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Abstract. Remeshing strategies are formulated rfadaptive and /adaptive analysis of crack propaga-
tion. The relocation of the nodes, which typifieadaptivity, is a very cheap method to optimise a given
discretisation since the element connectivity remains unaltered. However, the applicability is limited. To
further improve the finite element mesh, a combirédadaptive method is proposed in whith
adaptivity is applied wheneveradaptivity is not capable of further improving the discretisation. Two and
three-dimensional examples are presented. It is shown that-adaptive approach can optimise a
discretisation at minimal computational costs. Further, the combbifieattiaptive approach improves the
performance of a fully -adaptive technique while the numbertefemeshings is reduced compared to a
fully h-adaptive technique.
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1. Introduction

Failure analyses of real-type engineering problems often require that mechanical processes on a
much smaller scale are taken into account. For instance, a proper description of cracking
phenomena is needed to account for a correct simulation of structural failure. Enhanced continuum
material models such as the nonlocal damage model are suited to capture the crack propagation
process in a physically realistic manner (Pijaudier-Cabot arid Bd&8#, Sluys 1992). With an
enhanced continuum material model the cracks are simulated as zones where strains localise, i.e.,
intense straining concentrates in the so-called localisation zones. Numerical solution strategies, such
as the finite element method, provide the tools to carry out the simulations. However, very fine
meshes are needed to capture the localised strain fields correctly. The use of overall fine meshes
leads to a highly inefficient computation, since then also the zones where no cracks occur are
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discretised with small elements. As a consequence, the computational costs in terms of CPU time
and memory requirements rise dramatically, especially in three-dimensional analysis, which precludes
a straighforward application of failure analysis with continuum models to engineering practice.

In order to balance the accuracy requirements and the efficiency requirements of numerical failure
analysis mesh-adaptive techniques can be applied. The aim of using mesh-adaptive techniques is to
optimise the spatial discretisation such that the element size is small enough in the complete
domain. The criterion with which the desired element size is computed is normally provided by the
user, for instance by means of error assessment and a given error tolerance. Several adaptive
technigues have been proposed in the literature, includadtaptivity, p-adaptivity andr-adaptivity
(Zienkiewicz and Zhu 1991, Huer& al. 1999).h-adaptive schemes change the mesh connectivity
constantly through the addition or deletion of elements. The enrichment of the polynomial
interpolation space in certain regions, which charactepsadaptivity, requires special interface
constructions between elements with different interpolation polynomials. The relocation of nodes
with invariant element connectivity as occurs riladaptive schemes prohibits the addition or
deletion of degrees of freedom regardless of an initially too coarse or too dense mesh. kvhereas
adaptive schemes armadaptive schemes are suitable for achievingrescribed accuracyipon
repeated refinement;adaptive schemes can makeagtimal useof a given mesh topology, so that
reasonable solutions can be obtained at minimal computational costs. Indeed, it has been shown that
the computational overhead pfadaptive schemes can be made negligible. More specifically, the
difference in computer costs of analyses with and withadaptivity can be made as low @¢N)
with N the number of elements (Rodriguez-Feraml 1998, Askes and Sluys 2000, Askes 2000).

In contrast, the continuous construction of a completely new mesh as it is doaddptivity can
be a time-consuming task, especially in a three-dimensional analysis.

However, the applicability of-adaptivity is limited since the number of degrees of freedom and
the element connectivity cannot be changed. For a more flexible formulaaoiaptivity andh-
adaptivity can be combined. Indeed, the advantaghsadéptivity and-adaptivity are complementary.
Whereasr-adaptivity is a cheap adaptive technique which can be used to optimise a given finite
element configuratiorh-adaptivity can be applied to construct a new mesh whenadaptivity is
not capable of further improving the mesh. Therefore, a combifiealdaptive approach is more
flexible than a fullyr-adaptive approach, so that the limitations-aflaptivity can be overcome. On
the other hand, a combinddr-adaptive scheme can be more efficient than a fodgdaptive
scheme, since at certain stagesdaptive remeshing can be used instead of the more expansive
adaptive remeshing.

In this study we formulate-adaptive andh/r-adaptive strategies for the analysis of crack
propagation. A heuristic error indicator is derived from an analysis of dispersive waves (Huerta and
Pijaudier-Cabot 1994, Sluyet al. 1995, Askes 2000). With this error indicator remeshing strategies
are elaborated which allow for mesh refinement in the zones of interest, i.e. cracked zones and
zones where cracking is about to occur. Two and three-dimensional examples show the performances
and the limitations of each of the approaches.

2. Nonlocal damage theory

An isotropic damage theory is used in which the stregses  are related to theestrains as
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in which w is the scalar damage aridl contains the elastic stiffness moduli. Damage growth is
determined via an equivalent straig which is defined as (Peerlings al. 1998)
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where k;; denotes the ratio of compressive strength over tensile strength (taken tere 189
while the strain invariantl andJ, are defined as
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with &, & and &5 the principal strains. A damage loading function is definetl=e&,— k where
the history parameter = max(.q ki) and the damage threshotgdis a material parameter. fit= 0
and f =0 then damage grows according to

1
B 1+b(£eq_Ki) (5)

with b a parameter that sets the softening behaviour of the material.

The above model lacks a parameter that setswitith of the zone in which damage grows.
Mathematically, this becomes manifest in the ill-posedness of the mechanical equations in the
softening regime. Numerically, the finite element solutions strongly depend on the applied element
size. To overcome these deficiencies, a nonlocal formalism is taken in that the equivalent strain is
averaged over a representative volume as (Pijaudier-Cabot and B&&ft

w=1

_ y9eEeqrsydV
Ceoqn = —
J’Va(s)dv

(6)

In Eqg. (6), the weighting functiomry sets the representative volume. It is normally taken as a
decaying non-negative function. Here, the error function is takengyasexpt|s| /2I§) wherel; is a

length scale parameter that sets the size of the averaging volume in Eq. (@nfBoal equivalent

strain &4 replaces thiecal equivalent strairg,, in the damage loading function and the damage
evolution function (5). As a consequence, the length $calets the size of the damaging zone, so
that mathematically well-posed differential equations result and mesh-objective results can be
obtained (Pijaudier-Cabot and Bazat®87, Bodé 1994).

3. Determination of the desired element sizes

While a nonlocal framework in the constitutive relations can guarantee mesh-objective solutions
in the whole loading process, mesh-adaptivity is needed to make failure analyses available for
engineering practice. Without adaptive techniques, computational analysis either becomes very
inefficient (when a fine mesh is used in the whole domain) or inaccurate (when a coarse mesh is
used in the whole domain). Adaptive procedures can generally be considered to consist of two
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stages. Firstly, the error of the numerical solution must be assessed, and secondly this information
on the error must be translated into an improved mesh which is expected to meet the error
tolerances. This section deals with error assessment, while the adaption of the finite element mesh is
discussed in the next section.

Following the terminology of Huertat al (1999), we distinguish betweesror estimatorson
one hand anckrror indicators on the other. The former provide astimationof the true error,
which can be derived from mathematical considerations, and are mostly expensive in terms of
computer time. The latter do not approximate the magnitude of the true error but only give an
indication where the error is large and where it is small. Normally, they can be determined directly
from the state variables, which make them cheap to compute (Htetta 999). In either case, the
error quantity must be translated into a pointwise defined desired element size to serve as an input
for the remeshing algorithm.

Below, we use a dispersion analysis to derive ad-hoc formulae to compute a desired element size.
Dispersion properties of a material model set the ability to transform a wave of a certain wave
length into waves with different wave lengths. It has been shown that dispersive properties are
crucial in the regularisation of a material model (Sluys 1992, Huerta and Pijaudier-Cabot 1994).
Furthermore, when dispersion properties of the continuum model are compared to that of the
discretised model, the influence of the discretisation can be assessed (Huerta and Pijaudier-Cabot
1994, Sluyset al. 1995). This latter approach will be followed here to relate the dispersion
properties of the material to a desired size of the applied finite elements.

In an infinitely long one-dimensional medium, a harmonic perturbation of the displacement field
yields the phase velocity as a function of the (assumedly uniform) strain statésee Sluys 1992,

Huerta and Pijaudier-Cabot 1994, Bodé 1994 for details of the derivation). For the nonlocal damage
model applied in this study, the phase velocity is expressed as

2 2,2
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wherec. = JE/P is the one-dimensional tensile wave veloditys Young’s modulusp is the mass
density, ay is the uniform damage state that corresponds tindk is the wave number for which
the phase velocitg is computed. In dynamic analyses, the wave velarityust be real (Sluys
1992, Huerta and Pijaudier-Cabot 1994, Slaysl. 1995, Peerlinget al. 1996). Equivalently, in
static analyses =0 (Bodé 1994, Sluyst al. 1995). As such, aritical wave numbei; can be
derived above which the right hand side in Eq. (7) is positive. Nexxttieal wave lengthA,; can
be derived by using = 27/k (Sluys 1992, Huerta and Pijaudier-Cabot 1994, Peerthgd. 1996)
as

2,
JInb +1Ingy—In(1+b(g—k))

(8)

crit —

where Eq. (5) has been substituted. This critical wave length is the maximum wave length that can
still propagate through the damaged zone (Sluys 1992, Stugk 1995). It sets the width of the

zone over which damage can grow (Sluys 1992, Sitiyd. 1995, Peerlingst al. 1996). Thus, Eq.

(8) relates the width of the localisation zone to the strain level. Note that the critical wave length
Acrit IS directly proportional to the internal length sdale
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Eqg. (8) gives the critical wave length for antinuous medium, i.e. prior to finite element
discretisation. In a similar manner, an expression for the critical wave lengthdiscratised
medium can be found (Sluyt al. 1995). This latter expression relates the critical wave length not
only to the strain level, but also to the applied element size. An upper bound on the deviation
between approximate (numerical) critical wave length and the exact (continous) critical wave length
then leads to an upper bound for the element size. For instance, for a gradient-dependent plastic
material it has been derived that 12 linear finite elements are needed to capture the localisation zone
if a 10% mismatch between discrete critical wave length and continuous critical wave length is
accepted (Sluygt al 1995). As such, dispersion analysis can be used to derive an error measure
which in the terminology of Huertet al. (1999) is denoted agrror indicator. An advantage is that
the error indicator only depends on the state variables and the discretisation measures, which are
readily available. Thus, the error indicator is cheap to compute. On the other hand, when a different
material model or different damage loading function is used, the behaviour of the error indicator
changes.

Numerical experimentation confirms the above reasoning. One-dimensional simulations of strain-
softening problems have shown that a certain number of elements over the localisation zone is
needed to obtain a reasonable approximation of the localisation zone. For the nonlocal damage
model employed in this study, 10-15 elements over the localisation zone seems to give a satisfactory
description of the damaging zone (Pijaudier-Cabot and Bax8&7, Bodé 1994, Askes and Sluys
2000).

Combining the analytical considerations of dispersion analysis with the numerical experimentation,
we use the expression of the critical wave length Eq. (8) to determine an element size that is
deemed suitable to capture the damage and strain fields adequately. This element size will be
denoted thalesired element size the sequel. Simple formulae are postulated that relate the desired
element size to the strain level, with the requirement that the desired element size remains well
below the critical wave length, so that it is guaranteed that a large enough number of elements is
used inside the localisation zone. For the elements in which damage takes place an expression that
meets this requirement reads

desired element sizeks — (hy — hy))w 9)

whereh; is the desired element size far=0 or £, =k, andh, is the desired element size for

w=1. By setting values fdn, andh,, implicitly an error tolerance is provided. In Fig. 1 the critical
wave length and the desired element size (both normalised with respect to the internal length scale
I are plotted as a function of the strain level, for a range of valuds fordh,. In this figure,k;
=3.5x10* andb = 20000. For the chosen rangehefandh, the desired element sizes are smaller

than the critical wave length.

While the above arguments give a desired element size for inelastic zones, a sufficiently fine

mesh is equally important in the elastic zones. Too large elements in the elastic regions can
significantly delay or disturb the crack initiation and crack propagation processes ¢Askek099,
Askes and Sluys 1999, Askes and Sluys 2000). Therefore, it should be ensured that element sizes
are small enough in regions where cracking is about to occur. To this end, a desired size is also
defined for elements that are still undamaged. Obviously, the desired element size should be a
continuous function of the strain level. Similar to Eqg. (9) we define for the elastic regime
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Fig. 1 Normalised critical wave length (solid) and normalised desired element steé forl (dashed)h./I.
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in which hy is the desired size for elements where no strains are present. Tha Jatio denotes

how close an element is to damage initiation (Askeal. 1999, Askes and Sluys 2000), while the
powern allows for a progressive decrease of the desired element size in the elastic regime (Askes
and Sluys 2000). Note that for damage initiation, &g=k; , Egs. (9) and (10) yield the same
desired element size. In Fig. 2 the desired element size as a function of the strain level has been
plotted forho/l. = 2, /I = 1, hy /1, = 0.25 andnh = 3. Around the stage of damage initiation the
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desired element size changes most rapidly, while for very small strains and very large strains the
desired element size does not change much. For very large strains, this means thdditititeal
refinement is performed once a damage zone has been formed.

4. Remeshing strategy

The desired element sizes, determined in the previous section, are used as input in the remeshing
stage. Different remeshing strategies are formulated-&olaptive remeshing and for combin#d
adaptive remeshing. For tmeadaptive framework an Arbitrary Lagrangian-Eulerian (Hugdteal
1981, Donéa 1983, Huerta and Casadei 1994) context is taken.

4.1 r-adaptive remeshing

In anr-adaptive context, nodes can be relocated so that element sizes can be adjusted in the entire
domain. However, no degrees of freedom can be added. The optimal mesh is therefore obtained by
equidistributing the error quantity, that is, by requiring that the product of error and element size
yields the same value for each element. Since for linear elements the error is inversely proportional
to the desired element sibg.s (Diez and Huerta 1999), the equidistribution condition is written as
(Bodé 1994, Pijaudier-Cabet al 1995, Askes and Sluys 2000, Askes 2000)

od1 ox0O
X haesdX ()

wherex are the spatial coordinates of the nodes, i.e., the unknowns that have to be solved for, and
X is a reference coordinate system associated with the mesh, i.e., each node has a unigque and
invariant reference coordinaje(Hugheset al 1981, Donéa 1983, Huerta and Casadei 1994).

Eqg. (11) can be repeated for each spatial coordinate. Thus, a system of differential equations is
found that is nonlinear sindey.s = hgedX). Boundary conditions are imposed such that boundary
nodes can only movalong the boundary (Huerta and Casadei 1994). Directly applying a Galerkin
variational principle to Eq. (11) yields a system of algebraic equations as

Ax=b (12)

where x is the discretised unknowns, i.e. the spatial coordinates of eactAnode, s given by

oH' 1 oH
z d E hdes df

E=X1, %0, %3

A= Iy dv (13)

and b contains the known componentsAof that follow from the boundary conditions. The matrix
H contains the shape functions in fieoordinate system, that ikl should be invariant and does
not change after remeshing is carried out (Askes and Sluys 2000). Eq. (12) will be referred to as the
elliptic equidistribution equatiansince it ensues from the elliptic Eq. (11). Since Eq. (11) is
nonlinear, Eg. (12) must be solved iteratively. With multiple matrix inversions this form a major
drawback, therefore it has been proposed to modify the right-hand-side of Eq. (11) as (Bodé 1994,
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Bodéet al. 1995, Askes and Sluys 2000, Askes 2000)
90l oxg_ ox
OxlhedxU ot
where a pseudo-tim& has been introduced that has no physical meaning but is only used for

computational convenience. Eq. (14) can be solved by means of relaxation. Discretisation yields
(Askes and Sluys 2000, Askes 2000)

(14)

ox
—Ax+b = Q=
Axth = Q% (15)
whereA ando are the same as in Eq. (12) and with
Q=J, H'HdV (16)

Eqg. (15) can be solved by means of a Forward Euler scheme, e.g. When@natrix is lumped, no
matrix inversion has to be carried out, so that the solving of Eq. (15) is very efficient compared to
the solving of Eq. (12). Eq. (15) is denoted tfaabolic equidistribution equatioras it follows
from the parabolic Eq. (14). It has been argued that taking the pseudo-tinﬁrstéé leads to
stable solutions with the Forward Euler scheme (Askes and Sluys 2000).

After the new nodal coordinates have been found, the stresses, strains and internal variables are
transported to the new mesh using a Godunov algorithm (Heieela1995, Rodrigue-Ferragt al.
1998, Aske=t al. 1998, Aske=t al 1999). For elements with one integration point, the value of a
state variable component after remeshifi§)’ is related to the value before remeshipllf via

N
new _ _old 1 2 old old .
=0y ;FS% — NagH(1-sign(Fy)) (17)
whereV® is the element voluméys is the number of sides of the elemeqﬁl;jj is the valu¢°'8f

in the element adjacent to sideand the fluxFs through sides is given by
Fe =, —n'Axds (18)

with n the normal to side andAXx the mesh incremental displacements, i.e. the mesh displacements
that follow from Eq. (12) or Eq. (15). Extenstion towards elements with multiple integration points
is straightforward (Huertet al 1995, Rodriguez-Ferraat al 1998, Aske®t al. 1998, Askest al

1999). Note that the computer costs involved with Eq. (17)@id), which also holds for-
adaptive remeshing with the parabolic equidistribution Eq. (15) (Askes and Sluys 2000).

4.2 hir-adaptive remeshing

One of the disadvantages ofadaptive remeshing is that the number of degrees of freedom
remains fixed to the initial number. When this initial number is too low to capture all the
characteristics of the simulation propemadaptivity will not provide accurate solutions. Similarly,
the element connectivity is invariant iradaptivity. If remeshing leads to badly shaped elements,
then the accuracy may drop. As an enhancement to therfatlgptive approach, a combination of
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h-adaptivity andr-adaptivity is proposed. Heresadaptivity is used as the default remeshing tool,
while h-adaptivity is applied wheneveradaptivity is not suitable of further improvement of the
mesh.

To assess the remeshing capacities-aflaptivity objectively, the concepts of Refinement Ratio
and Aspect Ratio are introduced as

_ current element size
desired element size

(19)

and

AR = longest side of triangle
shortest height of triangle

(20)

respectively. Obviously, values 8R and AR close to one are optimal, while larger values indicate
a need for mesh adaption. The following algorithm is used in this study:

1. Anr-adaptive step is performed.

2. If the resulting mesh leads to too high values A® or RR then ther-adapted mesh is

discarded anti-adaptivity is carried out.

Performing anr-adaptive step while it is unknown whether this will lead to an acceptable
discretisation seems a waste of computer time. However, since the computer costs associated with
adaptivity are as low a8(N) this is acceptable.

The remeshing strategy for combin@d-adaptivity now splits into two strategies, hamely one for
h-adaptivity and one for-adaptivity. Forh-adaptivity the computed desired element sizes are used
directly as input for the mesh generator. Thus, the quality of the mesh generator determines the
effectivity of h-adaptivity. After a new mesh has been constructed, the state variables are projected
from the old mesh onto the new mesh by means of the interpolation algorithm proposed by Ortiz
and Quigley (1991). For each integration point in the new mesh the corresponding element in the
old mesh must be found. Sophisticated search algorithms are needed to limit the computer time that
is necessary for this projection of the state variables, while a computational eftofiNoteems
theoretically impossible.

For ther-adaptive steps in the combined approach the algorithm of Section 4.1 is taken as the
starting point. However, Egs. (11) and (14) cannot be applied straightforwardly. The reason is that
the reference coordinatgs are fixed on the mesh and should be invariant during the analysis.
However, when arn-adaptive step is performed, the reference coordinates lose sense. It would be
preferable to express Eqgs. (11) and (14) in terms otdhent configuration, rather than terms of
the referenceor initial configuration. Therefore, the derivatives with respecyt &re rewritten into
derivatives with respect to thmurrent spatial coordinates of the nodes using the chain rule (Askes
and Rodriguez-Ferran 2001, Askes 2000). For instance, Eg. (11) then becomes

d g 1 ox axcurwxcur -
dxcur desdxcur dX D dX

The ratio dx,,/dx is non-zero and it is proportional to the current element size (Askes and
Rodriguez-Ferran 2001). Therefore, Eq. (21) can be elaborated as

0 (21)

0 0
9 RRIX 0= 0 (22)
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Fig. 3 Beam with eccentric noteproblem statement

Eqg. (22) only contains quantities associated withctiveent configuration. Thus, generality is preserved.
The parabolic equidistribution Eq. (14) can be transformed in a similar manner.

5. Examples

Two examples are presented here. The first concerns with the remeshing capacigaspdif/ity,
while the second example deals wlith-adaptivity.

5.1 Dynamically loaded beam with eccentric notch

A three-dimensional dynamically loaded beam is studied. An eccentric notch is present, which
drives the formation of a cracked zone that starts at the notch tip and propagates towards the top of
the specimen. The geometry and loading conditions are given in Fig. 3. The imposed velocity
increases linearly frof¥ =0 mm/s at time0 s toV =2 mm/s at time=2.10* s, after which it
remains constant. The material parameters are tak&wv 88000 N/mm, v=0.2, p=2.4-10° Ns/

mm’, .=2 mm, k;=3.5-10* andb=20000. Two meshes have been used, one consisting of 9393
linear tetrahedrons and one consisting of 1503 linear tetrahedrons. Both meshes are non-uniform in
the sense that the mesh density is larger in the area around the notch. The finer mesh is only used
in a non-adaptive analysis. With the coarser mesh a non-adaptive analysis as nalaptve
analyses have been carried out. Forrtheaptive analyses the valuggh; andhy/h, are taken as 2

and 5, respectively Equidistribution is carried out with the elliptic equation as well as with the
parabolic equation. For the parabolic equation the pseudo-timAst€p05.

Fig. 4 shows the damage contours for the four analyses at £rh@3 s. The fine non-adaptive
mesh gives a damage pattern where the crack propagates from the notch upwards with a specific
inclination angle. When the coarse non-adaptive mesh is considered, it can be seen that the
inclination angle does not correspond to that of the fine non-adaptive mesh. Also, the damage

'Eq. (11) can be multiplied with,. Then, the same spatial coordinates are found for the nodes, while the
equidistributed error quantity is scaled with a fadigrin other wordsy-adaptive remeshing is a relative
process. Therefore, instead of prescribing valueshdfoh, andh,, it is equality possible to prescribe the
ratioshy/hy andhy/hg.
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Fig. 4 Beam with eccentric notetlamage contours for fine non-adaptive mesh (upper left), coarse non-
adaptive mesh (upper righthadaptive mesh with elliptic equidistribution (lower left) anddaptive
mesh with parabolic equidistribution (lower right)

values inside the cracked zone are not predicted correctly. On the other hand, when the same coarse
mesh is used as the initial mesh inraadaptive context, much better results are obtained. For the
adaptive analyses, both the inclination angle and the maximum damage values inside the cracked
zone are in good agreement with the fine non-adaptive mesh. Thus, by adjusting the nodal
coordinates, the accuracy of a fine mesh can be attained by a much coarser mesh.

A next observation is that the performance of the two equidistribution equations is similar.
Although minor differences are present, both capture the inclination angle and the peak damage
values properly.

However, as can be seen from the adaptive meshes in Fig. 4, not much further improvement of
the discretisation is possible. The number of available elements precludes that newly appearing
cracks could be described adequately. Moreover, the aspect ratios of the elements above the cracked
zone have become very large, which can be a source of inaccuracy. When further mesh refinement

180 mm l20 5 29 180 mm
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Fig. 5 Single-edge-notched begmnoblem statement

80 mm
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is desired, a new mesh has to be constructed.
5.2 Single-edge-notched beam

In the second example we study a single-edge-notched beam. The beam is subjected to a static
four-point loading, which results in the formation of a curved crack that starts at the notch tip.
Furthermore, a secondary, bending crack may appear opposite of the centremost support. The
material parameters are takenEss 30000 N/mmi, v=0.2,Ic=1 mm, k; = 1.2-10% and b = 20000.

The load platens are modelled with a 10 times higher Young’s modulus. An indirect displacement
control procedure is used to apply the load (de Borst 1987), whereby the crack mouth sliding
displacement (CMSD) is used as the control parameter. The CMSD is defined as the difference in
vertical displacement between the two top nodes at either side of the notch. Two non-adaptive
meshes have been used, one consisting of 11419 elements and one of 1761 elements. The finer
mesh is selected such that it has an element size of 1.5 mm in the central region. Furthermore, a

01 O3 o5 07 OB

@1 03 05 OF oab

Fig. 6 Single-edge-notched beaiamage contours for CMSD =0.04 mm, fine non-adaptive mesh, coarse
non-adaptive meslti-adaptive mesh andr-adaptive mesh (top to bottom)
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combinedh/r-adaptive analysis has also been carried out whereby the coarse non-adaptive mesh is
taken as the initial mesh. The desired element size is computetipwith mm, h; =3 mm andh,

=1 mm. Anh-adaptive step is carried out whenever the refinement ratio of an element exceeds the
value 1.5 or when the aspect ratio exceeds the value 4. As a comparison,reigtaptive analysis

is carried out where remeshing is performed WRE» 1.5.

Fig. 6 shows the damage contours for the four analyses for CMSD = 0.04 mm (note that meshes
are not shown here). A first observation is the large differences in response between the two non-
adaptive meshes. Whereas the finer mesh gives a crack pattern that corresponds well to known
results from literature (Peerlingst al. 1998), the coarser mesh predicts a completely different
failure mode. Due to the coarse discretisation at the notch tip, the stress singularity cannot be
captured properly and the dominant, curved crack cannot develop. Alternatively, two bending cracks
appear at either side of the beam. Obviously, this is due to the incapabilities of the mesh to describe
the correct failure pattern.

Fig. 7 Single-edge-notched besdinal meshes, zoom of central mesh sectionhadaptive analysis (left)
andh/r-adaptive analysis (right)
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Fig. 8 Single-edge-notched beatamage profiles for CMSD = 0.04 mm along the ligesx-160 (left) and
y =20 (right), fine Lagrangian analysis (solidi:adaptive analysis (dotted) atdr-adaptive analysis
(dashed)
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The situation is different for the two adaptive analyses. In Fig. 7 a zoom of the central mesh
section is given for the final configuration. For these two cases, the crack pattern is predicted
correctly, while also the damage values inside the cracked zone correspond well with those of the
fine non-adaptive mesh. Fig. 8 offers a closer inspection of the crack patterns, namely the damage
profiles along the liney =x-160 andy =20 for the fine non-adaptive mesh and the two adaptive
meshes. Although both adaptive meshes overestimate the crack width somewhat, the basic trends
are captured reasonably well.

Fig. 9 shows the number of elements during the analysis for the two adaptive computations.
Horizontal line segments denote that no remeshing is perfoimadiaptive test) or thatadaptive
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Fig. 9 Single-edge-notched beanumber of elements during the analysigdaptive mesh (dashed) anfd-
adaptive mesh (solid)
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remeshing is carried out/(-adaptive test). The number bfadaptive remeshings is 69 in the
adaptive test and 58 in timér-adaptive test. From Fig. 9 it can be seen that in the middle stages of
the computation the number dfremeshings is approximately the same for both tests. This
corresponds to the stage where the cracks propagate relatively fastr-abaptivity is less suited

for remeshing purposes. In the final stages of the computation, when little additional cracking takes
place,r-adaptivity is better suited to optimise the mesh. In Fig. 10 the CPU time per remeshing step
is plotted as a function of the number of elementsrfadaptive steps anickadaptive steps in the
combined h/r-adaptive analysis. A least squares approximation has been used to fit a parabolic
curve through the data. It can be seen that fohthdaptive steps the CPU time per step increases
more than linearly with the number of elements. On the other hand, foraiti@ptive steps the

CPU time is virtually a linear function of the number of elements. Fig. 10 confirmg {(hg
computer costs af-adaptivity as compared to the higher costs involved kaildaptivity.

6. Conclusions

Remeshing strategies are formulated and tested for the analysis of crack propagation. The
nonlocal damage model is used to simulate the softening material behaviour. Based on the
dispersive properties of the material, heuristic formulae are proposed to compute the desired element
size as a function of the strain level. The desired element size is used as inpatdptive
remeshing and for a combination redaptivity with h-adaptivity. r-adaptivity is very cheap, while
h-adaptivity is more flexible. Examples are presented which showrthdaptivity is able to
optimise a given mesh topology. The accuracy of a fine non-adaptive mesh can be approximated by
a simple adjustment of the nodal coordinates. However, the applicabilitpdzptivity is limited.

The combinedhr-adaptive approach is more flexible than a fullgdaptive approach in the sense

that the number of elements can be changed during the analysis. On the other hand, the combined
h/r-adaptive approach reduces the numbemh-oémeshings needed, so that computer costs are
limited.
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