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Application of a 3-D crack analysis model to RC
cantilever decks of excessive cracking
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Abstract.  The excessive cracking of RC cantilever decks, which often requires special attention for structural
engineers, is studied using a three-dimensional crack analysis model. The model is based on a fracture
energy approach for analyzing cracks in concrete, and the numerical analysis is carried out using a
modified load control method. The problem of excessive cracking is then studied with four different span-ratios.
Based on the numerical results, the crack behavior with respect to the patterns of crack propagation,
dissipation of the fracture energy, and effects on the structural integrity are discussed. The mechanisms
which cause the excessive cracking are also explained.
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1. Introduction

As shown in Fig. 1, single-column supported reinforced concrete (RC) cantilever decks are widely
used in elevated highway systems. Since the deck surface is under constant tension, the cracking
behavior and crack control are of great concern for structural engineers. Illustrated also in Fig. 1 is
an example of excessive cracking on the deck surface which is quite typical of this type of
structure. Although most building code requirements for structural concrete should lead to adequate
crack control, the provisions typically focus on reinforcement details rather than on crack behavior.
Therefore, the crack control is sometimes not sufficient under complicated stress states. As such,
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Fig. 1 Single-column supported RC cantilever decks and excessive cracking on the surface
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special investigation on crack behavior and precautions for crack control are required in certain
situations.

It is known that excessive cracking must be avoided not only for aesthetic reasons, but also
because damage to the protection of reinforcement against corrosion greatly affects any structure’s
safety. Obviously, the excessive cracking of RC cantilever decks depends very much on the span-
ratio (the ratio of the longer span to the shorter span) as well as on the reinforcement details.
Because of the complicated stress states in cantilever decks, a three-dimensional crack analysis
model for RC cantilever decks has been proposed (Shi and Nakano 1999).

In Sections 2 to 4, the theoretical aspects of the model are explained in detail. These include a
modified load control method which enables the non-linear response with limit points to be
analyzed using only the load control methods. Next, a fracture energy approach to the crack analysis
of concrete is explained. It consists of an energy criterion for determining the equivalent length, and
an analysis method based on variations of the fracture energy and the strain energy. Based on this
energy approach, a three-dimensional crack analysis model is established. In order to facilitate
convergence of the numerical solutions, the E' -ω relation is used directly in the total formulation of
the constitutive relation for the fractured elements. A numerical algorithm enabling the incremental
elasto-plastic analysis of concrete to be carried out simultaneously with the crack analysis, is also
explained.

In Section 5, the model is applied to the problem of excessive cracking of RC cantilever decks,
with four different span-ratios. Based on the numerical results, crack behavior with respect to the
patterns of crack propagation, dissipation of the fracture energy, and the effects on the structural
integrity are discussed. The mechanisms which cause the excessive cracking are also analyzed.

2. A modified load control method

In the crack analysis of concrete, limit points (maximum loads) are often the cause of concern
before choosing a numerical approach to analyze the problem. Although the traditional load control
method is most suitable in many engineering applications, numerical iterations diverge as the load
level approaches these limit points. Theoretically, other approaches such as the displacement control
method and the arc-length control method overcome the problem. For systems with many degrees
of freedom, however, these procedures are harder to implement than in the case of simple problems
with few degrees of freedom. Taking the fracture tests of plain concrete beams as an example,
numerical analyses using the displacement control method may fail even in these simple situations,
due to the snap-back phenomenon. In the following, a modified load control method is introduced
to overcome these difficulties while retaining the fundamental characteristics of a traditional load
control procedure by calculating displacements for loads, except that numerical iterations are carried
out at a load level that is not fixed. 

The standard equilibrium equation for proportional loading is expressed as

λP − F(x) = 0 (1)

where P is a vector of reference loads, λ is the proportional loading factor, F is a vector of the internal
forces, and x is the total displacement. This is traditionally solved using a Newton incremental
iterative solution:
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(2)

(3)

where K (i) is the tangent stiffness matrix, ∆u is the incremental displacement, and the superscripts
in the parentheses denote the number of approximation to the true solution.

In the modified load control method, instead of computing the displacement at a fixed load level
through iterative procedures of Eqs. (2) and (3), the displacement at a lower load level is calculated
through a guided load-reducing procedure. As shown in Fig. 2, the initial displacement increment
∆u(1) for the initial load increment ∆λ(1)P is

 = [ ] −1 (4)

where KI is the tangent stiffness at the beginning of the iterations, which is used to evaluate the
initial displacement increment ∆u(1). Note that in Fig. 2, the left superscript m indicates the current
configuration of the total displacement mx, and the load mP = mλP. The residual force R(1), which is
also used conveniently here as an amount of load reduction, is then given by

 = ( ) ( ). (5)

At a prescribed value of the stiffness parameter KII (KII >K I ), the displacement decrement ∆u(2) is

 = [ ] −1 (6)

A new iteration point (point 2) is then obtained by subtracting the current load and displacement
by the amount of ∆λ(2)P and ∆u(2) respectively, as

 = ( )P (7)

(8)

A general formulation is given by

(9)
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Fig. 2 A modified load control method
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(10)

(11)

(12)

where i= 2, 3…. The above iterative procedures are repeated to eliminate the residual forces until the
desired accuracy is achieved at i=n. Finally, the new equilibrium position m+1 is given by

(13)

(14)

Although the residual forces are used as the load reductions in the above formulations, this is only
a matter of convenience. In fact, with small load decrements properly chosen for iterations the new
equilibrium position m+1 could also be reached. As explained later, the modified load control method
described above varies slightly in the crack analysis of concrete, due to the characteristics of the
numerical approach employed, as well as the nature of the problem.

3. Fracture energy approach

3.1 An energy criterion and equivalent length

The energy approach stipulates that a crack propagates when the energy available for crack
growth is sufficient to overcome the resistance of the material. The energy principle is often
expressed in terms of the energy release rate g, which is defined as the rate of change in potential
energy with crack area for a linear elastic material. When g = gc with gc being the critical energy
release rate, either a new crack initiates or an existing crack extends.

In concrete the crack growth resistance results from the development of the fracture process zone
and the bridging of the crack by aggregate, and is governed by the tensile softening law. Therefore,
as a crack extends, the rate of energy dissipation with crack area  can be calculated from the
tensile softening curve. Obviously, the energy dissipated in the process of cracking is the amount of
energy required for creating the same crack, excluding the energy dissipation due to plasticity
outside the crack. Thus, similar to the energy release rate, it seems reasonable to assume 
with  being the material’s resistance to fracture at the moment of cracking.

In Fig. 3, a linear stress-displacement relation for the FPZ expressed in the stress-strain form is
assumed for simplicity. Based on the smeared crack approach, a crack is smeared along an
equivalent length l, which is the length of the fractured domain perpendicular to the crack
(Dahlblom and Ottosen 1990). Suppose that at a certain load level crack propagation starts from a
point A and stops at a point B, while the cohesive stress σ drops from ( =βft ) to ( =γ ft ).
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Here, ft is the material’s original tensile strength and 0≤ γ < β ≤ 1. In the following, the equivalent
length l is derived from the rate of energy dissipation  and the material’s resistance to fracture

. From Fig. 3, the dissipated energy  is given by

(15)

Analogous to the definition of the energy release rate, the rate of energy dissipation  is defined as 

(16)

where ∆ω is the incremental crack opening displacement, ωc is the limiting crack opening displacement,
 is the limiting fracturing strain, and E is Young’s modulus. Solving Eq. (16) for l with  leads to

(17)

Eq. (17) shows that the equivalent length l, which depends on the material’s resistance to fracture
 as well as the material properties ft, E and ωc, is a constant as long as a linear softening law is

assumed. In this study,  is calculated from the initial crack using Eq. (16), and the equivalent
length l is taken as the length of the maximum projection of the mesh normal to the direction of the
initial crack. Hence,  serves as an index to reflect both the material resistance and the mesh
characteristics against cracking. After the initial cracking, the equivalent length of subsequent cracks
is computed from Eq. (17). When a bi-linear softening law is adopted, the equivalent length l is no
longer a constant; it varies as the crack growth crosses the concave point formed by the two straight
lines. Derivation of the equivalent length l for a bi-linear softening law is omitted here.

3.2 Fracture energy dissipation and strain energy loss

As cracks propagate in concrete, the dissipation of fracture energy at cracks leads to the loss of
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Fig. 3 Energy dissipation due to cracking
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strain energy in the structure. According to the principle of energy conservation, the amount of
strain energy loss in the system equals the amount of fracture energy dissipation. Here, consider
only a single concentrated load acting on a concrete structure. On the load-deflection curve in Fig.
4, the shaded area OABC represents the total strain energy loss ∆Uf after stable cracks occur or
extend at the load level P, and is approximately obtained as

(18)

Here, up is the residual displacement due to plasticity, and ∆P is the total load reduction after
cracking. Although the residual part up may become significant in the post-peak region as structural
failure progresses, it is generally ignorable when compared with the total displacement uB up to the
maximum load. For simplicity, this term is omitted in the following numerical studies, because the
cracking behavior of RC cantilever decks to be studied is apparently confined to the pre-peak
region. The total dissipation of fracture energy ∆Wf is obtained by integrating  of Eq. (15) over
the entire fractured area Vc as

(19)

Here, Vα is the area of the element where crack α occurs, and N is the total number of cracks.
Equalizing the strain energy loss ∆Uf  with the dissipation of fracture energy ∆Wf  leads to

(20)

Numerically, the new equilibrium position B in Fig. 4 is obtained by computing Eq. (18) for a number
of small negative load increments until the total strain energy loss ∆Uf satisfies Eq. (20). Then,
summing up these small load decrements yields the total load reduction ∆P. When used with the
modified load control method, these small negative load increments replace the residual forces as
the load reductions in the guided load reduction procedure, and Eq. (20) serves as the criterion to
terminate this process.
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Fig. 4 Loss of strain energy due to cracking
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4. Three-dimensional crack modeling

4.1 Basic assumptions on cracks

The following assumptions are imposed upon the three-dimensional crack modeling for RC
cantilever decks. A crack is restricted to occur only as either an in-plane crack (the crack plane is
perpendicular to the deck plane) or an out-of-plane crack (the crack plane is parallel to the deck
plane). In other words, one of the three principal stresses at any stress point is supposed to coincide
with the direction normal to the deck plane. Furthermore, the two in-plane cracks are restricted to
occur only in the directions perpendicular to each other. Once occurred, crack orientations are then
fixed. As a matter of fact, these restrictions on cracks fall into the category of the so-called
multidirectional-fixed crack approach. This is considered to be a reasonable approximation to the
actual stress states in RC cantilever decks, considering the small thickness of the decks when
compared with the other two dimensions.

Although somewhat poor accuracy in the resulting solutions could be anticipated, it is com-
pensated not only by a simpler formulation of the problem but also by a clearer picture on cracks. 

4.2 The smeared constitutive relation based on the E'-ω relation

To ensure that the loss of concrete rigidity in the fractured elements is irreversible as cracks
extend, and thus leading to an easy convergence of the numerical solutions, the constitutive relation
for these elements is formulated directly using the E'-ω relation. Here, ω is the crack-opening width,
and E' is the apparent elasticity and defined as 

(21)

where  is the fracturing strain, εt is the maximum elastic strain, and σ  is the cohesive stress
defined by the tensile softening law. The equivalent length l provides a measure of the region over
which the crack opening width ω is smeared to establish the fracturing strain. A series of deforma-
tion-controlled uni-axial tensile tests on narrow concrete specimens had been carried out to obtain
the relation between the apparent elasticity E' and the crack opening width ω. In the following
numerical applications, a bi-linear approximation to the actual E'-ω relation shown in Fig. 5 is
employed. In the same figure, a bi-linear approximation to the tensile softening law of concrete is
also given, and these two relations form the bases for the crack analysis.

The general constitutive relation expressing strains in terms of stresses is 

(22)
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Poisson’s ratio of transverse strain in the xj' -direction when stressed in the xi' -direction. ,
 are shear moduli in the  and  planes, respectively. The

reciprocal relations that must be satisfied in an orthotropic material are omitted here; for more
details see Jones (1975) . The global stress is then obtained by the following transformation:

(23)

After a crack develops, the corresponding elastic modulus in Eq. (22) is then replaced by an apparent
elasticity E' determined from the E'-ω relation. Fig. 6 sums up the main steps of the crack analysis
at an arbitary stress point α (in the three principal stress directions respectively). Note that  is a
transient tensile strength after cracking. Obviously, for a perfect element without cracks =ft.
When a crack extends, the crack opening width ω is computed from the fracturing strain  and the
equivalent length l as 

(24)

Then based on ω the decreasing elasticity E' and cohesive stress σ are obtained from the respec-
tive bi-linear relations shown in Fig. 5. If no crack occurs or an existing crack closes, the value of
the previous E' is then kept unchanged. In the case of crack closure, it is assumed that the elastic
modulus for compression is unaffected by any previous cracks.
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Fig. 5 The E'-ω relation and the tensile softening relation
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As for the fracturing strain ε', it is obtained from the incremental elasto-plastic analysis of the
structure, by incorporating the constitutive relation of Eq. (22) for the fractured elements into the
elasticity matrix of the structure. However, this approach raises a serious question. In order to carry
out the crack analysis, the total formulation of the constitutive relation based on the E'-ω relation
has to be solved for a total load. On the other hand, the classical theory of plasticity requires an
elasto-plastic response of a material to be evaluated step by step by applying the load incrementally,
based on an incremental constitutive relation between stress and strain. To employ these two
completely different theories (namely, the total strain theory and the incremental strain theory) in a
single numerical routine requires a special solution scheme. To that end, a numerical algorithm is
proposed and utilized in the numerical solutions to meet the fundamental requirements of the two
analyses simultaneously. This solution strategy will be explained later.

4.3 Basic assumptions for elasto-plastic analyses of concrete and reinforcing steel

As stated before, the elasto-plastic behavior of concrete is analyzed using the classical theory of
plasticity, and the Drucker-Prager yield criterion is adopted. The uni-axial stress-strain relation of
concrete in compression proposed by the Design Standard for Concrete of JSCE is employed, and is
shown in Fig. 7. The incremental elasto-plastic stress-strain relation is then built upon the work
hardening rule and the normality rule, which postulate the direction of plastic flow.

Reinforcing steel is treated as a one-dimensional element, neglecting its shear stiffness. The stress-
strain curve of reinforcing steel is assumed to be perfectly elasto-plastic under both tension and
compression, and the bond between steel and concrete is assumed to be rigid. 

4.4 Solution structure for the non-linear analysis of concrete

Fig. 8 shows the solution structure for the non-linear analysis of concrete, which consists of two

Fig. 6 Flow for crack analysis
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main loading loops, namely: the load increment loop and the load decrement loop. Within the load
increment loop, the incremental elasto-plastic analysis at Step 1 and the crack analysis at Step 2 are
carried out, where ∆u is the displacement increment, ∆ε is the strain increment, ∆σ is the stress
increment, and Dep is the elasto-plastic matrix. These analyses go through several iterations to
eliminate the residual forces of Step 3 until the solution converges at the given load. Repeat the
above process until cracks initiate. After calculating the dissipation of fracture energy ∆Wf at Step 4,
enter the load decrement loop to obtain the new equilibrium position B shown in Fig. 9. Here again,
the incremental elasto-plastic analysis at Step 5 is performed, and the residual forces of Step 6 are
eliminated through iterations until the solution converges. At Step 7 the strain energy loss ∆Uf is
evaluated and compared with the dissipation of fracture energy ∆Wf. If the equilibrium condition
∆Uf = ∆Wf is not yet satisfied, then continue the next round of load decrement calculations. This
process is repeated until the new equilibrium position B is finally reached. Repetitive computations
of the above two loading loops eventually lead to the failure load of the structure.

The special numerical algorithm shown in Fig. 9 now needs clarification. In the incremental
elasto-plastic analysis, the total displacement is recalculated for each load increment as

(25)

with

(26)

(27)

Here, i+ 1u(1) is the initial displacement approximation for the present load i+ 1P, iu is the converged
solution at the previous load iP, iu(0) and i+ 1u(0) are the reference displacements at the respective load
levels. Note that the initial stiffnesses iK0 and i+1K0 are not constant; they are modified through the
apparent elasticity E' whenever cracks develop. Thus, the gradual weakening of the structural stiffness
and relocation of the nodal points in the vicinity of the fractured elements are monitored in the
reference displacements iu(0) and i+1u(0). The following displacement increment
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Fig. 7 Uni-axial stress-strain relation of concrete by JSCE
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(28)

is used during the first iteration to modify the predictor i+1u(1), and the remaining iterations follow
the Newton-Raphson procedure to eliminate the residual forces until the solution converges to i+ 1u.
Obviously, this numerical algorithm satisfies the preconditions for both the crack analysis and the
incremental elasto-plastic analysis. In the iterative solutions of numerical problems, as long as a predictor
is reasonable the convergence of the numerical solution can eventually be achieved through iterations by
using the Newton-Raphson method.

Although no mention of the modified load control method has been made so far, it has been
incorporated in the solution structure already. The modified load control method is applied when a
load increment loop ends with newly extended cracks during the previous iterations. As shown in
Fig. 9, the solution at this stage corresponds to Point A on the load-deflection curve, and to Point 1
in Fig. 2 of the modified load control method. In the subsequent load decrement loops, small

∆u u
i 1+ 1( )

u
i– u

i 1+ 0( )
u

i 0( )–= =

Fig. 8 Solution structure for non-linear analysis of concrete
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negative load increments are used with the newly modified initial stiffness K0 as KII in Fig. 2 to
calculate the displacement decrement, and Eq. (20) serves as the criterion to terminate this guided
unloading process.

This numerical model has two apparent advantages. First, the non-linear analysis is carried out
using only the load control methods. Second, the crack analysis does not result in premature
divergence of the numerical solutions. The effectiveness of the model has been verified extensively
with experiments and reported elsewhere (Haibara et al. 1997, Shi and Nakano 1998, Saitoh et al.
1998, Osako et al. 1999, Yokoyama et al. 1999).

5. Cracking behavior of RC cantilever decks

5.1 Objective of the numerical studies

As illustrated in Fig. 1, an RC cantilever deck consists of a slab-column system where loads are
transferred from the slab to the supporting column through flexure, torsion, and shear. A slab-beam
system is placed between two adjacent cantilever decks. Due to its structural characteristics, hair
cracks sometimes occur on the tension side of the structure, i.e., on the surface of the RC cantilever
deck. In a certain sense this is unavoidable, and most building code requirements on reinforcement
distribution should lead to adequate crack control. There have been actual cases, however, where the
presence of only the gravity loads has led to persistent excessive cracking of the cantilever decks of
wider lateral spans.

In the following, the crack behaviors of RC cantilever decks of four different proportions are
analyzed, using the three-dimensional crack analysis model introduced so far. The dimensions of the
four structural models studied are close to those of the practical design. Based on the numerical
results, the problem is studied with respect to the patterns of crack propagation, dissipation of the
fracture energy, the effects on the structural integrity, and the mechanisms which cause this type of
excessive cracking.

Fig. 9 Scheme for solution under load control
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5.2 Outline of the numerical studies 

Due to its approximate bi-axial symmetry, only a quarter of a cantilever deck is modeled to reduce
the burden of numerical computations. Fig. 10 shows the four types of structural models with their
reinforcement layout, where L, B and H are the lateral span, longitudinal span and depth of the deck
respectively, and R is the radius of the column. The coordinates of the numerical models and the
type and size of the finite element are also illustrated in the same figure. The model dimensions and
material properties can be found in Table 1 and Table 2, respectively. The material properties for
concrete include the elastic modulus Ec, Poisson’s ratio ν, the compressive strength fc, the tensile
strength ft, the critical crack opening width ωc, and the strain limit εu. For reinforcement, these are
the elastic modulus Es and the yield strength σy. As shown in Table 1, the width of the lateral span
L varies from 6 m to 12 m while the remaining dimensions are kept constant. 

Now define the span ratio as the ratio between the width of the lateral span L and longitudinal
span B. The span ratios for the present study are 1.2, 1.6, 2.0 and 2.4. As far as cracking is
concerned, the span ratio L/B is a critical structural parameter. Based on the numerical results of the
crack analysis, the four structural models are divided naturally into two groups: the small span
ratios of 1.2 and 1.6, and the large span ratios of 2.0 and 2.4. As shown later, these two groups
exhibit completely different types of cracking behavior.

Fig. 10 Structural models for concrete and reinforcement 
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The load conditions are as follows. The dead load of the cantilever deck is added at the beginning
of each calculation. One fourth of the dead load of a 20 m long slab-beam system is applied
incrementally along the edge of the lateral span, as shown in Fig. 10. For the boundary conditions,
the nodal points on the bottom surface of a deck which are within the column radius are fixed. For
the reinforcement, a simple layout of the reinforcing steel is used to replace the complicated
reinforcement details in the actual design, and the reinforcement ratios for tension and compression
are assumed equal. To study the restraining effect of reinforcement on cracking, two types of reinforce-
ment ratios are assumed: ρ = 0.03, 0.06, where ρ is defined simply as the ratio of the reinforcement
(in tension or in compression) area to the respective cross-sectional area of the cantilever deck.
Although a more realistic modeling of the reinforcement details can be achieved using finer meshes,
it is believed that even with the present degree of simplification the fundamental aspects of excessive
cracking in RC cantilever decks can be properly studied.

5.3 Results and discussions

Under the dead loads, cracks appear in the top layers of the RC cantilever decks for all the cases
studied. Penetration of cracks from the surface reaches up to 15 cm deep. The patterns of crack
propagation and stress distributions are shown in Figs. 11 and 12 respectively. 

Two completely different types of crack propagation are observed in Fig. 11. For the two cases
with small span ratios, small cracks occur close to the transverse edge of the RC cantilever deck.
On the other hand, for the two cases with large span ratios, large continuous cracks develop in a
zone along the longitudinal central line of the deck. To clarify these differences, dissipation of the
fracture energy and the effects on the structural stiffness are investigated.

5.4 Small span ratios of 1.2 and 1.6

The deck’s flexural stiffnesses in the lateral (X) direction are found to be quite close to, though
slightly lower than, those in the longitudinal (Y) direction. As shown in Fig. 11, cracks develop
along the transverse edge, initiating almost simultaneously at the middle of the deck and at the far

 
Table 1 Dimensions of structural models

Case Width
L

(m)

Length
B

(m)

Depth
H

(m)

Radius
R

(m)

Span
ratio
L/B

1 6.0 5.0 1.5 1.5 1.2
2 8.0 5.0 1.5 1.5 1.6
3 10.0 5.0 1.5 1.5 2.0
4 12.0 5.0 1.5 1.5 2.4

 

Table 2 Material properties

Concrete Reinforcing steel

Ec
(GPa)

v fc
(MPa)

ft
(MPa)

ωc

(mm)
εu Es

(GPa)
σy

(MPa)

24.5 0.2 24.5 2.45 0.1 0.0035 205.9 353.0
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end. Obviously, the occurrence of small, nearly parallel cracks in the longitudinal direction is
mainly due to the weaker flexural stiffness in the transverse direction. It is interesting to find that a
number of crosswise cracks develop close to the middle of the lateral span to form several two-
direction cracks. As is known, two-direction cracks are quite common for equally reinforced two-
way slab systems. Regarding the patterns of crack propagation, there are no significant differences
between these two cases of small span ratios. The stress states under the total dead load are shown
in Fig. 12. As expected, the maximum tensile stresses in the X and Y directions are very close
when ρ = 0.03, and they are approximately equal as the reinforcement ratio increases to ρ = 0.06.

Fig. 13 shows the relation of the dissipated fracture energy versus the dead load. Note that both
terms are divided by their respective maximum values and expressed either as a ratio or percentage.
The nearly linear relation between the dissipated fracture energy and load reflects the stable nature
of crack growth when the span ratios are small. The mechanism for the steady propagation of
cracks is simple. As schematically illustrated in Fig. 15(a), the onset of a crack in the narrow
tension zone along the transverse edge does not precipitate significant stress increases in the other
parts of the zone; most of the released stresses are spontaneously transferred outside this tension
area. In other words, the crack propagation is stable because the driving force for the next potential
crack does not increase with the onset of the previous cracks.

A relative flexural stiffness  defined by the ratio of the applied load to the average deflection
along the transverse edge is computed and plotted against load in Fig. 14, where   represents the
stiffness before cracking. A conspicuous rise of the stiffness at the early stage of loading is found in
the case of L/B=1.2. This is thought to be the result of the interaction between the cracked concrete
and the reinforcement. A similar situation can be found in the case of L/B=1.6. It is noteworthy that
as the span ratios are small, the structural stiffnesses essentially remain intact under the total dead
loads. This is an important characteristic of this type of stable cracking.

Reinforcement plays an important role in regulating crack behavior. In the case of L/B=1.6,
removing the reinforcing steel from the structural model completely alters the way cracks propagate.
As with large span ratios to be discussed next, several large continuous cracks are found to develop
in the longitudinal direction, close to the middle of the deck, before leading the structure to failure.

K′
K0′

Fig. 11 Crack propagation due to dead load
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5.5 Large span ratios of 2.0 and 2.4

As the span ratios increase, the deck’s flexural stiffness in the transverse direction decreases
significantly. As a result of this, cracks are confined to the longitudinal central zones as shown in Fig.

Fig. 12 Stress distributions due to dead load
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11. The width of the zone roughly equals the diameter of the supporting column. Unlike the previous
cases with small span ratios, cracks initiate not only at the transverse edge, but also at the middle of
the short span. After that, longitudinal cracks propagate rapidly towards the free edge to form
several large parallel cracks. Crosswise cracks do not occur under the dead load, and the crack

Fig. 12 Stress distributions due to dead load (Continued)
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patterns are essentially the same, having little to do with reinforcement. The stress distributions in
Fig. 12 reveal that the maximum tensile stresses in the Y direction are only about two thirds of
those in the X direction.

In contrast to the small span ratio cases, the relation between the dissipated fracture energy and
load is highly non-linear, as clearly shown in Fig. 13. As is evident from these numerical results,
the crack propagation is rapid and often accompanied by a large amount of energy release, especially as
the load approaches the total dead load. This type of unstable cracking can be explained using Fig.
15(b). Unlike the previous cases, the occurrence of a crack inside the present tension zone does
contribute to significant stress increases in the other parts of the zone, simply because the released
stress can not be transferred outside this tension area. Thus, the crack propagation becomes unstable
as the driving force for fracture increases.

As shown in Fig. 14, the relative flexural stiffness monotonically decreases under the dead load,
and this trend intensifies as the span ratio increases. Clearly, this exposes the harmful effects of the
large continuous cracks associated with large span ratios on the structural integrity.

Last, it should be pointed out that with large span ratios, the reinforcement does not change the
pattern of crack propagation to a more stable type as found with small span ratios. A further
increase of the reinforcement ratio may cause the change. From the structural point of view,
however, it is more efficient to change the structural type (such as using two supporting columns
instead of a single column) than simply increasing the amount of reinforcement to reduce the tensile
stress of concrete.

Fig. 13 Dissipated fracture energy− dead load relation
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6. Summary

This paper contained two parts. In the first part the theoretical aspects of a 3-D crack analysis
model were discussed. The second part focused on the application of the model to the problem of
excessive cracking of RC cantilever decks. 

In the first part, a modified load control method was proposed, which enabled the non-linear

Fig. 14 Flexural stiffness− dead load relation

Fig. 15 Mechanisms of stable and unstable crack propagation
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response with limit points to be analyzed using only the load control methods. Next, a fracture
energy approach to the crack analysis of concrete was explained. It included an energy criterion for
determining the equivalent length, and an analysis method based on the variation of the fracture
energy and the strain energy. Based on this approach, a three-dimensional model for crack analysis
was established. One of the main features of the model is that the constitutive relations for the
fractured elements are formulated based on the E'-ω relation, in order to facilitate convergence of
the numerical solutions. The effectiveness of the model has been verified extensively with various
fracture tests. 

The extensive cracking of RC cantilever decks was investigated, with small and large span ratios.
Under the given load conditions, it was found that there are essentially two types of cracking, and
the crack behaviors depend very much on the span ratio. With small span ratios the crack growth is
stable, and causes no apparent damage on the part of the structure. With large span ratios, however,
the crack propagation is unstable due to the occurrence of large continuous cracks, which may
affect the structural integrity.
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