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Analysis of transversely isotropic hollow
toroids using the semi-analytical DQM

W. Jiangt and D. Redekop?

Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada KIN 6N5

Abstract. A solution based on the linear three-dimensional theory of elasticity is developed for
vibration and elastostatic problems of hollow toroids. The theory is developed for transversely isotropic
toroids of arbitrary thickness, and has the potential to validate some vehicle and aircraft tire models in the
linear range. In the semi-analytical method that is adopted Fourier series are written in the circumferential
direction, forming a set of two-dimensional problems. These problems are solved using the differential
guadrature method. A commercial finite element program is used to determine alternative solutions. For
validation both problems of vibration and elastostatics are considered. Finally results are determined for
local surface loading problems, and conclusions are drawn.
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1. Introduction

Toroidal shells are popular structural forms, finding such applications in engineering as reactor
vessels, protective devices for nuclear fuel pellets, bouyancy units, and vehicle and aircraft tires.
With the development of new materials there is a demand for new analytical tools to model toroidal
shells made of anisotropic, orthotropic, and transversely isotropic materials (Nab@hl&000).

Considerable work has been done on the vibration and elastostatics of thin-walled isotropic
toroidal shells (Redekop and Xu 2000, Leung and Kwok 1994, Redekop 1994). Studies have also
been conducted of thin-walled laminated toroidal shells with application to vehicle and aircraft tires
(Kim et al. 1990, Gallet al. 1995, Zhanget al. 1997, and Darnekt al. 1997). In some of these
latter studies it has been pointed out that the shells approach a thick-walled status. There is thus a
need for an analytical tool to cover thick-walled toroidal shells (hollow toroids), for tire as well as
other applications. As well it is desirable to have an independent method available that can serve to
validate the finite element method, which is the main tool available in this area at present.

In this study the three-dimensional theory of elasticity is developed to consider the vibration and
elastostatics of hollow transversely isotropic toroids with annular cross-section of arbitrary but
uniform thickness. Fourier series expansions are written in the circumferential direction leading to a
series of two-dimensional problems for the individual harmonics. The problems are solved using the
differential quadrature method (DQM). Validation of the method is through the analyis of problems
of natural vibration, and elastostatics. Results in each case are found using the DQM and the finite
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element method (FEM). Finally results are determined for local surface loading problems, and
conclusions are drawn.

2. Toroidal elasticity theory

The hollow toroid has a bend radi®& and an annular cross-section bounded by &dihd b
(Fig. 1). A general point in the toroid is defined by a radial coordinatnd meridional and
circumferential angular coordinatesand 8. The toroid is complete and thus extends throught 360
in the circumferential and meridional directions.

A derivation of the governing equations for the linear three-dimensional theory of elasticity in
toroidal coordinates has been given for isotropic materials by Redekop (1992). The theory is
extended here to cover the case for transversely isotropic materials. The equations of motion in this
theory are given by (Redekop 1992, Grigoreekal. 1998)

90y 199 1 1[da.0 . "
==Ir )
o Tr dp Tr (O — Opy) + p[ 50+ cosp(0 —aee)—sm(par(p} =p
00 , 1000 , 20, 1[00u . 2
-
o +r 20 + S0y + {d@ +C0$§00r(p—5|n¢0}p(p—0'99):| _pdtz
a Tt 90 + O + [ 90 +2c0sp Ore —23|n¢7a¢9} =p 2 (1)

wherep=R+rcosp, p is the mass density ands the time. The convention for the displacement
and stress components present in this theory is given in Fig. 2. The kinematic relations for the case
of small displacements are (Redekop 1992)
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Fig. 1 Geometry and coordinate system Fig. 2 Displacement and stress components
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For transversely isotropic materials the constitutive equations are (Grigaeakd 998)
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where thed; are given by
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The engineering constants v' E,E' G, G’ are respectively the Poisson ratios, Young’s moduli,

and shear moduli in the in-plane and transve#3alifections.
The solution is subject to boundary conditions on the surfaces of the toroid. @ dmst
surfaces the requirements are

=pi(9, (P); Ur9=0r¢:o (5)
wherep; is a specified pressure with= 1 for the inside surface and- 2 for the outside surface.
For some problems symmetry exists about the plges’, 6=0° and 6=9C. This symmetry
allows consideration of only one-eight of the toroid. In these cases the symmetry conditions

v=0; 0,y,=0p=0 (6)
are satisfied on the plage= 0°, and the symmetry conditions

W=0; 0= 0p=0

are satisfied on the planés- 0°, and6=9C.

For calculation purposes the three-dimensional problem is reduced to a set of two-dimensional
ones. In this semi-analytical approach (Kiet al. 1990) Fourier series are written in the
circumferential direction, and then the various harmonics so defined are dealt with separately. Thus
the displacement components and loading are expanded as

u=U,+2U, cosn@ + ZU,sinnb
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v=V,+ XV, cosn@ + XV/,sinnd
w=23W, sinn@ + X\\/,, cosné
p=P,+ 2P, cosnf + ZP, sinn@ (8)

wheren=1, 2, ...,N. Governing equations are obtained by combining Egs. (1-3) with Eqg. (8). Two
equations are obtained for the unknowhsV,, three equations for each of tNesets of unknowns

Un, Vi, W, of the ‘even’ harmonics, and three equations for each oNtkets of unknownsu, |,

Vn, W, of the ‘odd’ harmonics.

The basic equations are used to solve alternatively the problems of vibration and elastostatics for
the toroid. In solving the vibration problem the is non-zero, pheare zero, and the
displacements are taken as harmonics with argumenivherew is the natural frequency. For the
elastostatics problem thp is taken as zero and the boundary loagh tegpresents a static
pressure.

3. Differential quadrature method

The DQM approach is used to calculate the solution to the governing equations. This method of
numerical analysis was introduced to problems of shell vibration in 1995 (Shu 2000). In the current
study the two-dimensional version of the DQM is required with discretization being necessary for
ther and g coordinates in each harmonic. As an extended exposition of the DQM approach is given
by Shu (2000) only a brief outline is given in the following.

The basis of the DQM is the meshing of the domain and the representation in the domain of the
derivatives of a functiofi(x) by a weighted sum of trial function values, i.e.

g % yox, = z AT (%) 9)

Here the A{’ are the unknown weighting coefficients of kit order derivative at théth
sampling point of the mesh in thedirection, andM is the number of sampling points in this
direction. For the current study sets of trial functions are required for both the radial and meridional
directions.

Polynomial trial functions (Shu 2000) are selected for the radial direction, and the variable
represents. The functions are taken as

f(y=21,r,r2- M1 (10)

For these functions explicit formulas for the weighting coefficients may be used. For the first order
derivative the formulas are

AP = (r——_ﬂf—)%(—;—) =1,2..,M; i#]

nr;) = |_| (ri—=rp); i1 #] (11)

=1

while for the higher order derivatives the formulas are
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(k=1)
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M
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For the sampling points; in the radial direction of the mesh the Chebyshev-Gauss-Lobatto
spacing (Shu 2000) is used. In this scheme the coordinades taken as; = x = (b—a)y; where
they; are given by

i—2
1-co M_3
y1=0;y = > ; 2<i<(M-1); yu=1 (13)

At each sampling point either the DQM analogue of a governing equation for the domain is
represented, or a boundary equation.

Harmonic trial functions (Redekop and Xu 2000) are used in the meridional direction in this
problem having cyclic periodicity. Continuity conditions acrgss 18¢°, 360° are then identically
satisfied. The trial functions are thus taken as

f(gp) =cod Zk-1)mg]; k=1, 2, 3,..,N/2+1
f(@) =si Ak—-N/2-1)rrg]; k=N/2+2, N/2+3,...,N (14)

where N is an even number. For equally spaced sampling points indinection the weighting
coefficients, labelledB; in the following, may be found explicitly from the inverse of the
Vandermonde matrix (Shu 2000).
Use of the quadrature rules (9-14) for the derivatives in the governing equations leads to the
transformed DQM domain equations for the nth even harmonic set
(L ZAD + 5 ZAG) Uy + (3 2B + 1, ZB{Y) Unni + fsUny

+fs 22 B(l) A Vi + 7 ZAG Vi + fg ZBj(il) Vihi + faVinj
U
+ f1oWhnj + f1a SAY W hij = sz -
ot
fo ZZAG BfY Uni + f1o TAL Upy + f13 ZB Unpi+ fraUny
+ (1 ZAm) +fi6 ZAS)) Vo + (17 ZBj(iZ) +fig ZBj(il)) Vihi

V
* flgvnhj + f20 ZBJ(il) thi + f21thj pd-d—t-;—m

f1 ZAS) Upnj + fooUnn + fo3 ZBj(il Vini + f21Vonj + (f24ZA(2)
+ o5 ZAS) YWai + (f26 ZBj(il) +fy7 ZBj(i YWoni

-
+ FoeWopy = p @ Woni at;h (15)



108 W. Jiang and D. Redekop

where theUnn, Van, Wiy are the displacement components at lthesampling point for theth
harmonic. The functionf are given by
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where

&y = diy; @ = dsal2; 83 = dss/2; 8y = Cha—ths; 85 = oo
8 = Uzg; @7 = dio; 8g = Chg, a9 = Oy @10 = Cho—Osz 41 = Ctha—ds3
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The assembly of the domain and boundary equations yields a matrix equation of the form

Sv S O 00 4 CgO
[sdi sdﬂ[,aig-ﬁz[o 1}@22%‘ J (18)

This equation serves as the basis for the solution of the problems of vibration and elastostatics as
discussed in the preceding. The veagarontains the load values at the boundary sampling points,
and %= (pw’ T°E is the frequency parameter, wheye is the mean radius of the cross-section.
For the vibration problem the load tempis zero, while for the elastostatic problem the frequency
parametelB3? is zero. The sub-matricé, and S,y stem from the boundary conditions, and involve
respectively the unknowns of the boundary and domain mesh points. The sub-rSgiravesS;g

stem from the governing equations, and similarly involve the the unknowns of the boundary and
domain points. The vectofs, andA4 contain the displacements of the boundary and domain points
respectively. For the vibration problem the latter vector is eliminated using the static condensation
technigue (Bathe 1996). The matrix Eqg. (18) is then reduced into the form

(-SibShs Soa + Si) {Ad} = BHAG} (19)

The smallest eigenvalue is found directly by solving a standard eigenvalue problem.

The theory presented in the preceding was coded inVWELAB™ programs semiom.m and
semista.m to cover respectively the vibration and elastostatics problems. Results from these DQM
programs are given in the following.
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4. Finite element method

The commercial FEM program ADINA (ADINA 2000, Bathe 1996) was used to provide a
second solution to the problems considered. Both three-dimensional models consisting of brick
elements (ET FEM), and two-dimensional models consisting of shell elements (ST FEM) were
used. The brick element in ADINA contains twenty nodes with three displacement degrees of
freedom at each node. The shell element is an eight-noded isoparametric element with three
displacement and three rotation degrees of freedom at each node.

The models adopted account for symmetry of the geometry and thus represent one eight of a
toroid. The three-dimensional model is used to provide a second solution for all cases considered,
while the shell theory model is used only for an elastostatics problem involving an isotropic
material. Sample meshes for both elasticity and shell theory models are discussed in section 6.

5. Validation

Two problems were solved to obtain partial validation for the DQM solution. The first problem
concerns the determination of some natural frequencies of a hollow toroid. The second problem
concerns the determination of the stress state in a hollow toroid subjected to a set of band loads.

The geometry of the first validation problem is that of a complete hollow toroid. The polar
axisymmetric vibrations of thick toroids were studied earlier by McGill and Lenzen (1967), while
thin toroids (toroidal shells) were studied by Balderes and Armenakis (1973)B%halues
obtained from the program semiom.m for the first five natural frequencies for some thin toroids are
compared in Table 1 with those given by Balderes and Armenakas (1973). The sizes given for
meshes refer respectively to the radial and meridional directions. In this table and subsequently ET
indicates evaluation using the elasticity theory. Also given are frequencies obtained using the ET
FEM. The DQM results agree well with the ET FEM results, and there is also good agreement with
results given by Balderes and Armenakas (1973). For some thick toroids discussed by McGill and
Lenzen (1967) results obtained by the DQM and the ET FEM showed close agreement with each
other, but showed major deviation from results given in the 1967 study. The deviations are
discussed further by Jiang and Redekop (2001).

Table 1 Thin shell natural frequency paramggeér

Shell theory FEM (ET) DQM (ET)

Geometry Balderes (1973) Mesh Value Mesh Value
Rir,=10 2% 400 0.0149 6x 18 0.0149
h/r, =0.01 0.0148 X 800 0.0149 8 24 0.0149

4 x80C 0.0149 12 36 0.0148
Rir,=10 2% 400 0.0322 6x 18 0.0319
h/r, =0.02 0.0315 X 800 0.0322 8 24 0.0319

4 x80C 0.0322 12 36 0.0318
Rir, =5 2x 500 0.0153 6x 18 0.0152
h/r, =0.02 0.0150 %1000 0.0153 &24 0.0152

4x1000 0.0153 12 36 0.0152
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Fig. 3 Band loading of hollow toroid
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The geometry for the second validation problem is given in Fig. 3. A hollow steel toroid is
subjected to a set of four band loads, each of which extends around the cross-section. The loads are
spaced at Y0intervals and have an angular width of. Zr’he band loads are on the external surface
of the toroid, and produce a unit uniform compression within the bands. Numerical results are found
for the case oA=100 mm,b=200 mm,R=500 mm,a = 8. The material properties ake= 206
GPa, andv =0.3. Values for stresses obtained from the program semista.m are compared in Fig. 4
with those given by Zhu and Redekop (1995). The values represented are the meridional stress on
the external surface. Also presented are values obtained using the the FEM with three-dimensional
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Fig. 4 Meridional stresses for band loading
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elements. It is seen that the DQM and FEM results show very close agreement, and that good
agreement is also obtained with the results of Zhu and Redekop (1995).

6. Results and discussion

The DQM method and ADINA FEM program are used to obtain natural frequencies,
displacements, and stresses for three geometric cases described in Table 2.tSymbol in this table
indicates the mean radius of the cross-sectionhatit thickness. The first two cases of the table
are thin toroids identical to cases 9 and 10 discussed by Redekop and Zhang (1992). The third case
is a thick toroid, outside the range of shell theory. Two materials are considered, steel (isotropic)
and M2 (transversely isotropic) (Chandrashekhara and Nanjunda Rao 1997). The properties of the
steel material ar& = 0.3, E=206 GPa, while for the M2 material the properties EBrel72.38
GPa,E' =6.90 GP& =2.76 GPaG' =3.45 GPa,=v' =0.25.

For the elastostatic problem three systems of local loadings are considered. These systems consist
respectively of unit normal pressures at the extrados, crown, and intrados, resembling the systems of

Table 2 Shell cases

Case R (mm) T (mm) h (mm)
1 600 100 10.6
2 600 100 18.0
3 600 100 30.0

loads described by Redekop and Zhang (1992). The pregsupzsandps of Fig. 5 show the three
types of systems in the first quadrant. Identical loadings are understood to be applied in the other
three quadrants, and thus plaes0°, 6= 90, = (° are planes of symmetry.
For thep, load the unit normal pressure extends over the rarfge 30< 60°, °® < ¢ < 3(°. For
the p, load the range is 80= 8 < 60°, 75 < @ < 10%. This loading represents a ‘pinching’ of the

w/4

/4

Fig. 5 Local loading cases
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toroid since a similar load pad exists on the other side apthé plane. For thes load the range
is 30 < 6 < 60, 150 < 6 < 180

Analyses are carried out using the DQM, the ET FEM, and the ST FEM. Typical meshes are
given in Figs. 6-8. For the semi-analytical DQM used here the meshing is of a typical cross-section
as shown in Fig. 6. The mesh indicated is<42, representing respectively points in the meridional
and radial directions. Symmetry is accounted for in the FEM analyses, enabling the analysis of one-
eigth of the toroid only (Figs. 7-8). The ET FEM mesh of Fig. 7 is of siz@®x 48, representing
respectively points in the radial, meridional, and circumferential directions. The ST FEM mesh of
Fig. 8 is of size 24 48, representing respectively points in the meridional and circumferential
directions.

The convergence of the solution for the vibration problem is examined in Table 3. The frequency
parameterpa)2 for the three geometric cases of Table 2 as found using the DQM and the ET FEM
are given for coarse, medium, and fine meshes for each of the two materials. Rapid convergence is
observed for both methods. Passing from cases 1 to 3 the frequencies increase (as the wall thickness
increases). The frequencies for the steel toroids are higher than those of the M2 material due to the
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Table 3 Convergence study - parameier (x 10°)
Case FEM (ET) DQM (ET)

Mesh Steel M2 Mesh Steel M2

1x12x24 23.28 2.133 424 22.30 2.101

1 1x24x%x24 22.99 2.112 8 36 17.23 1.901
1x24x48 22.99 2.112 1248 17.23 1.900

1x12x24 32.18 2.844 424 32.28 2.924

2 1x24x%x 24 32.08 2.836 8 36 28.97 2.712
1x24x48 32.08 2.836 1248 28.94 2.711

1x12x24 37.91 3.523 416 37.88 4.910

3 2%x24x%x 24 37.84 3.509 832 36.32 3.454

2%x24x48 37.84 3.509 1248 36.32 3.454
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Table 4 Results for unit loadings on steel shell

DQM (ET) FEM (ET) FEM (ST)
Case Loadat u(mm) o0g(MPa) u(mm) o4 (MPa) u(mm) o4 (MPa)
1 -0.0770 -31.92 -0.0787 -33.86 -0.0749 —-25.78

Extrados  —0.0320 -16.45 —-0.0346 -17.31 -0.0320 -13.16
-0.0144 =-7.79 -0.0143 -8.21 -0.0126 -5.77

-0.0652 -40.18 -0.0692  -40.93 -0.0684 -35.69

2
3
1
2 Crown -0.0214 -17.17 -0.0227 -18.54 -0.0212 -16.35
3 -0.0070 -7.67 —-0.0069 -7.99 -0.0062 -6.95
1
2
3

-0.1180 -50.31 -0.1000  -46.35 -0.0974 -35.47
Intrados  —0.0373 -20.90 -0.0342  -20.32 -0.0326 -14.80
-0.0139 -8.90 -0.0132 -8.87 -0.0121 -5.78

Table 5 Results for unit loadings on M2 shell

DQM (ET) FEM (ET)
Case Load at u(mm) 04 (MPa) u(mm) 04 (MPa)
1 -0.609 -10.45 —-0.553 -10.15
2 Extrados -0.318 -7.38 -0.292 -7.30
3 -0.160 -4.56 -0.148 -4.54
1 -0.849 -21.98 -0.821 -24.00
2 Crown -0.300 -10.30 -0.288 -10.98
3 -0.109 -4.88 -0.109 -5.12
1 -1.366 -21.84 -1.219 -20.80
2 Intrados -0.438 -10.04 -0.405 -9.93
3 -0.156 -4.60 -0.149 -4.68

greater stiffness. The agreement between DQM and FEM is best for the thick shells where the
elasticity theory is most applicable. Subsequently in this work the medium mesh was used in the ET
DQM analysis, and the fine mesh for the ET FEM analysis.

Results for the three types of loading for the elastostatic problem are given in Tables 4-5 and Figs.
9-12. Table 4 gives results for the isotropic (steel) toroids. The displacements and circumferential
stresses for the three geometric cases, subject to the three unit loadings, as determined by the DQM,
ET FEM, and ST FEM are given. The displacement values given represent the normal displacement
u at the center of the load pad on the outside surface. The stress values given represent the
maximum stress under the load pad, on the outside surface. Table 5 gives similar results for the M2
toroids, but determined only by the DQM and the ET FEM.

In Tables 4 and 5 it is seen that passing from geometric cases 1 to 3 the displacements and
stresses both decrease due to the increase in wall thickness. Displacements and stresses are
generally lowest for loadings at the extrados where the curvature is positive, i.e., of the spherical
kind. There is a major increase in the displacement level passing from the steel to the M2 material,
but a decrease in the stress level. In general the DQM and FEM elasticity theory results are in close
agreement. The FEM shell theory results generally underestimate the elasticity results.

Figs. 9-10 provide information about the variation of displacements and stresses within the toroid
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for geometric case 3. Fig. 9 gives the variation of the meridional stress on the outside surface at the
6 =45 cross-section for thp; loading case as determined by the DQM for a steel toroid. Results
are given for a number of different terms in the Fourier series, with convergence indicated at 51
terms.
The variation of the radial displacemanbn the outside surface at the 45° cross-section for
the p, loading case as determined by three methods is shown for a steel toroid in Fig. 10. The
pinching effect causes an outward displacement at the extrados and intrados, with the latter being
greater in magnitute. Simulaneously there is an inward displacement at the crown of similar magnitude.
Fig. 11 shows the variation of the meridional stress on the outside surface Gat4Becross-
section for thep, loading case as determined by three methods for a steel toroid. The shell theory
values are seen to underestimate the maximum stress by approximately 10%.
Contour lines are shown in Fig. 12 for the meridional stress 0 £#5° cross-section for thps
loading case as determined by the DQM. There is symmetry abougt=tB plane, i.e., about the
0°-18C line on the figure. The higher stress levels clearly are at the intrados, under the loading. The
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variation of stress over the thickness at the intrados clearly deviates from the linear pattern assumed
in a shell theory solution.

The previous study by Redekop and Zhang (1992) covered the local loading of steel thin-walled
9(° elbows with ‘shear diaphragm’ supports at the ends. Cases 9 and 10 of that study are
geometrically similar to cases 1 and 2 of the present study, with identical loading patterns. The
displacements and stresses cited in Tables 2 and 3 of Redekop and Zhang (1992) are generally
higher than the corresponding values given in Table 4 of the current study. This is attributed
partially to the more flexible support condition provided by the ‘shear diaphragm’. The radial
displacement curve for a loading at the extrados shown in Fig. 9 of Redekop and Zhang (1992) is
qualitatively similar to the displacement curve given in Fig. 9 of the current study.
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7. Conclusions

Results obtained using the theory developed herein agree well with finite element method results
both for the vibration and elastostatic problems. The new work provides a valuable efficient tool for
the analysis of hollow toroids which can be used to supplement results obtained using the traditional
finite element method. To obtain a closer modelling of tire geometries work is currently underway
in which the theory is extended to cover hollow toroids of variable thickness.
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