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Slenderness ratio of telescopic cylinder-columns
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Abstract. The present paper deals with the effective slenderness ratio of telescopic cylinders as a long
column having different cross sections. Firstly, the slenderness ratio defined in the current standard for the
telescopic cylinders is discussed to point out some difficulties which arise when the ratio is applied to the
column having different cross sections. Secondly, a new effective slenderness ratio is proposed for columns
having different cross sections by introducing a partial effective slenderness ratio. Finally, the proposed
slenderness ratio is applied, for extending and development of discussion, to a two-staged column having
piece-wise constant cross sections and a cylindrical column having linearly varying diameters.
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1. Introduction

Buckling of compressed structural members has assumed ever increasing importance in structural
design (Timoshenko and Gere 1961, Chen and Lui 1987, Fukumoto 1997, Singer et al. 1998). The
intended aim of the present paper is to discuss the slenderness ratio of telescopic cylinder-columns
under the recent requirement for more light-weight design and longer spans.

Oil-hydraulic telescopic cylinders consist of multistage plungers having different cross sections.
Due to the compactness of the cylinders, they are widely used as an actuator in cranes, dump
trucks, oil-hydraulic elevators and so on. The light-weight design has been requested for the
telescopic cylinders in recent applications. It is thus necessary to exactly estimate the buckling load
and the effective slenderness ratio of the telescopic cylinders. The authors have compiled the
computer programs for the Euler buckling load of the telescopic cylinders (Timoshenko and Gere
1961, Chen and Lui 1987, Ohtomo and Sugiyama 1997). As for the single stage oil-hydraulic
cylinders consisting of a single stage plunger having constant cross section, an equation is given in
“Guidance of technical standard for elevators” (Japan Elevator Association 1994) in order to
calculate the effective slenderness ratio and the calculated value is defined to be under 250.
However, “Guidance of technical standard for elevators” does not refer to the equation of the
effective slenderness ratio of the telescopic cylinders having multistage plungers with different cross
sections. The effective slenderness ratio of the telescopic cylinders has not been discussed by
engineers, e.g., even in the paper by Miyasako et al. (1991) which was presented recently. Under
these circumstances, the next second section describes that the current standard (European Standard
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1998, Miyasako et al. 1991) is applicable to the column having different cross sections under some
limited conditions and there are some difficulties in applying it to the column. The third section
proposes a new concept of effective slenderness ratio, which is generally applicable to a column
under any conditions, by introducing a partial effective slenderness ratio. The fourth section
demonstrates applications of the new effective slenderness ratio to a two-staged column and a
cylindrical column having linearly varying diameter. 

2. Current effective slenderness ratio of the column with different cross sections

2.1 Discussion on current standard (European Standard 1998 and Miyasako et al. 1991)

Let us consider a two-staged column carrying the axial compressive load P as shown in Fig. 1. It
is now assumed that the buckling load Pcr has been already calculated (Timoshenko and Gere 1961,
Chen and Lui 1987, Ohtomo and Sugiyama 1997). It is assumed that the buckling load Pcr of two-
staged columns with total length l can be expressed in a similar formula to uniform/single-staged
columns as follows; 

 (1)

where  is the buckling load factor, while  is the buckling coefficient (Fukumoto 1997).
The subscript i corresponds to span i (i=1, 2). It is noted that the buckling coefficient  is the

buckling load factor normalized by , i.e., the buckling load factor of simply supported single-
staged columns. In case of two-staged columns, there are two bending stiffness, EI1 for the span 1
and EI2 for the span 2. Therefore there can be considered two buckling coefficients,  for EI1 and

Pcr=αi
2EIi
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Fig. 1 Two-staged column
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 for EI2. In the current standard, EI2 is considered more important than EI1.
Introducing a buckling coefficient  in reference to span 2, the buckling load Pcr can be written

in the form

. (2)

Eq. (2) represents Euler buckling load for a column which has the total length l, a uniform cross
section of moment of inertia , modulus of elasticity E, and both ends simply supported. The
equivalent model is shown in Fig. 2, where  is the equivalent moment of inertia,  is the
equivalent cross sectional area,  and  are the equivalent inner and outer diameter,
respectively.

Under the assumption , the following equations can be established;

, (3)

, (4)

. (5)

Then, the equivalent slenderness ratio  of the equivalent column is given by

. (6)

This expression is the formula to determine a slenderness ratio of a column with different cross
sections, according to the current European Standard (1998) on the telescopic cylinders.

2.2 Some difficulties in the current standard

2.2.1 Buckling stress
The buckling stress  of the equivalent model as shown in Fig. 2 is

 (7)

where  is the buckling stress in the span 2 on the two-staged column shown in Fig. 1. It is seen
from Eq. (7) that  is not equal to actual buckling stress.

2.2.2 Equivalent slenderness ratio and buckling stress in reference to span 1
The equivalent slenderness ratio  in reference to span 1 can be easily introduced and

represented, just like Eq. (6), in the form

 (8)

where  is the buckling coefficient satisfying the following equation;
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. (9)

However, the current standard does not refer to the equivalent slenderness ratio in reference to
span 1 as given by Eq. (8). And also, buckling stress  in reference to span 1 can be given by

. (10)

where  is the actual buckling stress in span 1 shown in Fig. 1.
The buckling stress  in the smallest cross sectional area should be taken into account in the

design of the telescopic cylinders. However, the current standard contains no mention of the
buckling stress in the smallest cross sectional area.

2.2.3 Support condition and span length
The equivalent slenderness ratio presented in the current standard as given by Eq. (6) is defined

under the following conditions;
Support end condition: Both ends simply supported
Span length : 

And also, as for a three-staged column as shown in Fig. 3, Eq. (6) can be applied under the
conditions;

Support end condition : Both ends simply supported
Span length: 
Moment of inertia: 

Accordingly, Eq. (6) can not be applied to general support end conditions except simply supported
ends, and to long columns having different span length such as  and to multistage
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Fig. 2 Equivalent model
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columns exceeding four-staged columns inclusive.

3. New concept of effective slenderness ratio

3.1 Partial effective slenderness ratio

Effective slenderness ratio  of a column having uniform cross section is given by

, (11)

where A : Cross sectional area,
I : Moment of inertia, 
l : Length of column,
κ : Radius of gyration of area,
ϕ : Buckling coefficient. 

A column with varying cross section carrying the axial compressive load P is shown in Fig. 4. It
is now assumed that the buckling load Pcr has been already known. Dividing this column into a
finite number of column elements with short length, each cross section of the column element is
now assumed to be constant. Thus, we can consider that the column having varying cross section is
composed of column elements with constant cross section. Each column element is assumed to be
rigidly connected with others.

Introducing a buckling coefficient  in reference to column element of length lk having constant

λ l
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I
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ϕk

Fig. 3 Three-staged column
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cross section, then we have

, (12)

where  represents the buckling coefficient for a column of length l with the same constant cross
section as column element of length lk.

The effective slenderness ratio of a column element of length lk with constant cross section is
given by

, (13)

where  is a new ratio, now referred to as partial effective slenderness ratio.
Then, the overall effective slenderness ratio  of the whole column with varying cross section

can be given by

. (14)

The buckling stress  of column element of length lk is, from Eqs. (12) and (13), given by

. (15)

3.2 Effective slenderness ratio of two-staged column

A buckling load  for two-staged column as shown in Fig. 1 can be calculated by using a
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Fig. 4 Column with varying cross section
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computer programs compiled by the well known method for buckling loads of continuous beam-
columns (Timoshenko and Gere 1961, Chen and Lui 1987, Ohtomo and Sugiyama 1997).
Introducing the buckling coefficients  and  in reference to span 1 and span 2, respectively, the
buckling load Pcr for the column is given by 

. (16)

Then, the partial effective slenderness ratios are

 for span 1, (17)

 for span 2. (18)

Overall effective slenderness ratio  of two-staged column shown in Fig. 1 now can be given by

. (19)

Actual buckling stress  and  at span 1 and span 2, respectively, are 

, (20)

. (21)

These equations have cleared out the difficulties in the current standard which are discussed in the
previous section, i.e., buckling stress can be specified for respective span.

4. Example

4.1 Effective slenderness ratio of two-staged column

Fig. 5 shows a typical model of a two-staged column. Now let us evaluate the effective
slenderness ratio for extending a discussion by making a comparison between the ordinary and
newly proposed slenderness ratios. For the case of simply supported ends, the effective slenderness
ratio λ for the typical model is shown in Fig. 6, while for the case of fixed ends in Fig. 7. Here, the
buckling load Pcr is calculated with compiled programs (Timoshenko and Gere 1961, Chen and Lui
1987, Ohtomo and Sugiyama 1997).

It is apparent from Figs. 6 and 7 that an overall effective slenderness ratio  can be obtained for
any range of l1/l. It is noted that the new ratio is more general than the one given by the current
standard in which the ratio is defined at only one point of l1/l =0.5 in case of simply supported ends.
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4.2 Effective slenderness ratio of cylindrical column having linearly varying diameter

Let us consider the second example of a cylindrical column having linearly varying diameters, as

Fig. 5 Typical model of two-staged column

Fig. 6 Chart of slenderness ratio (Both ends simply supported)



Slenderness ratio of telescopic cylinder-columns 337

shown in Fig. 8, which has a moment inertia I0 and a cross sectional area A0 at the bottom. A
moment of inertia Ix and a cross sectional area Ax at a distance x from the origin of the coordinate
can be given by

, (22)I x=I0
x
L
--- 

  4

⋅

Fig. 7 Chart of slenderness ratio (Both ends fixed)

Fig. 8 Cylindrical column having linearly varying diameters
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. (23)

For the case of simply supported ends, the equilibrium equation of the column are given by

 (24)

Applying the boundary conditions, we have the buckling load Pcr in the form

. (25)

Introducing a buckling coefficient  in reference to column element ∆ x, satisfying the following
equation;

, (26)

the partial effective slenderness ratio of column element ∆ x is given by

. (27)

Then, overall effective slenderness ratio  of whole column can be given by

. (28)

It is seen that Eq. (28) equals to the equivalent effective slenderness ratio of the equivalent model
in reference to the cross section at the half length of the cylindrical column.

5. Conclusions

A new effective slenderness ratio of the columns with different cross section is proposed by
introducing a concept of partial effective slenderness ratio. It is noted that the new effective
slenderness ratio is generally applicable and more reasonable than the classical slenderness ratio
used in the current standard. The usefulness of the proposed effective slenderness ratio has been
demonstrated by applying it to a two-staged column and a cylindrical column having linearly
varying diameters. It is expected that the proposed concept of the new effective slenderness ratio
will make a key measure in light-weight design of the advanced telescopic cylinders.
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