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Abstract. Remeshing strategies are formulated for r-adaptive and h/r-adaptive analysis of crack propaga-
tion. The relocation of the nodes, which typifies r-adaptivity, is a very cheap method to optimise a given
discretisation since the element connectivity remains unaltered. However, the applicability is limited. To
further improve the finite element mesh, a combined h/r-adaptive method is proposed in which h-
adaptivity is applied whenever r-adaptivity is not capable of further improving the discretisation. Two and
three-dimensional examples are presented. It is shown that the r-adaptive approach can optimise a
discretisation at minimal computational costs. Further, the combined h/r-adaptive approach improves the
performance of a fully r-adaptive technique while the number of h-remeshings is reduced compared to a
fully h-adaptive technique.
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1. Introduction

Failure analyses of real-type engineering problems often require that mechanical processes on a
much smaller scale are taken into account. For instance, a proper description of cracking
phenomena is needed to account for a correct simulation of structural failure. Enhanced continuum
material models such as the nonlocal damage model are suited to capture the crack propagation
process in a physically realistic manner (Pijaudier-Cabot and Bazant� 1987, Sluys 1992). With an
enhanced continuum material model the cracks are simulated as zones where strains localise, i.e.,
intense straining concentrates in the so-called localisation zones. Numerical solution strategies, such
as the finite element method, provide the tools to carry out the simulations. However, very fine
meshes are needed to capture the localised strain fields correctly. The use of overall fine meshes
leads to a highly inefficient computation, since then also the zones where no cracks occur are
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discretised with small elements. As a consequence, the computational costs in terms of CPU time
and memory requirements rise dramatically, especially in three-dimensional analysis, which precludes
a straighforward application of failure analysis with continuum models to engineering practice.

In order to balance the accuracy requirements and the efficiency requirements of numerical failure
analysis mesh-adaptive techniques can be applied. The aim of using mesh-adaptive techniques is to
optimise the spatial discretisation such that the element size is small enough in the complete
domain. The criterion with which the desired element size is computed is normally provided by the
user, for instance by means of error assessment and a given error tolerance. Several adaptive
techniques have been proposed in the literature, including h-adaptivity, p-adaptivity and r-adaptivity
(Zienkiewicz and Zhu 1991, Huerta et al. 1999). h-adaptive schemes change the mesh connectivity
constantly through the addition or deletion of elements. The enrichment of the polynomial
interpolation space in certain regions, which characterises p-adaptivity, requires special interface
constructions between elements with different interpolation polynomials. The relocation of nodes
with invariant element connectivity as occurs in r-adaptive schemes prohibits the addition or
deletion of degrees of freedom regardless of an initially too coarse or too dense mesh. Whereas h-
adaptive schemes and p-adaptive schemes are suitable for achieving a prescribed accuracy upon
repeated refinement, r-adaptive schemes can make an optimal use of a given mesh topology, so that
reasonable solutions can be obtained at minimal computational costs. Indeed, it has been shown that
the computational overhead of r-adaptive schemes can be made negligible. More specifically, the
difference in computer costs of analyses with and without r-adaptivity can be made as low as 2 (N)
with N the number of elements (Rodríguez-Ferran et al. 1998, Askes and Sluys 2000, Askes 2000).
In contrast, the continuous construction of a completely new mesh as it is done in h-adaptivity can
be a time-consuming task, especially in a three-dimensional analysis.

However, the applicability of r-adaptivity is limited since the number of degrees of freedom and
the element connectivity cannot be changed. For a more flexible formulation, r-adaptivity and h-
adaptivity can be combined. Indeed, the advantages of h-adaptivity and r-adaptivity are complementary.
Whereas r-adaptivity is a cheap adaptive technique which can be used to optimise a given finite
element configuration, h-adaptivity can be applied to construct a new mesh whenever r-adaptivity is
not capable of further improving the mesh. Therefore, a combined h/r-adaptive approach is more
flexible than a fully r-adaptive approach, so that the limitations of r-adaptivity can be overcome. On
the other hand, a combined h/r-adaptive scheme can be more efficient than a fully h-adaptive
scheme, since at certain stages r-adaptive remeshing can be used instead of the more expensive h-
adaptive remeshing.

In this study we formulate r-adaptive and h/r-adaptive strategies for the analysis of crack
propagation. A heuristic error indicator is derived from an analysis of dispersive waves (Huerta and
Pijaudier-Cabot 1994, Sluys et al. 1995, Askes 2000). With this error indicator remeshing strategies
are elaborated which allow for mesh refinement in the zones of interest, i.e. cracked zones and
zones where cracking is about to occur. Two and three-dimensional examples show the performances
and the limitations of each of the approaches.

2. Nonlocal damage theory

An isotropic damage theory is used in which the stresses  are related to the strains  asσ ε
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(1)

in which ω is the scalar damage and  contains the elastic stiffness moduli. Damage growth is
determined via an equivalent strain εeq which is defined as (Peerlings et al. 1998)

εeq = (2)

where kct denotes the ratio of compressive strength over tensile strength (taken here as kct = 10)
while the strain invariants I1 and J2 are defined as

I1 = ε1 + ε2 + ε3 (3)

J2 = (ε1 − ε2)
2 + (ε2 − ε3)

2 + (ε3 − ε1)
2 (4)

with ε1, ε2 and ε3 the principal strains. A damage loading function is defined as f = εeq − κ where
the history parameter κ = max(εeq, κi) and the damage threshold κi is a material parameter. If f = 0
and = 0 then damage grows according to

ω = 1− (5)

with b a parameter that sets the softening behaviour of the material.
The above model lacks a parameter that sets the width of the zone in which damage grows.

Mathematically, this becomes manifest in the ill-posedness of the mechanical equations in the
softening regime. Numerically, the finite element solutions strongly depend on the applied element
size. To overcome these deficiencies, a nonlocal formalism is taken in that the equivalent strain is
averaged over a representative volume as (Pijaudier-Cabot and Bazant� 1987)

(6)

In Eq. (6), the weighting function α(s) sets the representative volume. It is normally taken as a
decaying non-negative function. Here, the error function is taken as α (s) = exp(−| s | /2 ) where lc is a
length scale parameter that sets the size of the averaging volume in Eq. (6). The nonlocal equivalent
strain  replaces the local equivalent strain  in the damage loading function and the damage
evolution function (5). As a consequence, the length scale lc sets the size of the damaging zone, so
that mathematically well-posed differential equations result and mesh-objective results can be
obtained (Pijaudier-Cabot and Bazant� 1987, Bodé 1994).

3. Determination of the desired element sizes

While a nonlocal framework in the constitutive relations can guarantee mesh-objective solutions
in the whole loading process, mesh-adaptivity is needed to make failure analyses available for
engineering practice. Without adaptive techniques, computational analysis either becomes very
inefficient (when a fine mesh is used in the whole domain) or inaccurate (when a coarse mesh is
used in the whole domain). Adaptive procedures can generally be considered to consist of two
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stages. Firstly, the error of the numerical solution must be assessed, and secondly this information
on the error must be translated into an improved mesh which is expected to meet the error
tolerances. This section deals with error assessment, while the adaption of the finite element mesh is
discussed in the next section.

Following the terminology of Huerta et al. (1999), we distinguish between error estimators on
one hand and error indicators on the other. The former provide an estimation of the true error,
which can be derived from mathematical considerations, and are mostly expensive in terms of
computer time. The latter do not approximate the magnitude of the true error but only give an
indication where the error is large and where it is small. Normally, they can be determined directly
from the state variables, which make them cheap to compute (Huerta et al. 1999). In either case, the
error quantity must be translated into a pointwise defined desired element size to serve as an input
for the remeshing algorithm.

Below, we use a dispersion analysis to derive ad-hoc formulae to compute a desired element size.
Dispersion properties of a material model set the ability to transform a wave of a certain wave
length into waves with different wave lengths. It has been shown that dispersive properties are
crucial in the regularisation of a material model (Sluys 1992, Huerta and Pijaudier-Cabot 1994).
Furthermore, when dispersion properties of the continuum model are compared to that of the
discretised model, the influence of the discretisation can be assessed (Huerta and Pijaudier-Cabot
1994, Sluys et al. 1995). This latter approach will be followed here to relate the dispersion
properties of the material to a desired size of the applied finite elements.

In an infinitely long one-dimensional medium, a harmonic perturbation of the displacement field
yields the phase velocity c as a function of the (assumedly uniform) strain state ε0 (see Sluys 1992,
Huerta and Pijaudier-Cabot 1994, Bodé 1994 for details of the derivation). For the nonlocal damage
model applied in this study, the phase velocity is expressed as

(7)

where ce =  is the one-dimensional tensile wave velocity, E is Young’s modulus, ρ is the mass
density, ω0 is the uniform damage state that corresponds to ε0 and k is the wave number for which
the phase velocity c is computed. In dynamic analyses, the wave velocity c must be real (Sluys
1992, Huerta and Pijaudier-Cabot 1994, Sluys et al. 1995, Peerlings et al. 1996). Equivalently, in
static analyses c = 0 (Bodé 1994, Sluys et al. 1995). As such, a critical wave number kcrit can be
derived above which the right hand side in Eq. (7) is positive. Next, a critical wave length λcrit can
be derived by using λ = 2π /k (Sluys 1992, Huerta and Pijaudier-Cabot 1994, Peerlings et al. 1996)
as

(8)

where Eq. (5) has been substituted. This critical wave length is the maximum wave length that can
still propagate through the damaged zone (Sluys 1992, Sluys et al. 1995). It sets the width of the
zone over which damage can grow (Sluys 1992, Sluys et al. 1995, Peerlings et al. 1996). Thus, Eq.
(8) relates the width of the localisation zone to the strain level. Note that the critical wave length
λcrit is directly proportional to the internal length scale lc.
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Eq. (8) gives the critical wave length for a continuous medium, i.e. prior to finite element
discretisation. In a similar manner, an expression for the critical wave length in a discretised
medium can be found (Sluys et al. 1995). This latter expression relates the critical wave length not
only to the strain level, but also to the applied element size. An upper bound on the deviation
between approximate (numerical) critical wave length and the exact (continous) critical wave length
then leads to an upper bound for the element size. For instance, for a gradient-dependent plastic
material it has been derived that 12 linear finite elements are needed to capture the localisation zone
if a 10% mismatch between discrete critical wave length and continuous critical wave length is
accepted (Sluys et al. 1995). As such, dispersion analysis can be used to derive an error measure
which in the terminology of Huerta et al. (1999) is denoted an error indicator. An advantage is that
the error indicator only depends on the state variables and the discretisation measures, which are
readily available. Thus, the error indicator is cheap to compute. On the other hand, when a different
material model or different damage loading function is used, the behaviour of the error indicator
changes. 

Numerical experimentation confirms the above reasoning. One-dimensional simulations of strain-
softening problems have shown that a certain number of elements over the localisation zone is
needed to obtain a reasonable approximation of the localisation zone. For the nonlocal damage
model employed in this study, 10-15 elements over the localisation zone seems to give a satisfactory
description of the damaging zone (Pijaudier-Cabot and Bazant� 1987, Bodé 1994, Askes and Sluys
2000).

Combining the analytical considerations of dispersion analysis with the numerical experimentation,
we use the expression of the critical wave length Eq. (8) to determine an element size that is
deemed suitable to capture the damage and strain fields adequately. This element size will be
denoted the desired element size in the sequel. Simple formulae are postulated that relate the desired
element size to the strain level, with the requirement that the desired element size remains well
below the critical wave length, so that it is guaranteed that a large enough number of elements is
used inside the localisation zone. For the elements in which damage takes place an expression that
meets this requirement reads

desired element size = h1 − (h1 − h2)ω (9)

where h1 is the desired element size for ω = 0 or =κi, and h2 is the desired element size for
ω = 1. By setting values for h1 and h2, implicitly an error tolerance is provided. In Fig. 1 the critical
wave length and the desired element size (both normalised with respect to the internal length scale
lc) are plotted as a function of the strain level, for a range of values for h1 and h2. In this figure, κi

= 3.5× 10− 4 and b = 20000. For the chosen range of h1 and h2 the desired element sizes are smaller
than the critical wave length.

While the above arguments give a desired element size for inelastic zones, a sufficiently fine
mesh is equally important in the elastic zones. Too large elements in the elastic regions can
significantly delay or disturb the crack initiation and crack propagation processes (Askes et al. 1999,
Askes and Sluys 1999, Askes and Sluys 2000). Therefore, it should be ensured that element sizes
are small enough in regions where cracking is about to occur. To this end, a desired size is also
defined for elements that are still undamaged. Obviously, the desired element size should be a
continuous function of the strain level. Similar to Eq. (9) we define for the elastic regime

ε eq



480 H. Askes, L.J. Sluys and B.B.C. de Jong

desired element size = h0 − (h0 − h1) (10)

in which h0 is the desired size for elements where no strains are present. The ratio  denotes
how close an element is to damage initiation (Askes et al. 1999, Askes and Sluys 2000), while the
power n allows for a progressive decrease of the desired element size in the elastic regime (Askes
and Sluys 2000). Note that for damage initiation, i.e. , Eqs. (9) and (10) yield the same
desired element size. In Fig. 2 the desired element size as a function of the strain level has been
plotted for h0 /lc = 2, h1 /lc = 1, h2 / lc = 0.25 and n = 3. Around the stage of damage initiation the

εeq

κ i
------ 

 
n

εeq/κi

εeq=κ i

Fig. 1 Normalised critical wave length (solid) and normalised desired element size for h2/lc = 1 (dashed), h2/lc
= 0.5 (dotted) and h2/lc = 0.25 (dot-dashed), h1/h2 = 3 for all cases

Fig. 2 Desired element size normalised with respect to internal length scale versus strain level−elastic and
inelastic regime
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desired element size changes most rapidly, while for very small strains and very large strains the
desired element size does not change much. For very large strains, this means that little additional
refinement is performed once a damage zone has been formed. 

4. Remeshing strategy

The desired element sizes, determined in the previous section, are used as input in the remeshing
stage. Different remeshing strategies are formulated for r-adaptive remeshing and for combined h/r-
adaptive remeshing. For the r-adaptive framework an Arbitrary Lagrangian-Eulerian (Hughes et al.
1981, Donéa 1983, Huerta and Casadei 1994) context is taken. 

4.1 r-adaptive remeshing

In an r-adaptive context, nodes can be relocated so that element sizes can be adjusted in the entire
domain. However, no degrees of freedom can be added. The optimal mesh is therefore obtained by
equidistributing the error quantity, that is, by requiring that the product of error and element size
yields the same value for each element. Since for linear elements the error is inversely proportional
to the desired element size hdes (Díez and Huerta 1999), the equidistribution condition is written as
(Bodé 1994, Pijaudier-Cabot et al. 1995, Askes and Sluys 2000, Askes 2000)

(11)

where x are the spatial coordinates of the nodes, i.e., the unknowns that have to be solved for, and
χ is a reference coordinate system associated with the mesh, i.e., each node has a unique and
invariant reference coordinate χ (Hughes et al. 1981, Donéa 1983, Huerta and Casadei 1994). 

Eq. (11) can be repeated for each spatial coordinate. Thus, a system of differential equations is
found that is nonlinear since hdes = hdes(x). Boundary conditions are imposed such that boundary
nodes can only move along the boundary (Huerta and Casadei 1994). Directly applying a Galerkin
variational principle to Eq. (11) yields a system of algebraic equations as

(12)

where  is the discretised unknowns, i.e. the spatial coordinates of each node,  is given by

(13)

and  contains the known components of  that follow from the boundary conditions. The matrix
 contains the shape functions in the χ-coordinate system, that is,  should be invariant and does

not change after remeshing is carried out (Askes and Sluys 2000). Eq. (12) will be referred to as the
elliptic equidistribution equation, since it ensues from the elliptic Eq. (11). Since Eq. (11) is
nonlinear, Eq. (12) must be solved iteratively. With multiple matrix inversions this form a major
drawback, therefore it has been proposed to modify the right-hand-side of Eq. (11) as (Bodé 1994,

∂
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Bodé et al. 1995, Askes and Sluys 2000, Askes 2000)

(14)

where a pseudo-time τ has been introduced that has no physical meaning but is only used for
computational convenience. Eq. (14) can be solved by means of relaxation. Discretisation yields
(Askes and Sluys 2000, Askes 2000)

(15)

where  and  are the same as in Eq. (12) and with

(16)

Eq. (15) can be solved by means of a Forward Euler scheme, e.g. When matrix  is lumped, no
matrix inversion has to be carried out, so that the solving of Eq. (15) is very efficient compared to
the solving of Eq. (12). Eq. (15) is denoted the parabolic equidistribution equation, as it follows
from the parabolic Eq. (14). It has been argued that taking the pseudo-time step ∆τ <  leads to
stable solutions with the Forward Euler scheme (Askes and Sluys 2000).

After the new nodal coordinates have been found, the stresses, strains and internal variables are
transported to the new mesh using a Godunov algorithm (Huerta et al. 1995, Rodrígue-Ferran et al.
1998, Askes et al. 1998, Askes et al. 1999). For elements with one integration point, the value of a
state variable component after remeshing ηnew is related to the value before remeshing ηold via

(17)

where V el is the element volume, Ns is the number of sides of the element,  is the value of 
in the element adjacent to side s, and the flux Fs through side s is given by

(18)

with  the normal to side s and ∆  the mesh incremental displacements, i.e. the mesh displacements
that follow from Eq. (12) or Eq. (15). Extenstion towards elements with multiple integration points
is straightforward (Huerta et al. 1995, Rodríguez-Ferran et al. 1998, Askes et al. 1998, Askes et al.
1999). Note that the computer costs involved with Eq. (17) are 2 (N), which also holds for r-
adaptive remeshing with the parabolic equidistribution Eq. (15) (Askes and Sluys 2000).

4.2 h/r-adaptive remeshing

One of the disadvantages of r-adaptive remeshing is that the number of degrees of freedom
remains fixed to the initial number. When this initial number is too low to capture all the
characteristics of the simulation properly, r-adaptivity will not provide accurate solutions. Similarly,
the element connectivity is invariant in r-adaptivity. If remeshing leads to badly shaped elements,
then the accuracy may drop. As an enhancement to the fully r-adaptive approach, a combination of
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h-adaptivity and r-adaptivity is proposed. Here, r-adaptivity is used as the default remeshing tool,
while h-adaptivity is applied whenever r-adaptivity is not suitable of further improvement of the
mesh. 

To assess the remeshing capacities of r-adaptivity objectively, the concepts of Refinement Ratio
and Aspect Ratio are introduced as

RR = (19)

and

AR = (20)

respectively. Obviously, values of RR and AR close to one are optimal, while larger values indicate
a need for mesh adaption. The following algorithm is used in this study:

1. An r-adaptive step is performed.
2. If the resulting mesh leads to too high values for AR or RR, then the r-adapted mesh is

discarded and h-adaptivity is carried out.
Performing an r-adaptive step while it is unknown whether this will lead to an acceptable

discretisation seems a waste of computer time. However, since the computer costs associated with r-
adaptivity are as low as 2 (N) this is acceptable.

The remeshing strategy for combined h/r-adaptivity now splits into two strategies, namely one for
h-adaptivity and one for r-adaptivity. For h-adaptivity the computed desired element sizes are used
directly as input for the mesh generator. Thus, the quality of the mesh generator determines the
effectivity of h-adaptivity. After a new mesh has been constructed, the state variables are projected
from the old mesh onto the new mesh by means of the interpolation algorithm proposed by Ortiz
and Quigley (1991). For each integration point in the new mesh the corresponding element in the
old mesh must be found. Sophisticated search algorithms are needed to limit the computer time that
is necessary for this projection of the state variables, while a computational effort of 2 (N) seems
theoretically impossible.

For the r-adaptive steps in the combined approach the algorithm of Section 4.1 is taken as the
starting point. However, Eqs. (11) and (14) cannot be applied straightforwardly. The reason is that
the reference coordinates χ are fixed on the mesh and should be invariant during the analysis.
However, when an h-adaptive step is performed, the reference coordinates lose sense. It would be
preferable to express Eqs. (11) and (14) in terms of the current configuration, rather than terms of
the reference or initial  configuration. Therefore, the derivatives with respect to χ are rewritten into
derivatives with respect to the current spatial coordinates of the nodes using the chain rule (Askes
and Rodríguez-Ferran 2001, Askes 2000). For instance, Eq. (11) then becomes

(21)

The ratio  is non-zero and it is proportional to the current element size (Askes and
Rodríguez-Ferran 2001). Therefore, Eq. (21) can be elaborated as

(22)
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desired element size
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-------------------------------------------------------------
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Eq. (22) only contains quantities associated with the current configuration. Thus, generality is preserved.
The parabolic equidistribution Eq. (14) can be transformed in a similar manner.

5. Examples

Two examples are presented here. The first concerns with the remeshing capacities of r-adaptivity,
while the second example deals with h/r-adaptivity.

5.1 Dynamically loaded beam with eccentric notch

A three-dimensional dynamically loaded beam is studied. An eccentric notch is present, which
drives the formation of a cracked zone that starts at the notch tip and propagates towards the top of
the specimen. The geometry and loading conditions are given in Fig. 3. The imposed velocity
increases linearly from = 0 mm/s at time t = 0 s to = 2 mm/s at time t = 2·10−4 s, after which it
remains constant. The material parameters are taken as E= 31000 N/mm2, ν = 0.2, ρ = 2.4·10−9 Ns/
mm4, lc= 2 mm, κi = 3.5·10−4 and b= 20000. Two meshes have been used, one consisting of 9393
linear tetrahedrons and one consisting of 1503 linear tetrahedrons. Both meshes are non-uniform in
the sense that the mesh density is larger in the area around the notch. The finer mesh is only used
in a non-adaptive analysis. With the coarser mesh a non-adaptive analysis as well as r-adaptive
analyses have been carried out. For the r-adaptive analyses the values h0/h1 and h0/h2 are taken as 2
and 5, respectively1. Equidistribution is carried out with the elliptic equation as well as with the
parabolic equation. For the parabolic equation the pseudo-time step ∆τ =0.05.

Fig. 4 shows the damage contours for the four analyses at time t = 10−3 s. The fine non-adaptive
mesh gives a damage pattern where the crack propagates from the notch upwards with a specific
inclination angle. When the coarse non-adaptive mesh is considered, it can be seen that the
inclination angle does not correspond to that of the fine non-adaptive mesh. Also, the damage

v̂ v̂

Fig. 3 Beam with eccentric notch−problem statement

1Eq. (11) can be multiplied with h0. Then, the same spatial coordinates are found for the nodes, while the
equidistributed error quantity is scaled with a factor h0. In other words, r-adaptive remeshing is a relative
process. Therefore, instead of prescribing values for h0, h1 and h2, it is equality possible to prescribe the
ratios h1/h0 and h2/h0.
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values inside the cracked zone are not predicted correctly. On the other hand, when the same coarse
mesh is used as the initial mesh in an r-adaptive context, much better results are obtained. For the
adaptive analyses, both the inclination angle and the maximum damage values inside the cracked
zone are in good agreement with the fine non-adaptive mesh. Thus, by adjusting the nodal
coordinates, the accuracy of a fine mesh can be attained by a much coarser mesh.

A next observation is that the performance of the two equidistribution equations is similar.
Although minor differences are present, both capture the inclination angle and the peak damage
values properly. 

However, as can be seen from the adaptive meshes in Fig. 4, not much further improvement of
the discretisation is possible. The number of available elements precludes that newly appearing
cracks could be described adequately. Moreover, the aspect ratios of the elements above the cracked
zone have become very large, which can be a source of inaccuracy. When further mesh refinement

Fig. 4 Beam with eccentric notch−damage contours for fine non-adaptive mesh (upper left), coarse non-
adaptive mesh (upper right), r-adaptive mesh with elliptic equidistribution (lower left) and r-adaptive
mesh with parabolic equidistribution (lower right)

Fig. 5 Single-edge-notched beam−problem statement
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is desired, a new mesh has to be constructed.

5.2 Single-edge-notched beam

In the second example we study a single-edge-notched beam. The beam is subjected to a static
four-point loading, which results in the formation of a curved crack that starts at the notch tip.
Furthermore, a secondary, bending crack may appear opposite of the centremost support. The
material parameters are taken as E = 30000 N/mm2, ν = 0.2, lc = 1 mm, κi = 1.2·10−4 and b = 20000.
The load platens are modelled with a 10 times higher Young’s modulus. An indirect displacement
control procedure is used to apply the load (de Borst 1987), whereby the crack mouth sliding
displacement (CMSD) is used as the control parameter. The CMSD is defined as the difference in
vertical displacement between the two top nodes at either side of the notch. Two non-adaptive
meshes have been used, one consisting of 11419 elements and one of 1761 elements. The finer
mesh is selected such that it has an element size of 1.5 mm in the central region. Furthermore, a

Fig. 6 Single-edge-notched beam−damage contours for CMSD = 0.04 mm, fine non-adaptive mesh, coarse
non-adaptive mesh, h-adaptive mesh and h/r-adaptive mesh (top to bottom)
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combined h/r-adaptive analysis has also been carried out whereby the coarse non-adaptive mesh is
taken as the initial mesh. The desired element size is computed with h0 = 7 mm, h1 = 3 mm and h2

= 1 mm. An h-adaptive step is carried out whenever the refinement ratio of an element exceeds the
value 1.5 or when the aspect ratio exceeds the value 4. As a comparison, also an h-adaptive analysis
is carried out where remeshing is performed when RR> 1.5.

Fig. 6 shows the damage contours for the four analyses for CMSD = 0.04 mm (note that meshes
are not shown here). A first observation is the large differences in response between the two non-
adaptive meshes. Whereas the finer mesh gives a crack pattern that corresponds well to known
results from literature (Peerlings et al. 1998), the coarser mesh predicts a completely different
failure mode. Due to the coarse discretisation at the notch tip, the stress singularity cannot be
captured properly and the dominant, curved crack cannot develop. Alternatively, two bending cracks
appear at either side of the beam. Obviously, this is due to the incapabilities of the mesh to describe
the correct failure pattern. 

Fig. 7 Single-edge-notched beam−final meshes, zoom of central mesh section for h-adaptive analysis (left)
and h/r-adaptive analysis (right)

Fig. 8 Single-edge-notched beam−damage profiles for CMSD = 0.04 mm along the lines y = x−160 (left) and
y = 20 (right), fine Lagrangian analysis (solid), h-adaptive analysis (dotted) and h/r-adaptive analysis
(dashed)
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The situation is different for the two adaptive analyses. In Fig. 7 a zoom of the central mesh
section is given for the final configuration. For these two cases, the crack pattern is predicted
correctly, while also the damage values inside the cracked zone correspond well with those of the
fine non-adaptive mesh. Fig. 8 offers a closer inspection of the crack patterns, namely the damage
profiles along the lines y = x−160 and y = 20 for the fine non-adaptive mesh and the two adaptive
meshes. Although both adaptive meshes overestimate the crack width somewhat, the basic trends
are captured reasonably well.

Fig. 9 shows the number of elements during the analysis for the two adaptive computations.
Horizontal line segments denote that no remeshing is performed (h-adaptive test) or that r-adaptive

Fig. 9 Single-edge-notched beam−number of elements during the analysis, h-adaptive mesh (dashed) and h/r-
adaptive mesh (solid)

Fig. 10 Single-edge-notched beam−CPU time per remeshing step versus number of elements in the
combined h/r-adaptive test, h-adaptive steps (dashed) and r-adaptive steps (solid)
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remeshing is carried out (h/r-adaptive test). The number of h-adaptive remeshings is 69 in the h-
adaptive test and 58 in the h/r-adaptive test. From  Fig. 9 it can be seen that in the middle stages of
the computation the number of h-remeshings is approximately the same for both tests. This
corresponds to the stage where the cracks propagate relatively fast. Then, r-adaptivity is less suited
for remeshing purposes. In the final stages of the computation, when little additional cracking takes
place, r-adaptivity is better suited to optimise the mesh. In Fig. 10 the CPU time per remeshing step
is plotted as a function of the number of elements for r-adaptive steps and h-adaptive steps in the
combined h/r-adaptive analysis. A least squares approximation has been used to fit a parabolic
curve through the data. It can be seen that for the h-adaptive steps the CPU time per step increases
more than linearly with the number of elements. On the other hand, for the r-adaptive steps the
CPU time is virtually a linear function of the number of elements. Fig. 10 confirms the 2 (N)
computer costs of r-adaptivity as compared to the higher costs involved with h-adaptivity.

6. Conclusions

Remeshing strategies are formulated and tested for the analysis of crack propagation. The
nonlocal damage model is used to simulate the softening material behaviour. Based on the
dispersive properties of the material, heuristic formulae are proposed to compute the desired element
size as a function of the strain level. The desired element size is used as input for r-adaptive
remeshing and for a combination of r-adaptivity with h-adaptivity. r-adaptivity is very cheap, while
h-adaptivity is more flexible. Examples are presented which show that r-adaptivity is able to
optimise a given mesh topology. The accuracy of a fine non-adaptive mesh can be approximated by
a simple adjustment of the nodal coordinates. However, the applicability of r-adaptivity is limited.
The combined h/r-adaptive approach is more flexible than a fully r-adaptive approach in the sense
that the number of elements can be changed during the analysis. On the other hand, the combined
h/r-adaptive approach reduces the number of h-remeshings needed, so that computer costs are
limited.
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