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Abstract. The infrastructure system in the United States has been aging faster than the resource
available to restore them. Therefore decision for allocating the resources is based in part on the condition
of the structural system. This paper proposes to use neural network to predict the overall rating of the
structural system because of the successful applications of neural network to other fields which require a
“symptom-diagnostic” type relationship. The goal of this paper is to illustrate the potential of using neural
network in civil engineering applications and, particularly, in bridge evaluations. Data collected by the
Tennessee Department of Transportation were used as “test bed” for the study. Multi-layer feed forward
networks were developed using the Levenberg-Marquardt training algorithm. All the neural networks
consisted of at least one hidden layer of neurons. Hyperbolic tangent transfer functions were used in the
first hidden layer and log-sigmoid transfer functions were used in the subsequent hidden and output
layers. The best performing neural network consisted of three hidden layers. This network contained three
neurons in the first hidden layer, two neurons in the second hidden layer and one neuron in the third
hidden layer. The neural network performed well based on a target error of 10%. The results of this study
indicate that the potential for using neural networks for the evaluation of infrastructure systems is very
good.
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1. Introduction

Evaluation of existing infrastructure system is an ongoing process for engineers. Most recently,
the American Society of Civil Engineers (ASCE) gave a grade of D+ to the infrastructure systems
in the United States (ASCE 2001). After much attention was placed on the inspection and
rehabilitation programs over the past two decades, the nation’s bridge systems received a grade of C
(ASCE 2001) which indicates that a lot of improvement is still needed. While the most seriously
deteriorated bridges would get top priority for restoration, the next tier of deteriorated bridges will
have to compete for the scarce resource.

An assessment of the overall condition of an infrastructure system requires the interpretation of
observed data. Oftentimes, these data are inter-related, for example, a pair of parameters may
inversely influencing each other, but they individually may impact the structures in the same
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manner as other parameters. Engineers have devised various models to accommodate the types of
structural system they have to evaluate. Most of these models treat the observed data as
deterministic attributes. Some would include the uncertainty of the observed quantities and
implemented some forms of probabilistic analysis such as Bayesian method. Few models would
also consider the subjective nature of the data. In those cases, fuzzy logic was implemented (for
example, Chou and Yuan 1993, Wong et al. 1999).

Neural network can be considered as a set of resources in analysis toolkit (Eberhart and Dobbins
1990). It has an ability to make reasonable responses even when presented with incomplete, noisy
or previously unseen input (Vanluchene 1990, Fwa and Chan 1993). Neural network differs from
expert systems which simulate the function of a brain through a rule-based procedure. Neural
network, on the other hand, is analogous to a biological neural system both in structure and
functionality (Wassermann 1989). It develops its analysis algorithm through the examples that are
fed to the network (Hecht-Nielson 1990).

In engineering applications, ocean engineering perhaps owns the biggest share. Under the autopsy
of IEEE, it held its first conference on neural networks for ocean engineering (IEEE 1991). Studies
included the use of neural networks for controlling underwater vehicles when the dynamics are not
completely known (Venugopal et al. 1992), and application of neural networks to oceanic
environments, particularly with reference to tracking underwater objects (Fa-Long et al. 1992,
Silven 1992). In the chemical engineering area, neural network was used for fault diagnosis of
chemical processes (Fan et al. 1993, Hoskins et al. 1991, Watanabe et al. 1989). Neural network
was used to determine pore pressure for petroleum engineering (Accarain and Desbrandes 1993). In
nuclear engineering, neural network was combined with expert system to identify abnormal events
in nuclear power plants (Cheon and Chang 1993, Ohga and Seki 1993). 

In civil engineering, neural network was used in water and wastewater treatment plant operation
(Boger 1992), for optimum markup estimation in construction engineering and management
(Moselhi et al. 1991), for priority rating of highway maintenance needs (Fwa and Chan 1993), for
developing constitutive modeling of concrete (Sankarasubramanian and Rajasekaran 1996), and for
effects of admixture on alkali-silica concrete (Li et al. 2000). A good volume of studies were
focused on the damage assessment (Zhao 1998, Feng and Bahng 1999, Marwala 2000, Masri et al.
2000), structural control under vibraton such as earthquake (Liut et al. 1999, Kim et al. 2000, Hung
et al. 2000), and detection of change of structural system for health monitoring purpose (Masri et
al. 2000, Loh et al. 2000). More recently, neural network was implemented with response surface
method to determine failure probabilities (Sasaki 2001) and to attempt to determine the reliability of
large structural systems (Cabral and Katafygiotis 2001).

Another development that has enhanced the applicability of neural network is the computer
technology, both in hardware and in software. Neural network can even be performed in pre-
window generations of PCs. The rapid improvement of PCs and PC based software such as the
Neural Network Toolbox which runs with MATLAB by The Math Works, Inc. have made the neural
network analysis an attractive artificial intelligence tool in the decision making process.

Based on the results of using neural network in the engineering applications, it is interesting to
explore further in civil engineering applications. Hence, the objective of this paper is to illustrate the
concept of neural network in a bridge inspection problem. The goal is to demonstrate the potential
of implementing neural network in future bridge inspection programs. In this paper, actual bridge
inspection data collected by the Tennessee Department of Transportation (TDOT) during the period
of 1979 to 1983 were used for illustration. Several neural network models for evaluating the
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observed data were developed. Discussion on their error distribution is presented.

2. Neural network concept

In its simplest form, a neural network can be classified as a function approximator. Given a set of
input variables (x1,

É

, xi) and one or more output variables (y1,
É

, yi), a neural network finds the
relationship or connection between the input and output. These connections are in the form of
parameters called weights (w1,

É

, wi) and biases (b) (Masters 1993). Eq. (1) shows a linear
relationship between one output variable and a set of input variables.

(1)

Nonlinear relationships between input and output are approximated by applying transfer functions
to the value of Eq. (1). Two of the most common transfer functions employed in neural networks
are the log-sigmoid function and the hyperbolic tangent function (see Eqs. 2 and 3, respectively).

(2)

(3)

The log-sigmoid function produces numbers between zero and positive one, while the hyperbolic
tangent function produces numbers between negative one and positive one. Both functions produce
a wide range of output values when input ranges from about negative two to positive two. Outside
this range, the functions only produce values close to their respective output limits.

3. Structure of a neural network

The basic building block of neural networks is the neuron. Each neuron contains a set of weights
and biases and an associated transfer function. The weights and biases are applied to the inputs, as
indicated in Eq. (1), and further processing is performed by the transfer function. The output
produced by a neuron can then be used as input by other neurons.

The arrangement of neurons within a neural network is commonly called the network architecture.
One of the most popular architectures is the multi-layer feed forward network (Masters 1993). The
general structure of this model typically consists of one or more layers of intermediate neurons or
hidden neurons and a final layer of output neurons. The network input is processed by hidden
neurons whose resulting output can be accepted as input by subsequent hidden neuron layers or the
final output layer.

The difference between neuron layers lies in the number of neurons and the associated transfer
function. Neurons within the same layer commonly employ the same transfer function. Fig. 1 shows
two output variables (y1, y2) approximated by processing four input variables (x1, ..., x4) through a
three-layer feed forward network. A multi-layer feed forward network consisting of at least one
hidden layer with non-linear transfer functions has been proven to be a universal approximator

f x1, …, xi( ) = x1w1 + x2w2 + … + xiwi  + b

f x( ) = 1
1 e x–+
-----------------

f x( ) = ex e x––
ex e x–+
---------------------
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(Cybenko 1989, Funahashi 1989, Haykin 1994, Hornik et al. 1989). Therefore, this type of network
is appropriate for performing function approximation, pattern association and pattern classification
(Beale and Demuth 1992). Consequently, the multi-layer feed forward network model was implemented
in this study.

4. Neural network design

The process of designing a neural network consists of two phases: training and testing. During
training the network changes the weights and biases to learn an input/output relationship. After
training is completed, testing is performed by processing new input through the network and
comparing the desired network output to the actual output. When a network is presented with new
input, it will tend to produce output similar to output associated with similar input. This behavior is
called generalization (Beale and Demuth 1992). The design process is complete when the actual
output is judged acceptable.

Training is the principal phase of neural network design. Small initial weights and biases are
chosen randomly and training data (containing inputs and target output) are processed repeatedly
through the network. Training is completed when the error between the target network output and
the actual output is acceptable. For neural network design, the error is commonly measured in terms
of sum-squared error (SSE). At the end of each training cycle or epoch, the SSE is calculated and
the weights and biases are updated based on the derivative of the error.

4.1 Selection of training data

Training data consist of actual input and output. Ideally, neural networks are trained using only a
fraction of the total available data. A necessary property of the training data is that they must
represent the total population. Training data should also include the maximum and minimum input
and output values; a network will not generalize well when asked to extrapolate the input/output
beyond the training data range. Based on these criteria, selection of training data will greatly depend

Fig. 1 Three-layer feed forward network structure
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on the nature of the total population. As a result, there is no optimum size for the training set that
should be used for all neural networks.

4.2 Scaling of input data

The use of nonlinear transfer functions is very important. Unfortunately, the log-sigmoid and
hyperbolic tangent functions have a limited useful input value range for fast training. Within a range
of approximately negative two to positive two, the gradients (or slopes) of the functions are large.
Outside of this range, the gradient is close to zero and the transfer functions will only produce
values close to their respective output limits. During training, the changes in weights and biases
depend on the value of the gradient. Consequently, when a small gradient exists, training slows
considerably. Large internal activations, which can be caused by input with large magnitudes, are
mapped to small gradients in both the log-sigmoid and hyperbolic tangent functions, stopping
training almost completely. This type of occurrence is known as premature saturation. Scaling the
input within a specific range prevents premature saturation and results in faster training.

Two methods of scaling that are most frequently used are linear scaling and Z-score scaling. The
linear method simply scales the input between +0.1 and +0.9. The Z-score method centers all the
data around zero by subtracting off the mean and then scales the data to a unit variance. Z-score
scaling assumes that the variables have an approximately normal distribution (Masters 1993).

The scaling parameters that are calculated for the training input data (slope and intercept for linear
scaling and mean and standard deviation for Z-score scaling) must also be applied to input
processed by the network after training. These parameters have a direct effect on training since the
weights and biases are determined based on scaled input versus actual input. Therefore, consistent
correlation between different sets of input is maintained by using a consistent set of scaling
parameters.

4.3 Training rule for updating weights and biases

For this study, all networks were trained using Levenberg-Marquardt optimization. This method
typically converges to an answer more rapidly than other conventional methods such as back-
propagation. It uses the reliable convergence of gradient descent, when far from the minimum error
and the rapid convergence of the Gauss-Newton method, when close to the minimum error.

The Levenberg-Marquardt rule for updating weights and biases is given by Eq. (4)

(4)

in which ∆w is the weight change, ∆ b is the bias change, J is the Jacobian matrix of derivatives of
each error to each weight (or bias), µ is a scalar, I  is the identity matrix and e is an error vector.
The variable µ determines whether ∆w and ∆b are calculated according to gradient descent or the
Gauss-Newton method.

The variable µ is modified as the minimum error is approached. When far from the minimum, µ
gets large and the JTJ term becomes negligible. The calculation progresses according to −µ−1JTe,
which is gradient descent. When close to the minimum, µ is reduced and the calculation progresses
according to −(JTJ )−1JTe, which is the Gauss-Newton method (Levenberg 1944).

∆w or  ∆ b( ) =  – JTJ µ I+( ) 1–
JTe
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4.4 Overfitting

Overfitting is a common problem in neural network design. It can be caused by using an
excessive number of hidden neurons or using training data that are not representative of the total
population. Overfitting occurs when a network learns the specific details of the training data instead
of the general shape of the total population function. Overfitting of training data results in poor
generalization of new data.

With traditional design procedures, overfitting is usually identified during the testing phase. Cross-
validation provides a method for identifying overfitting during the training phase. It consists of
simultaneous testing of a separate data set while training is performed on the training set; the
separate data set is called the cross-validation set.

Overfitting occurs when the cross-validation error reaches a minimum and starts to increase. This
point can be identified by the number of training cycles or the SSE. Subsequent training can then be
stopped when the minimum error is reached (Haykin 1994).

5. Evaluation and rating of bridges

5.1 General

The evaluation of bridges in the United States is generally performed by state government
agencies such as departments of transportation. As a result, the methods for determining overall
bridge ratings can be varied among agencies. Typically, bridges are evaluated based on the
condition of key components such as girders, bracing, bearing devices, deck, expansion joint
devices, and so forth. In many instances these components are rated on a numerical scale such as a
range from zero to nine (zero indicating the worst condition and nine indicating the best condition).

After data are collected and key components are rated, a bridge is given an overall rating which
can indicate level of structural adequacy, need for repair or final life expectancy. These ratings can
then be used to prioritize the allocation of funds for rehabilitation or re-building. For bridges in
which all the key components are either in excellent condition or very poor condition, an overall
rating is quite obvious and is easily determined. For these situations, ratings are fairly consistent
among engineers. But a large percentage of bridges usually contain only a few components that are
in poor condition while the remaining components are in fair to excellent condition. The interaction
of these components with the structure’s overall performance is usually very complex. Neural
networks have the capability of incorporating such varied significance of key components during its
training process.

5.2 Structure inventory and appraisal

The U.S. Department of Transportation (DOT) provides a bridge evaluation guide for use by the
States. The data collected via this guide is used for Federal reporting requirements. They include
reports for the Highway Bridge Replacement and Rehabilitation Program and the National Bridge
Inspection Program. This guide also provides a means of standardizing bridge evaluation across the
entire country (U.S. DOT/Federal Highway Administration 1979).

A total of ninety inventory items are recorded for each bridge. These items are grouped under the
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categories of Identification, Classification, Structure Data, Condition, Appraisal and Proposed
Improvements. Of the ninety items, only nineteen are actually used to determine the overall
condition of a bridge. Table 1 lists the nineteen items under their corresponding categories.

Overall condition is measured in terms of a percentage called the Sufficiency Rating (SR). An
entirely acceptable bridge has a SR of 100% and 0% represents an entirely deficient bridge. The
Sufficient Ratings is composed of four variables each of which represents a rating category (see Eq.
5).

(5)

Where:

6 S1 represents Structural Adequacy and Safety and ranges from 0% to 55%
6 S2 represents Serviceability and Functional Obsoleteness and ranges from 0% to 30%

SR S1= S2 S3 S4–+ +            0% SR 100%≤ ≤( )

Table 1 Bridge rating inventory items

Item
Number Item Title Evaluation

Method

SR
Correlation
Coefficient

Category: Identification

12 Designated Defense Highway No. Precise 0.3460

19 Detour Length Precise −0.1950

Category: Structure Data

28 Lanes On Structure Precise 0.1387

29 Average Daily Traffic Precise 0.2259

32 Approach Roadway Width Precise 0.1143

36 Traffic Safety Features Subjective 0.5156

43 Structure Type Precise 0.1204

51 Bridge Roadway Width Precise 0.3754

53 Vertical Clearance Over Deck Precise 0.0806

Category: Condition

58 Deck Subjective 0.4653

59 Superstructure Subjective 0.6676

60 Substructure Subjective 0.5652

62 Culvert & Retaining Walls Subjective −0.2061

66 Inventory Rating Subjective 0.8275

Category: Appraisal

67 Structure Condition Subjective 0.7209

68 Deck Geometry Subjective 0.5074

69 Underclearance-Vertical & Lateral Subjective −0.2793

71 Waterway Adequacy Subjective 0.4626

72 Approach Roadway Alignment Subjective 0.4085
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6 S3 represents Essential Public Use and ranges from 0% to 15%
6 S4 represents Special Reductions and ranges from 0% to 13%

The variables are calculated based on a structured mathematical formulation of the nineteen
inventory items. Table 2 lists the items that are used by each variable. Eleven of the nineteen
inventory items are rated subjectively. The remaining eight items consist of precise data such as
structure dimensions and material type. Table 1 identifies the subjective items. Ten of the subjective
items fall under the categories of Condition and Appraisal and the remaining item (Traffic Safety
Features) falls under Structure Data. A sample calculation of Sufficient Ratings using one set of
observed bridge conditions is shown in the Appendix. As can be seen from the sample calculations,
the procedure was very tedious. The logic of the mathematical formulations was not obvious.

5.3 Tennessee Department of Transportation bridge rating data

Bridge rating data used in this study were collected by the Tennessee Department of Transportation.
A total of 447 samples were obtained between November, 1979 and September, 1983 with
Sufficiency Ratings ranging from 2% to 99.8%. The sample mean and standard deviation of the
Sufficiency Ratings are 67.99% and 21.68%, respectively. Fig. 2 shows the Sufficiency Ratings in
ascending order. A complete summary of the bridge ratings can be found in Molina (1996).

Correlation coefficients were calculated to determine the influence each inventory item has on the
Sufficient Ratings (Table 1). The correlation coefficient is a measure of the degree of linear

Table 2 Bridge rating variables and inventory item cross-reference

Variable Item Number Used

S1 59 60 62 66 
S2 12 28 29 32 43 51 53 58 67 68 69 71 72 
S3 12 19 29 
S4 19 36 43 

Fig. 2 Tennessee Department of Transportation bridge rating data
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relationship between two variables. For this case, the coefficients with the largest magnitude are
related to items which are subjective. This suggests subjective ratings have an important impact on
bridge evaluation. In this paper, the subjectivity of the information would not be treated differently
from the objective data. The impact of subjectivity on the analysis could be assessed using fuzzy
neural network which is beyond the scope of this study.

6. Neural network architectures of bridge rating data

6.1 Training parameters

Output data conversion
The Sufficiency Ratings (SR) are calculated in terms of percentage, with the minimum of 0% and

maximum of 100%. The log-sigmoid transfer function has a limited output range between zero and
positive one. To take advantage of this range, log-sigmoid functions were used in the output layer
and the SR values were converted to decimal equivalents. This guarantees that a neural network will
predict the SR within the minimum and maximum values.

Scaling of input data
Scaling is necessary to prevent premature saturation during training. All the inventory items are

recorded as positive numbers with values greater than or equal to zero. Therefore, all inputs were
scaled between +0.1 and +0.9.

Transfer functions
The use of non-linear transfer functions is essential for modelling nonlinear systems. For this

study, all networks were designed as multi-layer with at least one hidden layer. Hyperbolic tangent
functions were used in the first hidden layer. Log-sigmoid functions were used in the subsequent
hidden layers and the output layer to ensure output values lie between zero and positive one.

Fig. 3 Training progress for design #1, 4N network
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Matlab Neural Network Toolbox
The neural network analyses were performed using the software MATLAB and the Neural

Network Toolbox from Math Works, Inc. During the training stage, the weights and biases for each
neuron in each layer were determined for each input parameter as described in the “Neural Network
Design” section. The weights and biases were modified at the end of each epoch (cycle) until the
sum-of-squared-error (SSE) has reached a desired level. The training was performed using the
command TRAINLM.

The TRAINLM command (subroutine) will give the final weights and biases developed for the
given set of data. The user can also graphically display the SSE at the end of each epoch so that

Fig. 4 Training progress for design #4, 4N network

Fig. 5 Testing results for design #3, 4N network
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one can see the rate of convergence (for example, the solid line in Figs. 3 and 4). In addition, if
cross-validation is performed, the SSE obtained while validating the data can be displayed along
side with the SSE from training. This dual display of SSE can assist the user in determining
whether overfitting may have occurred (for example, dashed line in Figs. 3 and 4).

Once the user is satisfied with the network architecture, he/she can use the design and the weights
and biases obtained to test a new set of data. A Neural Network Toolbox command, SIMULM, was
used. The subroutine can display the predicted output based on the network design and compared
that with the observed output (for example, Figs. 5 and 6).

6.2 Neural network design #1

Two hundred, among 447, samples were selected for training. The training set included twenty-
five samples that contained the minimum and maximum input and output values. The remaining
175 samples were selected randomly using a random number generator. Another set of two hundred
samples were selected randomly for use as a cross-validation set. The cross-validation samples were
selected from the same 447 samples as the training data. Hence, there is a possibility some of the
data used in the training were also used in the cross-validation. The sum-squared error goal was
calculated based on 5% error per output (SSE = Σ (yi * 0.05)2). For the first training set, the SSE
goal equaled 0.2557 (see Table 3 for summary of training parameters).

Three different feed forward networks were developed for training. The first contained one hidden
layer, the second contained two hidden layers and the third contained three hidden layers. Each
network was trained with the minimum number of neurons required to reach the SSE goal. A small
number of neurons were initially used for training and the amount was gradually increased until
training was successful. Training for specific network architectures was considered unsuccessful
after three trials. Since the initial weights and biases are chosen randomly, training results will vary
from one trial to the next. Therefore, more than one trial is necessary to consider training
unsuccessful (Masters 1993).

Fig. 6 Testing results for design #6, 3N-2N-1N network
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The first network contained four neurons in the hidden layer (notation = 4N) and reached the
error goal after thirty-six epochs. The second network contained three neurons in the first hidden
layer and two neurons in the second hidden layer (notation = 3N-2N) and reached the error goal
after twenty-four epochs. The third network contained three neurons in the first hidden layer, two
neurons in the second hidden layer and one neuron in the third hidden layer (notation = 3N-2N-1N).
This network reached the error goal after eighty-three epochs. Fig. 3 shows the SSE versus epochs
for the 4N network. This figure is typical for the other two networks. Table 4 summarizes the final
weights and biases for the 4-neurons hidden layer and the single output layer. The weight W1 is a
4 × 19 matrix where each row represents the weight for each neuron in the hidden layer and each
column represents each of the 19 parameters used in the assessment. The bias B1 is a 4× 1 vector
which represents the bias for each neuron. The W2 vector represents the weight for each neuron

Table 3 Neural network design training parameters

Design 
No.

No. of
Training
Samples*

No. of Cross-
Validation
Samples

Sample
Selection
Method

Average
Error Goal
Per Sample

(%)

Sum-Squared
Error Goal

No. of Input
Variables

1 200 200 Random 5 0.2557 19 

2 300 300 Random 5 0.3822 19 

3 200 200 Random 10 1.0227 19 

4 200 200 Random 10 1.0227 6 

5 200 200 Random 10 1.0227 10 

6 239 239 Random 10 1.1840 19 

Table 4 Summary of weights and biases for design #1, 4N network

W1

Neuron 1
parameters 1-7
parameters 8-14
parameters 15-19

0.0750
3.7782

−0.2433

−0.8252
0.0130
0.0356

−0.3926
−0.7813
0.8877

−0.4516
2.3862
0.6689

−0.3143
1.2478
0.2205

1.3170
−0.9853

−0.3189
0.2628

Neuron 2
parameters 1-7
parameters 8-14
parameters 15-19

0.1269
−2.7018
1.7437

17.7217
−1.6007
−1.4927

−0.4723
−0.6574
−0.7330

1.3557
0.1395

−2.2481

12.0253
−1.6516
−0.3932

−0.7096
−0.0666

1.0225
−2.5651

Neuron 3
parameters 1-7
parameters 8-14
parameters 15-19

−1.4432
0.4401
0.6673

1.2041
−2.5060
2.4907

−1.2799
−0.2630
0.7385

−2.0408
−0.0348
−1.5172

−0.5515
1.8159
0.3972

−0.2109
−0.6753

−1.7934
0.7071

Neuron 4
parameters 1-7
parameters 8-14
parameters 15-19

0.5836
−2.8846
−0.9652

−2.5046
−0.1319
0.4570

1.1372
0.0930
0.3688

−0.0836
0.0988
0.9697

−1.9460
0.5567

−0.2884

0.2542
−0.9700

−0.6374
−1.4028

B1 Neurons 1-4 −0.8690 3.5097 −1.8338 0.2301

W2  Neurons 1-4 2.8359 −1.5350 3.3615 −8.6206

B2 −5.5020
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from the hidden layer used to yield the single output. The value B2 represents the bias for the
output.

In every case, the cross-validation error increased before training was completed, suggesting
overfitting of the training data. Training and cross-validation error deviated at an SSE equal to
approximately 1.0. This is equivalent to 10% error per output. Since the minimum number of
neurons was used for successful training, overfitting could have occurred due to insufficient training
data. Therefore, the training set size for the second network design was increased to three hundred
samples.

6.3 Neural network design #2

For the second design, three hundred samples were selected for training. The training set included
the twenty-five samples that contained the minimum and maximum input and output values. The
remaining 275 samples were selected randomly. The SSE goal increased to 0.3822. Another set of
three hundred samples were selected randomly for use as a cross-validation set. The cross-validation
samples were selected from the same 447 samples as the training data (see Table 3). The same
network architectures used in the first design were used on the second training set. Only the 4N
network was trained successfully, reaching the error goal after thirty-two epochs.

The training results for the second design were consistent with those for the first. Overfitting of
the training data occurred. The training and cross-validation error deviated after reaching an SSE of
approximately 10% error per output. These results suggested that the best predictions that could be
made by the neural networks were within 10% of the actual data. Therefore, the remaining networks
were designed based on an SSE of 10% error per output using the two hundred sample training set.

6.4 Neural network design #3

The third design used the training and cross-validation sets selected from the first design (200
samples for training and 200 samples for cross-validation). Based on a 10% error per output, the
sum-squared error was 1.0227 (see Table 3). The same architectures as neural network designs #1
and #2 (4N, 3N-2N, and 3N-2N-1N) were repeated with a new sum-squared error goal and trained
successfully in each case. Fig. 4 shows the training progress for the 4N network, which is typical of
the other two networks.

The results showed no overfitting of training data. In every case, the cross-validation error
decreased consistently as training progressed. This further suggested that an average of 10% error
per output was the optimum prediction that could be made by the neural networks.

The three networks (4N, 3N-2N, and 3N-2N-1N) were tested against the remaining data that were
not used for training (247 samples). Fig. 5 shows a typical comparison between actual Sufficient
Ratings and predicted Sufficient Ratings. Table 5 summarizes the maximum error and error
distribution for each network.

6.5 Neural network design #4

The fourth design used the same training and cross-validation sets selected for the previous
design. But in this case, the number of input variables was reduced to six (see Table 3). These
variables were selected based on the magnitude of their Sufficient Ratings correlation coefficient.
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All variables with a correlation coefficient greater than 0.5 were selected. They include inventory
items 36, 59, 60 and 66 through 68 (see Table 1). The 4N, 3N-2N and 3N-2N-1N networks were
used for training to an SSE goal of 1.0227 and another multi-variate linear regression analysis was
performed on the neural network training data.

All networks trained successfully with no significant overfitting and test results indicated that the
network prediction was better than regression (see Table 5). The networks predicted the data with a
maximum error of 64.05% (for 3N-2N-1N). But the error distribution for these networks was larger
by comparison to the networks from the third design.

6.6 Neural network design #5

The fifth design also considered a reduced input variable set (less than 19). Variables with the top
ten Sufficient Ratings correlation coefficients were selected. The four additional variables include
inventory items 51, 58, 71, and 72 (see Table 1). The 4N, 3N-2N and 3N-2N-1N networks were
used for training to an SSE goal of 1.0227 and another linear regression analysis was performed on
the neural network training data.

All networks trained successfully with no significant overfitting. The networks predicted the data
with a maximum error of 64.80% (for 3N-2N-1N). But, like the fourth design, the error distribution
was larger by comparison to the networks from the third design (see Table 5).

6.7 Neural network design #6

The previous testing results showed that the 3N-2N-1N network from the third design produced
the best general results (see Table 5). The 3N-2N-1N network of design #3 predicted 68.42% of the

 Table 5 Testing summary for designs #3 to #6

Neural 
Network

Network 
Architecture

Maximum % 
Error

Percent of Test Samples with Error less than or equal to:

10% 20% 30% 40% 50%

Design #3

4N 78.08 67.21 88.26 94.74 97.17 98.79

3N-2N 71.58 65.99 85.43 94.74 97.57 97.57

3N-2N-1N 95.15 68.42 91.50 96.36 97.57 99.60

Regression 109.35 60.73 86.23 94.74 96.36 97.98

Design #4

4N 58.03 40.32 85.43 92.31 96.76 99.19

3N-2N 61.75 59.51 82.19 91.90 95.55 97.98

3N-2N-1N 64.05 63.97 82.59 93.52 96.76 98.79

Regression 106.63 51.01 80.97 91.09 95.95 98.38

Design #5

4N 69.11 54.25 81.78 91.50 98.38 98.79

3N-2N 59.30 55.47 77.33 89.88 94.74 98.38

3N-2N-1N 64.80 56.68 81.38 91.90 95.55 98.38

Regression 104.48 50.20 79.76 91.09 95.55 97.98

Design #6
3N-2N-1N 86.28 77.88 94.71 98.08 98.56 99.52

Regression 103.96 66.35 89.42 97.60 98.56 99.04



Evaluation of existing bridges using neural networks 201

test samples within 10% error. A total of 78 samples were predicted with an error greater than 10%.
This sample output has a mean Sufficient Ratings of 59.84%. The total population mean Sufficient
Ratings was 67.99%. The difference in mean Sufficient Ratings suggested that the network had
difficulty predicting small Sufficient Ratings values.

For the sixth design, the 3N-2N-1N network was retrained with a new data set that included all
nineteen input variables. The new training set consisted of the original two hundred sample set and
one half of the samples previously predicted with more than 10% error (39 samples). This increased
the SSE goal to 1.1840. The thirty-nine additional samples were selected randomly with a mean
Sufficient Ratings of approximately 59.84% (see Table 3). The network trained successfully with no
indication of overfitting. Testing of the network improved with 77.88% of the test samples predicted
within 10% error, increased from 68.42% for design #3. 

The final weights and biases for each of the neurons in the 3 hidden layers and the single output
layer are shown in Table 6. The readers are referred to the discussion in “Neural network design
#1" section for definition of W’s, B’s on the weights and biases shown in Table 6. The value
followed W’s and B’s represents the hidden layer number. For example, W3 is the weights for the
3rd hidden layer and W4 is for the output layer. The notation Li-j represents the j-th neuron of the i-th
hidden layer. The last hidden layer represents the output layer. In Table 5, the bold face value
shown in the “Maximum % Error” column represents the lowest maximum percent error among all
designs. The bold face values shown in other columns represent the highest percentage of test
samples within the given percentage error among all designs. As can be seen from the table that

Table 6 Summary of weights and biases for design #6, 3N-2N-1N network

W1

Neuron 1 (L1-1)
parameters 1-7
parameters 8-14
parameters 15-19

−0.1294
0.7995

−0.0412

−0.9770
−0.2056
1.0425

−0.6522
0.0697

−0.6296

−0.6348
−0.2048
−0.1825

−0.5051
0.1031
0.3416

0.7708
0.1965

0.3091
0.0035

Neuron 2 (L1-2)
parameters 1-7
parameters 8-14
parameters 15-19

−0.0153
1.2323
0.3025

0.0286
0.1364

−0.2754

−0.1157
−0.1284
0.3720

0.1262
0.6195
0.1241

−0.1728
0.3541

−0.0569

−0.3490
0.1981

−0.1961
1.0481

Neuron 3 (L1-3)
parameters 1-7
parameters 8-14
parameters 15-19

0.1986
−0.0238
0.2592

0.0387
−0.4375
−0.2262

−0.3023
−0.4934
−0.5401

0.1204
−0.0012
−0.2987

−0.3867
−0.1978
−0.4292

−0.2711
−0.2336

0.1912
0.0270

B1 L1-1 to L1-3 −0.4509 −1.1344 −0.3325

W2 

L2-1
L1-1 to L1-3 −0.9720 −1.9342 −0.2661

L2-2
L1-1 to L1-3 1.2949 1.8391 0.2554

B2 L2-1 to L2-2 0.0525 −0.3832

W3 L2-1 to L2-2 2.9939 −3.2816

B3 L3-1 0.0150

W4 L3-1 −5.3655

B4 L4-1 2.9954
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design #6 yielded the best results. Fig. 6 shows the comparison between actual Sufficient Ratings
and predicted Sufficient Ratings.

6.8 Summary of results

The study showed that for the neural networks to be trained successfully without overfitting, a
target error goal should be set at 10% per output. This was evidenced by the overfitting of designs
#1 and #2 with target error goal of 5% per output, and the successful training of designs #3 to #6
(with target error goal of 10% per output). Design #2 demonstrated that the overfitting was not due
to insufficient number of data. When the number of data increased from 200 to 300, the overfitting
still occurred.

Testing results from the study showed that the networks with more than one hidden layer tended
to produce better results. The networks with 3-hidden layers performed the best. However, based on
the error distribution of the testing samples, the difference among the 3 networks was insignificant.
Hence, any one of the three networks (4N, 3N-2N, and 3N-2N-1N) proposed here would provide an
adequate assessment of the bridge conditions.

7. Conclusions

A study was performed to assess the potential advantages and benefits of using neural networks
for evaluating infrastructure systems. Bridge rating data were used to illustrate the method. The
results from this study show that neural networks can model data relationships nicely. The results
also show that the neural network model yielded desirable output without the intermediate step of
classifying the inventory items into the four categories as required in the Sufficient Ratings
computations (see sample Sufficient Ratings calculations in Appendix). Furthermore, the logic
associated with the mathematical formulations used to determine the Sufficient Ratings was not
obvious.

An advantage provided by neural networks is its great design versatility. Network architecture can
be easily modified by using different transfer functions and changing the number of hidden neurons
and hidden neuron layers. This makes it possible to develop a prediction model suited for a specific
type of problem. Networks can be developed for bridges made from a specific material (concrete,
steel, timber) or for evaluating specific types of construction (girder, box beam, truss, arch,
suspension).

The availability of many PC-based neural network programs makes the use of neural networks
simple and affordable. The Neural Network Toolbox (which runs with MATLAB) provides several
different training algorithms that can be used to design a variety of neural network architectures. Its
flexibility also enables the user to customize existing training algorithms and create new ones
(Beale and Demuth 1992). 

The results of this study show that there is a great potential for using neural networks for
infrastructure system evaluation. Other infrastructure systems that may benefit from neural network
applications include roads and highways, power plants, airports, railroads, dams and sewer systems.
Consistency in future evaluations is just one of the benefits of using neural networks. Their
versatility also provides many advantages over other traditional methods of data analysis such as
regression analysis and expert systems. The continuing refinement of computer technology also
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makes neural networks an increasingly attractive tool.
In addition, unlike the regression analysis, expert system, and even the Sufficient Ratings formula,

neural network architectures can be developed to incorporate the uncertainties associated with the
input parameters through probability and fuzzy set theory. Math Works Inc. has already developed a
toolbox called Fuzzy Neural Network Toolbox to be used with MATHLAB for analyzing subjective
data like those identified in Table 1.
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Appendix: sufficient ratings calculations

The Sufficient Ratings SR as defined in Eq. (5) and repeated here is composed of 4 categories, S1, S2, S3, and S4.
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SR = S1 + S2 + S3 − S4  (5)

The Sufficient Ratings has a value between 0% and 100%. The 4 categories are defined as:
S1 = structural adequacy and safety and has a value ranges from 0% to 55%
S2 = serviceability and functional obsoleteness and has a value ranges from 0% to 30%
S3 = essential public use and has a value ranges from 0% to 15%
S4 = special reductions and has a values ranges from 0% to 13%
The following sections describe the formulation used to determine the values for each of these 4 categories.

Note that the items used to determine SR are listed in Table 1.

Structural adequacy and safety, S1

The item numbers used for this category are 59, 60, 62 and 66. The value for S1 is defined as

S1 = 55 − (A + B + C + D + E + F + G + H + I )  (A.1)

and S1 shall not be less than 0% nor greater than 55%. Values for A through D can be determined from Table
A.1. Values for E through H are determined according to Table A.2. Values for E through H equal zero if
either item 59 or item 60 is not equal to “NA”. The value for I is defined as

I = 0.2778(36−AIT)1.5 (A.2)

Table A.1Determination of values for A through D in % used in Eq. (A.1)

Item 59 Item 60 A B C D

0-2

0-2 55 0 0 0
3 55 40 0 0
4 55 0 25 0

5-9 55 0 0 0

3

0-2 55 40 0 0
3 0 40 0 0
4 0 40 25 0

5-9 0 40 0 0

4

0-2 55 0 25 0
3 0 40 25 0
4 0 0 25 0

5-9 0 0 25 0

5

0-2 55 0 0 0
3 0 40 0 0
4 0 0 25 0

5-9 0 0 0 10

6-9

0-2 55 0 0 0
3 0 40 0 0
4 0 0 25 0
5 0 0 0 10

6-9 0 0 0 0
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where AIT = the adjusted inventory tonnage = the value from the second and third digits of item 66 times a
AIT factor. The AIT factor depends on the value from the first digit of item 66 and is given in Table A.3.
Note that if (36-AIT)1.5 õ 0, then I = 0. I ranges from 0% to 55%.

Serviceability and functional obsoleteness, S2

This category requires item numbers 12, 19, 28,, 29, 32, 51, 53, 58, 67, 68, 69, 71, and 72. The value for S2

is computed as

S2 = 30 − [J + (G + H) + I ]  (A.3)

in which S2 has a value between 0% and 30%; J is a rating reduction and it cannot exceed 13%; G and H are
for width of roadway insufficiency where G and H combined cannot exceed 15%; and I is for vertical clear-
ance insufficiency and it cannot exceed 2%. The values for these variables are determined in the following
subsections.

Rating reductions, A through F
The rating reductions J is equal to the sum of values A through F which are determined according to Table

A.4. In the Table, Column 1 gives the rating for each item number listed in columns 2 through 7. Columns 2
through 7 give the values in % for variables A through F depending on the item number listed in the first row.
For example, if item 69 has a rating of 5, then D = 1%.

Width of roadway insufficiency, G and H
The width of roadway insufficiency is composed of 2 variables, G and H. If the last 2 digits of item 43 are

Table A.4 Values A through F in % for computing rating reductions J

Item values Item 58, A Item 67, B Item 68, C Item 69, D Item 71, E Item 72, F

õ 3 5 4 4 4 4 4
4 3 2 2 2 2 2
5 1 1 1 1 1 1

others 0 0 0 0 0 0

Table A.3 AIT Factors

First Digit of Item 66 1 2 3 4 5 6 9

AIT Factors 1.56 1.00 1.56 1.01 0.77 0.67 1.00

Table A.2 Determination of values for E through H in % used in Eq. (A.1)

Item 59 = Item 60 = NA 
and Item 62 = E F G H

0-2 55 0 0 0
3 0 40 0 0
4 0 0 25 0
5 0 0 0 10

6-9 0 0 0 0
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not 19 and the value of item 51 plus 2 ft. is less than the value of item 32, then G = 5%; otherwise, G = 0%.
To determine the value for H, one needs to first compute X and Y where

X = (A.4)

Y = (A.5)

The value of H depends on the values of item 28, X and Y; and H is determined according to Table A.5.

Vertical clearance insufficiency, I
The vertical clearance insufficiency, I, has a value of either 0% or 2% according to the following:
1. If item 12 > 0, and item 53 < 1600, then I = 2%, otherwise, I = 0%.
2. If item 12 = 0, and item 53 < 1400, then I = 2%, otherwise, I = 0%

Essential public use, S3

The category S3 is defined as

value  of  item  29
first  2  digits  of  item  28
--------------------------------------------------------------

value  of  item  51
first  2  digits  of  item  28
--------------------------------------------------------------

Table A.5 Determination of value H in % for Eq. (A.3)

Item 28 X Y H

1
õ14 15

14õY <18 15(18−Y) ÷ 4
ö18 0

2

ö16 0
ö15
ö14
ö12

ö2

>50 <9 15
õ50 <9 7.5
õ50 ö9 0

<10 15
50 < Xõ125 10õY <13 15(13−Y) ÷ 3

ö13 0

<11 15
125 < X õ375 11õY <14 15(14−Y) ÷ 3

ö14 0

<12 15
375 <X õ1350 12õY <16 15(16−Y) ÷ 4

ö16 0

<15 15
>1350 15õY <16 15(16−Y)

ö16 0
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S3 = 15 − (A + B) (A.6)

in which A shall not be less than 0% nor greater than 15%; and B is either 0% if item 12 = 0 or 2% if item
12 > 0. The value A is computed as

A = (A.7)

where

K = (A.8)

Special reductions, S4

The special reduction value S4 applies only when the sum of the previous 3 categories, S1, S2, and S3 is at
least 50%; otherwise, S4 = 0%. In addition to the values from the last 3 categories, S4 also depends on the
values from items 19, 36 and 43. Hence, when (S1 + S2 + S3) ö 50%, 

S4 = A + B + C (A.9)

in which

A = 5.205× 10−8 (value of item 19)4 (A.10)

B = 5% if the second and third digits of item 43 are 10, 12 through 17 inclusive; and 

C = (A.11)

Sample calculations

The Sufficient Ratings calculations are illustrated using one of the 447 samples provided by TDOT. The
ratings were recorded as shown in Table A.6.

1. Structural adequacy and safety, S1

Since item 66 = 227, AIT factor = 1.00 and AIT = 1.00*27 = 27. According to Eq. (A.2), 

I = 0.2778(36−27)1.5 = 7.501%

For item 59 = 4 and item 60 = 5, Tables A.1 and A.2 give C = 25% and the rest, A, B, and D through H,
equal zero. This yields,

Table A.6 Observed bridge ratings for items used in sufficient ratings calculations

Item # Ratings Item # Ratings Item # Ratings Item # Ratings Item # Ratings

12 0 19 5 28 02 29 550 32 20
36 0000 43 102 51 20.6 53 unknown 58 5
59 4 60 5 62 NA 66 127 67 5
68 3 69 NA 71 6 72 6

15 value  of  item  29( ) value  of  item  19( )
200000K

-------------------------------------------------------------------------------------------------------

S1 S2+
85

----------------

1% if  2  digits  of  item  36=0
2% if  3  digits  of  item  36=0
3% if  4  digits  of  item  36=0



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S1 = 55 − (25 + 7.501) = 22.499%

2. Serviceability and functional obsoleteness, S2

When item 58 = 5, item 67 = 5, item 68 = 3, item 69 = NA, item 71 = 6 and item 72 = 6, these yield A =
1%, B = 1%, C = 4%, D = E = F = 0%, respectively. The sum of these gives J = 6%.

Since last 2 digits of item 43 = 02 and (item 51 + 2) = 20.6 + 2 = 22.6 is greater than 20 (item 32),
therefore, G = 0%.

With item 28 = 02, item 29 = 550, and item 51 = 20.6; X = 275 and Y = 10.3 (Eqs. A.4 and A.5). Using
Table A.5, H becomes 15% and G + H = 15% which is within the allowable maximum.

Since item 12 = 0 and item 53 = unknown, use I = 0%.

S2 = 30 − [6 + (0 + 15) + 0] = 9%

3. Essential public use, S3

Item 12 = 0, hence B = 0.

K =  = 0.371 yields A =  = 0.557

The above gives S3 = 15−(0.557 + 0) = 14.443.

4. Special reductions, S4

Check to see if special reductions can be applied: 22.499 + 9 + 14.443 = 45.942% which is less than 50%.
Therefore, S4 = 0%, and the Sufficient Ratings SR = 45.942%.

Symbols

DOT = Department of Transportation
I = identity matrix
J = Jacobian matrix of derivatives of each error to each bias or weight
SR = Sufficiency Rating
SSE = sum-squared error
S1 = Structural Adequacy and Safety
S2 = Serviceability and Functional Obsoleteness
S3 = Essential Public Use
S4 = Special Reductions
bi = bias
e = error vector
wi = weight
xi = input variable
yi = output variable
∆w = weight change
∆b = bias change
µ = scalar

22.499 9+
85

------------------------- 15 550( ) 5( )
200000 0.371( )------------------------------------




