uniaxial stress-strain curve as bellows

fci = λsi fc,  ffi = λsi ff  (19)

where λsi is the strength enhancement factor solved from the equation of ultimate surface. On the
other hand, experiments have shown that concrete behaves more ductile for increasing confinement
pressure. To account for increasing ductility in high confinement pressure, from experimental results
by Kupfer, et al. (1969) and Smith (1987), the ductility enhancement is newly proposed as the
function of the strength enhancement factor as 

 (20)
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ultimate stresses respectively can be expressed as

 (22)

3. Concrete model in tension 
 
Concrete cracking model is considered as a smeared crack approach. If the maximum principal

stress for some reason exceeds a limiting value, a crack is assumed to form in a plane orthogonal to
this stress. After this, the behavior of that zone of concrete becomes orthotropic. After cracking,
new sets of cracks can be formed which are perpendicular to the previous cracks as shown in Fig. 3.

After concrete cracking, tensile stress is not immediately released to zero but is gradually released
by strain-softening behavior. In this paper, as proposed by Yamaguchi et al. (1990), after concrete
cracking, the stress-strain relation is considered as a linear strain-softening model. As shown in Fig.
4, the total strain increment ∆ε is decomposed into two parts, the concrete strain increment ∆εco and
the crack strain increment ∆εcr, and the strain-softening modulus Et can be derived as follows,

(23),(24)

where Gf is defined as the fracture energy of concrete required to create one unit of area of a
continuous crack and wf is the crack band width.

Experimental results indicate that a considerable amount of shear stress can be transferred across
the rough surfaces of cracked concrete due to the influences of the aggregate interlocking,
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Fig. 3 Three-dimensional crack model

Fig. 4 Linear tensile strain-softening model of concrete
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reinforcement ratio and bar size. A common procedure to account for aggregate interlock in a
smeared crack model is to attribute an appropriate value to the cracked shear modulus Gc as a
function of the uncracked shear modulus G. In the present work, from Kolmar et al. (1984), if strain
exceeds tensile strain ε t, the cracked shear modulus are assumed to be reduced linearly as 

(25)

where αc is used as 0.5 for one crack and 0.25 for over two cracks, and εm is used as 0.002. 

Gc = αcG 1
ε

εm

-----– 
  ,    for   εt ε≤ εm<

Fig. 5 Uniaxial, biaxial, and triaxial stress-strain curves
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4. Comparison with the stress-strain test results 

Uniaxial, biaxial and triaxial stress-strain relationships obtained from the foregoing model are
compared with the experimental results by Kupfer et al. (1969) and Smith (1987) as shown in Fig.
5. The uniaxial compressive strength of concrete is 32MPa for uniaxial and biaxial tests and 34.7
MPa for triaxial tests. As could be seen, the peak compressive stresses from predicted results by
present model in all cases had a good agreement with those from the experimental tests, and
ductility response in compressive ascending portion is closer to the experimental results. However
the response in compressive descending portion is somewhat different from the experimental results.

5. Behavior of steel reinforcement

The reinforcing bar is considered as 2-noded isoparametric bar element to resist only axial force
in the bar direction. Isoparametric bar element can be easily matched by placing them on solid
elements. A bilinear idealization is adopted in order to model the bilinear elastic and strain-
hardening plastic stress-strain relationships. It is assumed that between steel reinforcement and
concrete is perfectly bond in the present study. On the other hand, in the case of tensile steel
embedded in concrete, since the steel stress remains lower than the yield strength everywhere else
besides the vicinity of the crack plane, the average strain of the bar does not exhibit a yield shelf as
does a bare bar. The strain-hardening rate is dependant on the average steel stress at the start of
yielding, and is higher when the stress is lower. In present model, in order to model the post-
yielding constitutive laws for a bar embedded in concrete, the average stress and average strain
relationship proposed by Okamura and Maekawa (1991) is considered. 

6. Analysis of reinforced concrete beams

Based on the detailed descriptions in the previous sections, a three-dimensional finite element
program for reinforced concrete structures, NFERC4P, is developed. The 8-noded hexahedral
elements are used to model concrete solids. The nonlinear problem is solved by the modified
Newton-Raphson approach. The tangential stiffness matrix is recalculated for each load increment
or when the concrete newly cracks. Convergence criteria in terms of incremental nodal
displacements are adopted in order to terminate the iterative cycle when the solution is considered
to be sufficiently accurate. In order to investigate the compressive strength of concrete in the
flexural region of reinforced concrete structural members, a simple beam and a structural beam
member connected with beam-column joint are taken as numerical examples in the following
sections.

6.1 RC simple beam

An example model for reinforced concrete simple beam subjected to 4-point transverse load
experimentally tested by Kotsovos, et al. (1982) is analyzed. It was known that the experiment
determined failure due to the flexural crushing of concrete near the top of the middle of the beam.
The geometry, reinforcement details and its finite element mesh are illustrated in Fig. 6. Taking



A study on compressive strength of concrete in flexural regions of reinforced concrete beams321

advantage of the symmetry, only half of the specimen is used in the analysis. This beam has tensile
and compressive longitudinal reinforcements and transverse shear reinforcement, but no
compressive and shear reinforcements between two load points. 

Material properties of concrete are assumed to be as follows; uniaxial compressive strength 
of 37.8 MPa and its corresponding strain εc of 0.002, uniaxial tensile strength ft of 3.78 MPa,
ultimate strain εf of 4εc, kf of 0.75, initial Young’s modulus Eo of 29,000 MPa, initial Poisson’s ratio
νo of 0.19, Gf of 180 N/m, wf of 15 mm. Properties of reinforcing bars are as follows; yield stress fy
of 417 MPa, Young’s modulus Es of 200,000 MPa, modulus of strain-hardening Esh of 2,000 MPa,
diameter of 6.0 mm for tensile and compressive longitudinal bars and 3.2 mm for transverse
reinforcements. 

From numerical analysis, the load-displacement relation at center is presented in Fig. 7,
comparing with the experimental results. Although the yielding point of steel reinforcement is
slightly higher than the experimental value, the nonlinear behavior of present model gives very
similar result to the experimental result. 

Fig. 8 shows the cracked patterns observed in the experimental test and predicted in the finite
element analysis at failure load. The crack pattern predicted in the present analysis has the same
tendency as the experimental results that flexural cracking is dominant near the mid-span of
specimen. Both numerical and experimental results show that the flexural failure is the predominant
failure pattern. Longitudinal tensile steel bar is yielded and its maximum strain is 0.0056, but

fc′

Fig. 6 Analysis model of RC simple beam

Fig. 7 Load-displacement at center
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longitudinal compressive and transverse reinforcements are not yielded.
Fig. 9 shows the contour of principal compressive stress and its direction on outer surface of

specimen at failure load. It can be seen from the stress contour, the elements at top and bottom near
the mid-span of specimen are subjected to compression and tension, respectively. However, the
severely loaded region exists at top between two loading points. The first crushing point of
concrete, so called the critical section by flexural compressive failure, appears at the cross-section of
129.8 mm away from the central section of beam. The peak value of principal compressive stress in
the vicinity of critical section is observed similar with the value of the uniaxial compressive strength
of concrete, except from the loading points. 

Fig. 10 shows the distribution of cross-sectional stresses both at central and critical sections.
These stresses mean member directional stresses obtained from the average of stresses at Gauss
point about beam width. Both at central and critical sections, the distributions of cross-sectional
stresses are similar with the uniaxial stress-strain curve of concrete.

6.2 RC beam member connected with beam-column joint

Another example model for reinforced concrete structural beam member connected with beam-
column joint at center is considered. This beam has two longitudinal tensile reinforcing bars, but no
longitudinal compressive and transverse shear reinforcements. The geometry, reinforcement detail
and its finite element mesh are illustrated in Fig. 11. The experiment of this beam member was
conducted at the University of Illinois and had been reported by Burns, et al. (1966). This beam is

Fig. 8 Crack distributions at failure

Fig. 9 Contour of principal compressive stress (MPa)
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152.4 mm by 304.8 mm (6 inch by 12 inch) in cross section, with a span between simple supports
of 2743 mm (9 ft). This experiment was conducted to obtain a better understanding of the load-
deflection behavior of reinforced concrete beam members loaded to failure, particularly the plastic
hinging that develops at the connection of a beam to a column in a frame. 

Considering the symmetry of the loading, boundary, and geometric conditions, only half of the
specimen is considered in the present analysis model. 

Based on the experimental data, material properties of concrete are assumed to be as follows;
uniaxial compressive strength  of 18.2 MPa and its corresponding strain εc of 0.002, uniaxial
tensile strength ft of 1.82 MPa, ultimate strain εf of 4εc, kf of 0.75, initial Young’s modulus Eo of
21,000 MPa, initial Poisson’s ratio νo of 0.19, Gf of 180 N/m, wf of 15 mm. Properties of tensile
reinforcing bars are as follows; yield stress fy of 310 MPa, Young’s modulus Es of 155,000 MPa,
strain-hardening modulus Esh of 2,700 MPa, diameter of 13.0 mm.

Beam failure in the experiment followed the formation of plastic hinge, which resulted from the
crushing of concrete at top fiber near the connection of the beam and the column in a frame. The
transverse load-deflection responses both in experiment and the present analysis are illustrated in
Fig. 12. In the experiment, the ultimate load carrying capacity was 40.1 kN at the mid span

fc′

Fig. 10 Concrete stresses at cross-section

Fig. 11 Finite element model of RC structural beam member (Burns, et al. 1966)
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deflection of 7.3 cm, the first crushing point, however, was at the load level of 37.8 kN at the mid
span deflection of 2.6 cm. From the results of numerical analysis, the specimen is failed by the
formation of plastic hinge resulted from the first crushing of concrete in the vicinity of beam-
column connection. The analysis has been stopped at this point. The analysis result of load-
deflection response is very close to the experimental observation when the test reaches the first
crushing point of concrete as shown in the figure. The longitudinal tensile reinforcement is yielded
and the maximum tensile strain reaches to 0.0032 at the load level of the first crushing. 

Fig. 13 illustrates the cracked patterns predicted in the present analysis at two load levels. The
predicted crack pattern has the tendency that flexural bending cracking is dominant in the vicinity of
the mid-span. 

The distribution of principal compressive stresses and their directions on outer surface of
specimen at the crushing of concrete are illustrated as shown in Fig. 14. It can be seen from the
stress contour, concrete at top fibers in the vicinity of beam-column joint is under severely

Fig. 12 Load-deflection response

Fig. 13 Crack distributions by the present analysis
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compressive stress state. The principal compressive stresses in the region highly exceed the value of
the uniaxial compressive strength of concrete. The first crushing point of concrete, so called the
critical cross-section by the failure of concrete crushing, is located at the cross-section of 42.3 mm
away from the beam-column joint connection. It is because the compressive concrete near the top
fibers of each cross section in the vicinity of the beam-column joint connection is not simply a
uniaxial compressive state. Table 1 illustrates the three relative principal stresses  and their
corresponding principal strains at top fibers of three cross-sections. It shows that the concrete at top
fiber of the first two cross-sections from beam-column joint is under the triaxial compressive stress
state, however, the concrete at top fiber of the critical cross-section is under the biaxial compressive
stress state.

Fig. 15 illustrates the distribution of the cross-sectional concrete stresses both at joint and critical
cross-sections. At joint cross-section, the peak compressive stress of concrete exceeds the uniaxial

σi /fc′

Fig. 14 Contour of principal compressive stresses (MPa)

Table 1 Relative principal stresses and the corresponding strains at top fibers

Location from joint Relative principal stresses Corresponding principal strains

0.0 mm (joint section) (-0.16, -0.34, -1.62) (-0.00016, -0.00038, -0.00232)

27.6 mm  (-0.16, -0.27, -1.46) (-0.00015, -0.00028, -0.00219)

42.3 mm (critical section) (0.01, -0.02, -0.75) (0.00005, -0.00002, -0.0081)

Fig. 15 Cross-sectional concrete stresses
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compressive strength of concrete, and the distribution of the cross-sectional concrete stress is not
matched with the uniaxial stress-strain curve of concrete. The stress state of concrete near the top
fibers of cross-section between the beam-column joint and the critical cross-section becomes a
triaxial compressive stress state. The critical cross-section by crushing of concrete is away from the
cross-section of the beam-column joint as the distance of 43.2mm, which causes the actual bending
span length of the beam to be shorter. 

The compressive strength of concrete in reinforced concrete structural member, in general, is
considered as the uniaxial compressive strength obtained from cylinder test. Using the three-
dimensional finite element model with triaxial stress-strain constitutive law of concrete, reinforced
concrete simple beam and structural beam member with beam-column connection were analyzed.
From the results of presented analyses, it has known that the concrete in the compression fiber of
the cross-section around beam-column joint is not merely under a uniaxial compressive stress state
but under a multiaxial compressive stress state. It is because concrete in that region is confined by
the existence of beam-column joint, and the region in the vicinity of beam-column joint is
commonly the flexural critical cross-section of reinforced concrete beam and beam-column
members in a frame. In current design requirements for structural concrete, in the inelastic models
for reinforced concrete beam or beam-column elements, the confined stress-strain relationship of
concrete has been dealt with the transverse reinforcement or with the steel tube in steel-concrete
composite cross-section, but has not been dealt with the influence of the beam-column joint. In
actually, it gives consequently a conservative results to predict the flexural bending strength of
reinforced concrete structural beam members for regions of greater concrete confinement at the
beam-column joint in a frame, as shown in the present example. The phenomena, however, could
not be seen in the case of simple beam without a stub to simulate a beam-column joint as shown in
Fig. 6. 

7. Conclusions

With the development of a three-dimensional finite element formulation implementing the concept
of a triaxial constitutive law of concrete based on the recently proposed orthotropic hypoelasticity
model, the validation studies have been presented in this paper focused on the triaxial compressive
stress-strain relationships of concrete and on the response of reinforced concrete beams in flexural
failure. The numerical results show good agreement with the given experiments for the stress-strain
relationships of concrete in uniaxial, biaxial, and triaxial compressive tests. In two finite element
analyses for a simple beam and a structural beam member, which are failed by concrete crushing in
compression, this model closely traces the experimental results in load-carrying capacities, failure
mechanisms, yielding of steel, and cracking patterns.

Using the recently developed finite element model, the compressive strength of concrete in
flexural regions of reinforced concrete beams has been investigated. In the case of a simple beam,
concrete at compression fibers in the vicinity of the flexural critical regions behaves dominant by
the uniaxial compressive stress state. In the case of a structural member, however, concrete at
compression fibers in the vicinity of the beam-column joint does not dominant by the uniaxial
compressive state but does by the biaixial and triaxial compressive stress states. The reason is that
the flexural critical cross-section of reinforced concrete structural beam exists at the beam-column
joint. The concrete in compression fibers in the region behaves as the confined concrete by the
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influence of beam-column joint. In that region, the compressive strength of concrete is not merely
in the meaning of a uniaxial compressive strength but a biaxial or a triaxial compressive strength.

This gives a different concept to compare with the present idea for cross-sectional strength of
reinforced concrete structural members, as presented in ACI code requirements for structural
concrete (1999), in the models for cross-sectional analysis using the equivalent rectangular stress
block theory (Hognestad, et al. 1955), or in the fiber model (Kaba, et al. 1984), in which the
compressive stress-strain curve of concrete at flexural critical cross-section is considered as a
uniaxial compressive stress-strain curve of concrete. This idea underestimates the compressive
strength of concrete in actual concrete structural beam members in a frame. For the reason of the
severe confinement of concrete at the beam-column joint, the flexural critical cross-section is
observed at a small distance away from the beam-column joint, and the actual flexural span length
of the member has became shorter than the real span length of the member. These observations
should be made that there will be actually economies in design practice for structural beam
members in a frame resulting from concrete confinement due to the influence of the beam-column
joint. 

In this paper, concrete confinement and its effects on the flexural strength of reinforced concrete
beam member in the vicinity of beam-column joint have been studied mainly based on the
observation of numerical results, with limiting to the case of no transverse shear reinforcement.
Since the triaxial stress of concrete in member test does not able to be measured directly through
experiment, this research is mainly focus on the numerical observations. The results of the recent
study point to future enhancements, such as the study with more abundant observations of
experimental results with developing the method for the measurement of triaxial stresses of concrete
in member tests, the study with the case of transverse shear reinforcement, and the study on
reinforced concrete beam-column members loaded both on the uniaxial and biaxial bending. 
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