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Confidence region of identified parameters and optimal 
sensor locations based on sensitivity analysis
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Abstract. This paper presents a computational method for a confidence region of identified parameters
which are affected by measurement noise and error contained in prescribed parameters. The method is
based on sensitivities of the identified parameters with respect to model parameter error and measurement
noise along with the law of error propagation. By conducting numerical experiments on simple models, it
is confirmed that the confidence region coincides well with the results of numerical experiments.
Furthermore, the optimum arrangement of sensor locations is evaluated when uncertainty exists in
prescribed parameters, based on the concept that square sum of coefficients of variations of identified
results attains minimum. Good agreement of the theoretical results with those of numerical simulation
confirmed validity of the theory.
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1. Introduction

Identification of structural parameters to estimate dynamic behavior of the ground and structures
has been found to be effective tools for seismic engineering. Numerous studies (Hoshiya and Sito
1984, Toki et al. 1989, Matsui and Kurita 1989, Koh et al. 1991, Elgamal et al. 1996, Zeghal et al.
1996) up to the present have proposed various identification methods and a valuable body of
knowledge has been accumulated. Consequently, identification methods have achieved significant
improvement. However, further improvement also depends on accuracy of measurement and
progress in measurement technology has been greatly anticipated. Numerous uncertainties are
involved in structural identification problems, which inevitably influence identified results. Observed
values such as input signals and output responses are contaminated with observation noise.
Parameter values given as known may also contain some error. Past studies have demonstrated that
the effect of observation noise can be reduced by using some filters such as the Kalman filter and
dynamic programming filter (Ott and Meder 1970, Destefano and Pena-Pardo 1996). There has been
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little investigation of the effect of prescribed parameter. Koh and See (1994) proposed to introduce
system noise after they demonstrated that identification by the extended Kalman filter using the
model with error in one of the masses did not converge to the correct parameter values. Yoshida
and Hoshiya (1994) proposed a method of inverse analysis which took uncertainties of known
conditions for static problems into consideration and discussed the effect of known and unknown
conditions, including the degree of certainty in prior information. The authors presented a method of
evaluating the effect of identified parameters and their sensitivity with respect to error and
confirmed the validity of the method through numerical experiments (Matsui and Kurita 1990).

This paper presents a method to evaluate the effect of error in prescribed parameters on the
identified results by employing the confidence region of identified parameters. Validity is confirmed
by numerical experiments on simple models. The effect of observation noise on identified results is
also given by a confidence region. Combining both approaches enable evaluation of the unified
effect of observation noise and prescribed parameter error. 

Furthermore, when identifying structural parameters, sensor locations are presumed to be
important in addition to accuracy of measurement. Studies in this area have not yet fully explored
the matter of sensor locations. Kiyono et al. (1991) presented optimum sampling locations when
estimating a model parameter for a ground model considering nonuniformity. Udwadia (1994) also
has proposed optimum arrangement of sensors in dynamic structural parameter identification based
on the Fisher information theory.

This paper presents a method to find the optimum arrangement of measurement locations when
prescribed parameter values involve uncertainties. In actual problems, the values of these parameters
are not precisely known and likely to contain some error. Thus, it is presumed here that the
definition of optimum sensor arrangement is a set of sensor locations which produce the least
fluctuation of identified results. Monte Carlo simulation is an approach to solve this type of problem
but the method, in general, requires an enormous computation time. In this paper, the method
described above is utilized to evaluate the optimality of sensor locations.

2. Confidence region due to error in prescribed parameter 

2.1 Theory

The motion of a linear multi degree-of-freedom system is described by the following equation:

(1)

in which M, C and K are mass, damping and stiffness matrices; ,  and  are relative
acceleration, velocity and displacement. 1 refers to a vector whose entities are all 1 and  is
ground surface acceleration. Among all model parameters, unknown parameters are expressed by

 and known parameters by . Measured values are
time histories of response accelerations. Let  be a measured response,  observation
noise and  computed acceleration at observation point i. Then the following relationship holds;

(2)

Based on the least square concept, an evaluation function may be defined as,
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(3)

where t0 ~ t1 refers to a duration of analysis and wi is a weight which is given according to
importance and/or reliability of the data relative to the rest. Let known parameter Yl be defined by
the true value  and error ∆Yl. If ∆Yl is sufficiently small, its effect on identified results is also
small. It can be written as,

(4)

 is the true value of X. If a covariance matrix of known parameters is assigned, a covariance
matrix of identified results is presented by using the law of error propagation (Tajima and Komaki
1986).

(5)

 is a matrix of the form

(6)

and  is a matrix which denotes sensitivity of unknown parameters with respect to known
parameter error.

(7)

Entities in Eq. (7) can be computed from the following equation (Matsui and Kurita 1990),

(8)
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If normal distribution is assumed on the identified results, the probability density function may be
expressed as,

(9)

Then, the confidence region for a degree of 1−e confidence is presented by

(10)

in which  is a delimiting value for 1−e confidence with M degrees of freedom (Tajima and
Komaki 1986). Eq. (10) denotes the inside of the region which is an ellipse when M = 2, an
ellipsoid when M = 3 and hyper-ellipsoid when .

2.2 Example problem

The theory was verified as explained below, through numerical experiments with a two degree-of-
freedom system shown in Fig. 1.

The input wave is the El Centro wave (NS component) of the Imperial Valley earthquake in 1940,
with maximum acceleration adjusted to 300 cm/s2. The computed response using the values of
structural parameters described in Fig. 1 is taken as measured acceleration history at each mass. 

The values of mass m1 and m2 are known and damping c1 and c2 as well as stiffness k1 and k2 are
considered unknown. In the case in which the mass treated as known contains error having a
statistical characteristic, its effect on the identified results is investigated. It is assumed that both
masses are normally distributed with mean values of  and . ,  and ,  are
identified results that agree with true values when the masses are  and . Weight wi is taken as
1.0 in this example. In order to confirm validity of the theory, 1000 pairs of normally distributed
random numbers with the means ,  and their coefficient of variation 0.05. Damping c1, c2 and
stiffness k1 and k2 are identified using the modified Marquardt method (Fletcher 1971). No
correlation between the masses is presumed.

The distribution of masses given as known and that of identified results are given in Fig. 2. From
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Fig. 1 Two degree-of-freedom system
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the figure it is confirmed that the masses have the stated means and variations. Also the figure
shows that the coefficients of variation for the identified results vary in the range from 0.03 to 0.07.
The results also manifest normal distribution. The theoretical results and the results from numerical
simulation are compared in Fig. 3. The ellipse is called a probability ellipse of 95% confidence

Fig. 2 Distribution of known parameters and identified parameters
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region for two degree-of-freedom. The small circles in the figure denote identified results. Because
the number of unknowns are four, Eq. (10) results in a four dimensional hyper-ellipsoid. However,
since it is impossible to illustrate in a plane, the ellipsoid is projected onto a plane as shown in the

Fig. 3 Confidence region of identified results under the influence of known parameter errors
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figure. Fig. 3(1) shows no correlation between the identified c1 and c2. Positive correlation is
observed in Fig. 3(2-6). The number indicated in each figure implies the number of circles falling
within the ellipse over the total number of circles 1000. This proves that the identified results are in
good agreement with the theory. Table 1 shows the sensitivity of the unknown parameters with
respect to the mass error which is used to calculate the probability ellipse. The values of variance-
covariance and coefficients of correlation of unknown parameters, from numerical simulation and
theoretical results, are compared in Table 2. They are also in good agreement. The trace( ) in
the table refers to a trace of the variance-covariance matrix. Coefficients of correlation between two
different parameters indicate that c1 and c2 are slightly correlated, while other parameters are more
clearly correlated. The above evidence proves that confidence region expressed by a probability
ellipse can evaluate the effects of known parameter errors on unknown parameters.

ΣP XX

Table 1 Sensitivities of identified parameters with respect to mass errors

Yl

m1 9.56 −3.14 248.26 51.18

m2 2.20 12.94 535.74 536.82

(Units) : (1/s), : (1/s2)

Table 2 Comparison of variance-covariances and correlation coefficients

Estimated Identified

Variance-covariance

σc1c1 6.3 6.0

σc1c2
−0.1 −0.2

σc1k1 231.1 219.9

σc1k2 108.7 103.1

σc2c2
11.5 11.6

σc2k1
400.4 399.4

σc2k2 441.6 441.5

σk1k1 22689.1 22240.6

σk1k2 19542.7 19334.1

σk2k2 18924.1 18846.2

trace( ) 41631.0 41104.4

Correlation coefficient

ρc1c2 −0.0120 −0.0192

ρc1k1 0.6131 0.6018

σc1k2 0.3156 0.3065

ρc2k1 0.7826 0.7869

ρc2k2 0.9450 0.9448

ρk1k2 0.9431 0.9444

∂c1

∂Yl
-------- ∂c2
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-------- ∂k1
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--------
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-------- ∂ki
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3. Confidence region due to measurement noise

3.1 Theory

Measurable quantities considered here are time histories of acceleration. Let  be observed
acceleration at point i,  be noise contained in  and  be computed response
corresponding to . Then the following relationship holds:

(11)

in which  is a noise wave form, in which its absolute maximum is adjusted to 1.0 and ε i is a
scalar quantity indicating the maximum value of noise.

It is assumed here that the true values  are known for prescribed parameters. If the effect of
noise on identified parameters is relatively small, the values of unknown parameters that the noise
at observation point l affects are expressed by

(12)

in which  is the true value of X. If variance-covariance of noise is known, by employing the law
of error propagation, the variance-covariance of unknown parameters can be obtained from 

(13)

where  is the variance-covariance matrix of noise. 

 (14)

 is sensitivity of unknown parameters with respect to measurement noise.
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Fig. 4 Distribution of peak accelerations and identified parameters
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Fig. 5 Confidence region of identified results under the influence of measurement noise
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The sensitivity given by Eq. (15) can be computed from the following sensitivity equation (Matsui
and Kurita 1990),

(16)

If ε l is normally distributed and the identified results are also normally distributed, the probability
density function of unknown parameters becomes Eq. (10).

3.2 Example problem

A numerical experiment using a simple model was conducted to confirm the theory stated above.
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Table 3 Sensitivities of identified parameters with respect to measurement noise

ε l

ε1 −0.009 0.013 -0.093 0.167

ε2 0.011 0.020 -0.283 0.453

(Units) : (tf · s3/m2), : (tf · s2/m2)

Table 4 Comparison of variance-covariances and correlation coefficients

Estimated Identified

Variance-covariance

σc1c1 0.8 0.8

σc1c2
0.4 0.4

σc1k1 −8.5 −8.8

σc1k2 13.0 13.4

σc2c2
2.0 2.1

σc2k1
−24.6 −25.9

σc2k2 40.3 42.6

σk1k1 318.3 334.5

σk1k2 −517.1 −544.0

σk2k2 841.0 886.0

trace( ) 1162.1 1223.4

Correlation coefficient

ρc1c2 0.3210 0.3275

ρc1k1 −0.5438 −0.5457

σc1k2 0.5124 0.5145

ρc2k1 −0.9694 −0.9702

ρc2k2 0.9778 0.9786

ρk1k2 −0.9993 −0.9992
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The model used herein is illustrated in Fig. 1. The input earthquake wave is the El Centro wave
(NS component, 1940) with maximum acceleration adjusted to 300 cm/s2. Acceleration response of
each mass computed using the true values of structural parameters is regarded as the true
measurement data. Noise contaminating the measured response is band limited white noise with
frequency from 0.02 Hz to 25 Hz. Mass m1 and m2 are prescribed and the true values given in the
figure is assigned. Damping c1 and c2 and stiffness k1 and k2 are considered unknown parameters. In
order to verify the theory, 1000 sets of normally distributed random variables with means equal to 0
are generated. The sums of computed responses and the noise generated for each are considered
measured responses. Using the 1000 sets of measured responses, the unknown parameters are
identified. The identified results are compared with the true values. The standard deviation of
maximum noise is taken as 60 cm/s2. It is also assumed that there is no correlation between the
noise in measured responses. The modified Marquardt method is employed for parameter identification.

Fig. 4 illustrates the histogram of maximum noise and identified results. The curves in the figure
denote probability density functions for normal distribution. It is confirmed that the distribution of
maximum noise has the properties stated above. It can be stated that the identified results also show
normal distribution. The coefficients of variation of the results vary within a range between 0.005 to
0.015. The effect of measurement noise on identified results is relatively small. The results from
numerical experiment and theory are presented in Fig. 5. The probability ellipse in the figure is 95%
confidence region for two degree-of-freedom. The identified results are plotted with small circles.
Since the number of unknowns is four, Eq. (10) results in a four dimensional hyper-ellipsoid.
However, since it is impossible to illustrate in a plane, the ellipsoid is projected onto a plane as
shown in the figure. The number of small circles in the ellipse over the total number of circles of
1000 is denoted in the lower write corner of each figure. The result of nearly 950 circles confirms
the theory. Sensitivity of unknown parameters with respect to measurement noise is given in Table
3. Variance-covariance matrix of unknown parameters and coefficients of correlation are presented
in Table 4. Estimated in the table means the theoretical results computed from Eq. (13). The results
from the numerical experiment and the theory show excellent agreement. The trace( ) in the
table refers to a trace of the variance-covariance matrix. The table also shows a strong negative
correlation between two stiffness parameters k1 and k2 and the coefficient of correlation is nearly −1.

It is clear from the above that the effect of measurement noise on identified results is relatively
small and that the effect is evaluated by the form of confidence region.

4. Optimum arrangement of observation points

4.1 Theory

Uncertainties in known parameters may lead to uncertainties in the identified results. Probability
theory is suitable for evaluating potential arrangements of measurement points for such identification.
In this study, several candidates for arrangements of measurement points are selected and evaluated
using variations of identified results as measures of goodness. In parameter identification using
known information involving uncertainties, the fluctuation in identified parameter value may be
evaluated from the following coefficient of variation:

ΣN XX
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COV(Xi) = (17)

in which  and  is the mean of Xi and its variance respectively. Because a coefficient of
variation is a nondimensional quantity, comparison between quantities with different dimensions can
be made. The various candidates for arrangement of observation points are compared using the
average of the coefficients for all the identified results:

Average of COV = COV(Xi) (18)

Computing the average coefficients of all the candidates, the one that minimizes the coefficient is
the optimum arrangement of observation points. The coefficient of variation for identified results
can be computed through numerical experiment by using randomly generated values of mass. In
order to obtain results with good accuracy, a large number of sample data is necessary, which
requires considerable computation time. Hence the analytical approach stated in 2.1 is utilized and
compared to the numerical experiment.

4.2 Example problem

To examine the effectiveness of the present theory, numerical simulation was performed. Fig. 6
shows the three degree-of-freedom system used for the simulation. The input wave is the El Centro
wave of the Imperial Valley earthquake in 1940 with the maximum acceleration adjusted to 300 cm/s2.

σXiXi

X i

------------------

X i σXiXi

1
M
-----  

i 1=

M

∑

Fig. 6 Three degree-of-freedom system

Table 5 Arrangements of measurement positions

Location Number Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

3 O O O O
2 O O O O
1 O O O O
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Fig. 7 Coefficient of variation for each identified parameter



Confidence region of identified parameters and optimal sensor locations based 131

This figure also shows the structural parameters used by the authors in analyzing the responses in
order to obtain a time history of each mass point. This time history is used as observation data in
this simulation and is assumed to be free from noise. Here, the masses m1, m2 and m3 are known
structural parameters. The damping coefficients c1, c2 and c3 and the stiffness k1, k2 and k3 are
unknown parameters. We assume that the masses are in normal distribution with an average  of
50 ton and coefficient of variation COV(mi) of 0.05 (i = 1, 2, 3). For such uncertainties in the
known parameters, identified results are assumed to yield fluctuations having normal distribution. In
this case, the value shown in Fig. 6 is an average. In the following analysis, every weight factor wi

contained in the evaluation function is set to 1.0. In order to confirm the proposed theory, 1000 sets
of normal random numbers that would give ,  and  as the averages and 0.05 as the
coefficient of variation are generated. Then using the data, the structural parameters are identified.

Table 5 shows the seven arrangements used for the measurement positions. The time history at
each marked position is assumed as known as well as the input earthquake motion. Fig. 7 shows a

mi

m1 m2 m3

Fig. 7 Continued
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comparison of the estimated coefficients of variation obtained from the proposed theory and the
Monte Carlo simulation. They agree very well for Cases 1, 2, 4 and 5, differ slightly for Case 3, and
manifest a significant difference for Cases 6 and 7. The damping coefficients exhibit particularly
large disagreement in Case 7. This is probably because some of 1000 sets produce incomplete
convergent results, because number of iteration is terminated if it exceeds 100. The incomplete
convergence is caused by a poor selection of measurement points that can not provide sufficient
information for identification. It is evident that this arrangement of Case 7 is inferior to any of the
others with respect to accuracy.

In all cases, the damping coefficients tend to have a larger fluctuation than stiffness. This
tendency is particularly prominent in Cases 3 and 6. Fig. 8 shows that the average of the
coefficients of variation for all parameters. In Case 7, the theory-derived findings disagree
substantially with those from the simulation. Fig. 8 reveals that Cases 3, 6 and 7 are not very
suitable as arrangements because of the large fluctuation produced. In the other cases, the average
coefficients of variation are similar and sufficiently small. These cases seem suitable as
arrangements. Case 4 gives the best accuracy of identification. It should be noted that the one point
measurement in Case 5 produced accuracy equal to the three point measurement in Case 1.
Measurements at two points, like Case 3, may not necessarily lead to good accuracy. Also
noteworthy was that all the cases that included the measurement point at mass 1 showed good
accuracy. Thus measurement at mass 1 is crucially important. In order to investigate the reason,
participation factors for three modes without damping are computed to examine the contribution of

Fig. 8 Average of the coefficients of variation for all the parameters

Table 6 Participation vectors of analytical model

1st mode 2nd mode 3rd mode

Eigenfrequency (Hz) 1.78 4.46 6.82

Participation Vector

Mass Point
3 1.28 −0.33 0.05
2 0.87 0.33 −0.20
1 0.41 0.33 0.26
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the response at each mass to the three modes. The participation factors are summarized in Table 6.
At mass 3 the participation factor for 1st mode is very large compared with 2nd and 3rd modes. At
mass 1, the participation factors appear in the same magnitude. Thus, mass 1 contains the
information for the three modes in an equal amount. Identification using the response data at masses
2 and 3 results in poor estimates because the data lack the information for the higher modes which
becomes obscure in noise contaminated data.

5. Conclusions

This paper proposed methods to analytically evaluate the confidence region of the identified
results due to known parameters error and measurement noise, and verified the theory through the
numerical simulation. Furthermore, a method to evaluate the optimum arrangement of measurement
points is proposed. The following conclusions can be stated:
(1) The confidence region of identified parameters under the influence of known parameter errors

and measurement noise can be evaluated as a probability ellipse.
(2) Confidence region based on a linear approximation demonstrates good agreement with numeri-

cal simulation results. This proves that the analytical approach enables evaluation of the effect
of known parameter error and measurement noise on identified results with sufficient accuracy.

(3) The analytical approach reduces computational time in evaluating the effect of known parameter
error and measurement noise.

(4) Regarding arrangement of measurement points, it is made clear that there exists a key measure-
ment point. Although the more measurement points, the better, it is more important to include
the key measurement point in the arrangement.

Appendix. Conversion factors

1 tf · s2/m = 9.81 ton; 1 tf · s/m = 9.81 kN · s/m; 1 tf/m = 9.81 kN/m;
1 tf · s3/m2 = 9.81 kN · s3/m2; and 1 tf · s2/m2 = 9.81 kN · s2/m2.
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