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A new piezoelectric shell element and its application
in static shape control

Su Huan Chen†, Guo Feng Yao‡ and Hua Dong Lian‡†

Department of Mechanics, Jilin University, Nan-Ling Campus, Chang Chun, Jilin 130025, China

Abstract. In this paper, a new three-dimensional piezoelectric thin shell element containing an
integrated distributed piezoelectric sensor and actuator is proposed. The distributed piezoelectric sensor
layer monitors the structural shape deformation due to the direct effect and the distributed actuator layer
suppresses the deflection via the converse piezoelectric effect. A finite element formulation is presented
for static response of laminated shell with piezoelectric sensors/actuators. An eight-node and forty-DOF
shell element is built. The performance of the shell elements is improved by reduced integration
technique. The static shape control of structure is derived. The shell element is verified by calculating
piezoelectric polymeric PVDF bimorph beam. The results agreed with those obtained by theoretical
analysis, Tzou and Tseng (1990) and Hwang and Park (1993) fairly well. At last, the static shape control
of a paraboloidal antenna is presented.

Key words: piezoelectric shell element; static shape control.

1. Introduction

Space structures, aircraft, and the like are required to be light in weight due to the high cost of
transportation. Since they are also lightly damped, owing to the low internal damping of the
materials used in their construction, the increased flexibility may allow large amplitude vibration
and shape deformation, which may cause structural instability. These problems lead to a drastic
reduction in accuracy and precision of operation. Thus, it is highly desirable to control excessive
vibration and shape deformation and to stabilize the structure during operation (Ahmad et al. 1970,
Zienkiewicz 1971).

Since the structures are, in general, distributed and flexible in nature, distributed dynamic
measurement and active vibration suppression are essential to their performance. Vibration
suppression and shape control of distributed parameter systems always represents a challenge in
both theory and practice. Theoretical development has been constantly advanced in the past 20
years (Atluri and Amos 1988, Wada et al. 1989, Tzou 1988, 1989, Butkovskii 1962). However, due
to the limitation of materials and actuator design, practical application of the theory to general
distributed parameter systems still needs to be further explored. Besides, in order to control and
suppress the undesirable structural oscillation and shape deformation of a distributed parameter
system, an accurate measurement of the structural vibration is required. Conventional sensors are
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“discrete” in nature, i.e., measuring the response at spatially “discrete” locations. Some natural
frequency and mode shapes could be missed if the sensors are placed at nodal modes or lines. Thus,
the development of a “distributed” sensor can be essential for new-generation lightweight, high-
performance structures. This paper is concerned with thin piezoelectric layers which are coupled
with conventional materials and used as distributed sensors and distributed actuators in an intelligent
advanced structure design.

The direct piezoelectric effect has been widely applied to variety of sensors designs. However, the
converse piezoelectric effect is not common as compared with the direct effect. In this paper, the
advanced structure is a shell configuration with one piezoelectric layer serving as a distributed
sensor and the other layer serving as a distributed actuator. The direct effect is used in distributed
sensing and the converse effect in distributed active vibration suppression and shape control of the
advanced structure. Thus the sensing layer detects the oscillation of the distributed systems and the
actuator controls the vibration or shape of the system. The piezoelectric material used in the finite
element analysis of the advanced structures is PVDF or PZT (piezoceramics). Due to its distinct
characteristics, such as flexibility, durability, manufacturability, etc. PVDF is an ideal material for
the distributed sensing and vibration suppression/control of distributed parameter systems.

Up to now, research in this area has been primarily focused on experimental and theoretical study.
General piezoelectric finite element development is relatively limited. In general, experimental
models are limited by size, cost, and many other laboratory unknowns. Theoretical models can be
more general, but analytical solutions are restricted to relatively simple geometries and boundary
conditions (Tzou 1990). When the geometry and boundary conditions become relatively
complicated, difficulties occur with both theoretical and experimental models. Thus, the finite
element development becomes very important in modeling and analysis of advanced flexible
structures with distributed piezoelectric sensors and/or actuators.

Before now, piezoelectiric beam elements (Im and Atluri 1989, Hwang and Park 1993),
piezoelectric plate elements (Tiersten 1969), isoparametric hexahedron solid elements (Tzou 1990)
and some shell elements (Kim et al. 1997 and Claeyssen et al. 2000) are developed. Those elements
deal with the flat-shell structure or curve-shell structure with discrete sensors and actuators. The
detail survey of piezoelectric elements is given in Benjeddou (2000). Although the general shell
elements (Ahmad et al. 1970, Zhang et al. 1986, Crawley and Luis 1987, Gallayher 1969) have
been studied in detail, the research of piezoelectric shell elements have just started for recent years.
In order to study a paraboloidal antenna in controlling its shape and suppressing its oscillation, this
paper presents an eight-node and forty-DOF isoparametric piezoelectric shell element in which the
shear effects are considered. A finite element formulation is presented for modeling the static
response of laminated shell structure containing distributed piezoelectric materials (PVDF) subjected
to both mechanical and electrical load. The formulation is derived from the variational principle
with consideration for the total potential energy of the structures and the electrical potential energy
of the piezoelectric materials. The model is verified by calculating piezoelectric polymeric PVDF
bimorph beam, and the results obtained agreed with those obtained by theoretical analysis fairly well. 

2. Direct and converse piezoelectric effects

It is assumed that the mechanical and electrical forces in an oscillating piezoelectric structure are
balanced at any given time instantly. Thus, the piezoelectric equations can be decoupled, i.e., a
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quasi-static approximation is used in the analysis. It is also assumed that the temperature variation is
negligible, The linear piezoelectric constitutive equations coupling the elastic and electric field can
be respectively expressed as the direct and the converse piezoelectric equations (Tzou 1990):

{D} = [ e]{ S} + [ ε s]{ E} (1)

{T} = [ CE]{ S} − [e]T{E} (2)

where {D} is the electric displacement vector, [e] is the dielectric permitivity matrix, [e]T is the
transpose of [e], { S} is the strain vector, [ε s] is the dielectric matrix at constant or zero mechanical
strain, [E] is the electric field vector, [T ] is the stress vector, and [CE ] is the elastic matrix for a
constant or zero electric field.

3. A new piezoelectric finite element formulation

In this section, a thin piezoelectric shell element is studied by using a variational method and the
principle of minimum potential energy. The system matrix equation is also formulated by assembling
all of the element matrices.

3.1 Static finite element equations (Bathe 1982, Allik and Hughes 1979, Crawley and
Luis 1987)

Consider a piezoelectric shell element with eight nodes as shown in Fig. 1. Each node has five
DOFs, 3 transitional and 2 rotational. oξηζ is a natural coordinate system, ξ and η are curve
coordinates of middle surface of shell. The surface (ζ =1) is defined as top one; the surface (ζ = −1)
is defined as bottom one. Eight nodes are on the middle surface (Fig. 1). Through each node, a
normal line is drawn, the normal line intersects with the top and bottom surface. The intersection
points are called correspondent nodes. The top and bottom surface are actuator and sensor layer
respectively.

Fig. 1 A piezoelectric shell element
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3.1.1 Coordinate transformation
The nodal coordinates of the element are:

(3)

The normal vector of surface at the ith node is defined as:

(4)

where hi =  is the thickness of the element.
The global coordinates of any point on the normal line of the ith node is:

(i = 1, 2, Î, 8) (5)

The global coordinates of any point in the element is:

(6)

where
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where
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(10)

(11)

Therefore, coordinate transformation matrix between oxyz and  is:

(12)

Transformation matrix of strain tensor can be expressed as:

(13)

where it is assumed that a line segment on the normal line in the local coordinate system doesn’t
both extend and contract.

3.1.2 Displacement model
The other axis vectors which are vertical to  are defined as:
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The displacements of any point on the normal line of the ith node are calculated by motion
formulation.

(17)

where β i and αi are the angle of rotation that  rotates about  and , =  is
rotational vector, ui, vi and wi are the displacements of the ith node,  is the displace-
ment caused by rotation. Therefore, the displacement of any point in the element can be expressed
as:

(18)

where

(19)

The Eq. (18) can be rewritten as:

[ ][ ] (20)

where

[ ] (21)

(22)

where [I ] is three-order unit matrix.

3.1.3 Finite element equations
To derive the finite element equation of each element, the element displacement {u v w} T and

electric potential φs, φa are defined in terms of nodal variables via the shape function matrices [N ]
and [Ns], [ Na ] (Bathe 1982, Ahmad et al. 1970, Crawley and Luis 1987, Gallayher 1969).
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{ } { } (24)

where

{ } =  { } T (25)

{ }  =  { } T (26)

(27)

Although [Ns] and [Na ] are of the same formulation, their domains are not the same. φsi and φai

(i = 1, 2, Î, 8) are nodal electrical potentials of the top and bottom surface respectively. The strain
vector {S} are defined by the first partial derivative of nodal displacement vector¢u v w} T by using
a differential operator matrix:

{ } { } (28)

The stress vector {T} can be calculated by following formulation

{T} = [C ]{ S} (29)

where stiffness matrix [C ] is not of simple style, and can be obtained by coordinate transformation.
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The electric field vector {E} is defined by the negative gradient of the potential:

{ } { } (32)

{ } { } (33)

where

{ } (i = 1, 2, Î, 8) (34)

The finite element equations of the element can be derived by the principle of minimum potential
energy

δ [ (Um + Ua + Us) − (Wm + Wa + Ws)] = 0 (35)
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where subscript m, a, s denotes the main structure, actuator layer and sensor layer respectively. In
Eqs. (36)−(38), {Sm}, { Sa} and {Ss} are similar to {S} of Eq. (28), {Ta} and {Ts} are similar to Eq.
(2), but their domains of integration are not the same; {Tm} is the same as {T}; { Em} and {Dm} are
zero vectors; {Da} and {Ds} are similar to {D} in Eq. (1); Vm, Va and Vs are the domains of
integration of three layers, respectively; {U} is the displacement; {Ps} is the distributed load of the
element; {Pc} is the concentrated load; φa and φs are potentials; σa and σs are the surface charge
density of the top and bottom layers.

Substituting Eqs. (36)−(41) into (35) yields the finite element equation of the element:
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(45)

(46)

(47)

(48)

(49)

(50)

(51)
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(54)

(55)

(56)

where [ ], [ ] and [ ] are of the same formulations, only their domains are not the same;
[ ] and [ ] are of the same formulations, but their domains are not the same; [Cm], [Ca] and
[Cs] are the elastic constant matrices of the main, actuator and sensor, respectively. By the
coordinate transformation and the Gauss’ integration, the integral calculations of the stiffness
matrices can be completed. Because the element is the thin shell, it suffers from the locking
phenomena. In order to overcome the shortcomings, the reduced integration technique (Ahmad et al.
1970, Zienkiewicz et al. 1971) is applied to improve the performance of the element, which can
assure that it is convergent.

It should be noted that [e] and [ε] are not the same as those of plane beams and plate elements. In
plane beam and plate elements, they are constant matrices, but now they are two-order tensors for
the shell element. Calculating them needs tensor transformation. The tensor transformation formula
are as follows
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(60)

The material properties can be found in Tzou and Tseng (1990).

3.2 Condensation of electrical potential matrix (Xie and He 1981)

In the distributed sensing and vibration suppression analysis, the displacements is much more
important than the electrical potential vector in most applications. In order to save computer
memory and improve computation efficiency, the electrical potential vector is usually condensed in
the time domain integration. However, a recovery scheme can be set up if the sensing information is
required. From Eqs. (43)−(44) { }, { } can be calculated as

( ) (61)

( ) (62)

Substituting Eqs. (61), (62) into Eq. (42) yields the finite element equation.

(63)

where
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(66)

In the above equations, {Fe} is the external mechanical excitation and  is the
electrical excitation respectively. In Eq. (62),  is the electrical potential output of the sensor.
Note that  is usually zero in the distributed sensor layer. Thus, the electrical potential output
of the distributed sensor is estimated by

(67)

In the active control application,  is the feedback voltage determined by the control algorithm.
The structural static equation can be written as follows:

[K ]{ δ } = { F } + { Fa} + { Fs} (68)

4. Numerical example

Because there are not analytic and experimental results regarding the piezoelectric shell element in
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the open literature, the piezoelectric bimorph beam (Tzou 1990) is only studied to verify the model.
The structure was made of two layers of piezoelectric polymeric PVDF with opposite polarity.
When an external voltage is applied, the induced internal stresses result in a bending moment which
forces the bimorph beam to bend. The first study was a static deflection case in which a voltage
was applied across the thickness and the beam deflection was studied by using the above model.
The second study was that the distributed voltage along the beam was calculated, when the tip of
the beam has a load. The bimorph beam model was discretised into ten piezoelectric finite elements,
five elements on each layer, one end of the bimorph beam was assumed fixed. The material
properties of PVDF can be found in Tzou and Tseng (1990). The physical dimension and polarity
are illustrated in Fig. 2.

4.1 Static deflection (the converse effect)

A unit voltage (1V) was applied across the thickness and the static deflections of five nodes were
calculated analytically (Hwang and Park 1993) and by the finite element method. The calculated
deflections are compared with those obtained by Tzou (1990) and theoretical solutions in Fig. 3.

Fig. 2 A piezoelectric polymeric PVDF bimorph beam

Fig. 3 Deflection of the piezoelectric PVDF bimorph
beam (voltage input =1V)

Fig. 4 Sensor voltage distribution for the bending
deflection
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From Fig. 3, it can be seen that the present finite element solutions agree with those obtained by
the theoretical analysis fairly well. The present finite element solutions are better than those
obtained by Tzou and Tseng (1990).

4.2 Distributed structural identification (the direct effect)

The piezoelectric bimorph beam was also studied for its voltage response, when an initial tip load
of 0.12 N (which produces the tip deflection of about 1 cm) was performed, and the voltage
response was calculated by using the present finite element method. Because the direct effects of
the bimorph beam does not have theoretical solutions, the results can only compare with those of
Tzou and Tseng (1990) and Hwang and Park (1993) in Fig. 4. From the results obtained by the
present model agreed with those obtained by Tzou and Tseng (1990) and Hwang and Park (1993).

5. The static shape control for the intelligent structure (Shi and Atluri 1990, Chen et
al. 1997)

The load term of Eq. (63) contains three terms, i.e., the mechanical force {Fe}, the electrical
forces  and . When no external electrical field is performed on the sensors,  is zero
vector. By using Eqs. (55) and (65),  can be obtained (Xie and He 1981)

(69)

where ε0 is the absolute permitivity, ha the thickness of the actuator and  the nodal electrical
voltage in the actuator. It is concluded that changing the electrical voltage input to the distributed
actuators can change electrical forces. Further, if mechanical forces are constant, the change of the
electrical voltage input to the actuators will cause the change of the nodal displacements. Therefore,
it is possible to control the shape of the structure with distributed piezoelectric S/As by changing
the electrical voltage input to the actuators.  can be regarded as the control forces.
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Fig. 5 The active control system of an intelligent shell structure
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The basic configuration of an intelligent structure is composed of the main structure sandwiched
between two piezoelectric thin layers. If one of the piezoelectric thin layer is acted as the distributed
sensors and other the actuators, and a feedback control law is implemented by the control system,
then the shape of the structure can be controlled actively.

An active control system of a shell structure with piezoelectric materials, in which the bottom is
acted as distributed sensors and the top as distributed actuators, is shown in Fig. 5.

In the active control, if the mechanical forces are applied to the structure, the sensor outputs
electrical potential expressed by Eq. (67). The electrical potential is then amplified by the feedback
gain through a feedback control circuit and feedback to the actuator as the applied electrical voltage.
Thus,

(70)

where G is a feedback gain. Then the actuators generate counteracting motion to control the shape
of the structure. Now the finite element equation for the shape control of the intelligent structure
becomes

(71)

By solving this equation, the displacements of nodes with active control can be obtained. The
feedback gain G is adjusted until the desired shape of the structure has been reached.

6. Static shape control of a paraboloidal antenna

In this section, as the application of the piezoelectric shell element presented in the above, we
consider the static shape control of the paraboloidal antenna (Fig. 6).

6.1 Model definition

The shell structure (diameter: 1 m; thickness: 2 mm; height: 100 mm; ρ = 2.68 E3; E = 8.0 E9; µ=
0.28) with a distributed piezoelectric PVDF (material property can be found in Hwang and Park
1993, Atluri and Amos 1988) layer (0.5 mm) serving as a distributed actuator on the top surface,
and another PVDF (0.1 mm) on the bottom surface as a distributed sensor, was studied. The
structure was divided into 240 elements, 80 for each layer. The bottom boundary nodes of the
structure are simply supported. In the computation of the integration, when 3× 3 × 3 or higher order
Gauss’ integration is applied to compute the integration, the locking phenomena occurs, but the
2 × 2 × 2 Gauss’ integration is applied, the locking phenomena is improved. Therefore, the reduced
integration technique can assure the shell element is convergence.

6.2 Static shape control

When the external loads Pk (Pk = −1000 N, k = 0, 2, 4, Î, 14) were applied on nodes of which the
cylindrical coordinates are ((0.4, 0.3927× k, 0.064), k = 0, 2, 4, Î, 14), the deflection of the structure
is shown as in Fig. 7.

The surface with solid line denotes original structure, and the surface with dashed line denotes the

Va
e{ } = G φs
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Fig. 6 Finite element modeling of the shell structure
with distributed piezoelectric sensor/actuator

Fig. 7 Static deflection of the structure

Fig. 8 Control effect of G=100 Fig. 9 Control effect of G=500

Fig. 10 Control effect of G=900
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deformed structure. By section 5, when G is equals to 100, 500, 900, respectively, the control
results are as those of Figs. 8−10.

It can be seen that, when G=900, the controlled structure is almost coincident with the original
structure. 

7. Conclusions

A new three-dimensional piezoelectric thin shell element containing an integrated distributed
piezoelectric sensor and actuator is built. All formulations are derived. The present shell element is
applied to not only flat-shell structure but also curve-shell structure. It can be applied to shape,
oscillation and noise controlling of the plate and shell structures. The relevant finite element
program is accomplished. The numerical results of the antenna shows that the shell element
presented in this paper is valid for static shape controlling of the shell structures. It is also applied
to dynamic shape controlling which is our next task.
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