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dynamic problems of non-uniform beams
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Abstract. In this paper, an analytical procedure for solving several static and dynamic problems of non-
uniform beams is proposed. It is shown that the governing differential equations for several stability, free
vibration and static problems of non-uniform beams can be written in the from of a unified self-conjugate
differential equation of the second-order. There are two functions in the unified equation, unlike most
previous researches dealing with this problem, one of the functions is selected as an arbitrary expression
in this paper, while the other one is expressed as a functional relation with the arbitrary function. Using
appropriate functional transformation, the self-conjugate equation is reduced to Bessel's equation or to
other solvable ordinary differential equations for several cases that are important in engineering practice.
Thus, classes of exact solutions of the self-conjugate equation for several static and dynamic problems are
derived. Numerical examples demonstrate that the results calculated by the proposed method and solutions
are in good agreement with the corresponding experimental data, and the proposed procedure is a simple,
efficient and exact method.
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1. Introduction

Non-uniform beams are widely used in an effort to achieve a better distribution of strength and
weight of structures, or structural members, machine parts and sometime to satisfy architectural and
functional requirements. The problems of stability, free vibrations and static analysis of non-uniform
beams have been the subject of numerous investigations because of its relevance to structural,
mechanical and aeronautical engineering. However, in general, it is difficult to find the exact closed-
form solutions for the buckling and free vibration of a non-uniform beam.

The experimental results obtained in dynamic testing of structures (e.g., Wang 1%i8allLi
1994b) have shown that it is possible to regard a frame building as a shear beam with varying cross-
section for free vibration analysis, the governing differential equation for mode shape funcion, X(
of the beam can be written as @tial 1994b)

ang, dX(X0O, - .2 _
dx X dx |:|+ myw X(X) =0 (1)

in which K, m, are shear stiffness and mass per unit length at sectrespectively, andv is the
circular natural frequency. It was discussed byt &l(1996) that the ordinary differential equations
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of the second-order for several buckling, free vibration and static problems, including the governing
differential equation for buckling of a non-uniform beam and the governing differential equation of
mode shape function of a shear beam with varying cross-section, can be written as a unified self-
conjugate equation of the second-order as follows

35 (LR  +w0oy= 0 @

It should be pointed out that the governing differential equation for mode shape function of a
flexural beam with varying cross-section can be divided into two self-conjugate equations of the
second order (Let al 1994b, Li 1999), and the governing differential equation of free longitudinal
vibration of a non-uniform beam (lét al 1998, Li 2000) or a straight rod (Clough al 1975,

Wang 1978) can be also expressed as Eg. (1) which is a special case of Eq. (2).

It can be seen from the above discussion that the exact solutions of Eq. (2) with various expre-
ssions off(x) and Y(x) are very useful in engineering practices. Exact solutions of Eq. (2) for
several special cases were found byetial (1994a, 1994b, 1995) and Kumar and Sujth (1997).
Panayotounakos (1995) obtained classes of analytical solutions of the linear ordinary differential
equations, which were established by dti al (1995), governing the stability problem of non-
uniform bars subjected to axial distributed loading. These classes of buckling solutions extended the
closed-form solutions obtained by &i al. (1995).

A review of technical literature dealing with the problems of free vibration and buckling analysis
of non-uniform beams indicates that generally the authors of the previous studies have directed their
investigations to special functions for describing the distributions of mass and stiffness as well as
axial distributed forces in order to derive closed-form solutions for such problems. This is equiva-
lent to select several special functions for the expressiof(g)cdnd Y(x) to obtain the analytical
solutions for Eqg. (2). It should be mentioned that exact solutions for Eq. (2) with arbitrary expression
of f(x) or Y(x) for structural mechanics analysis have not been obtained in the literature. In this
paper a successful attempt is made to present classes of analytical solutions for the governing
differential Eq. (2) for several static and dynamic problems of non-uniform beams. By means of
functional transformation, classes of analytical solutions are found for the case when the function,
f(x), in EqQ. (2) is arbitrary, while the functiog(x), is expressed as a functional relation vi&). It
is noted that some analytical solutions presented previously mentioned above result as special cases
of the exact solutions obtained in this paper.

2. Theory

It was discussed in the last section that the governing differential equations for several mechanics
problems of non-uniform beams can be written in the form of Eq. (2). The procedure for determin-
ing the exact solutions of Eq. (2) is as follows:

Eq. (2) can be rewritten as

d’y(x) , _1 dfeQdy(¥) . W(x), .y =
SRS dxdx +f(;‘)y(x)_o ©)

Setting
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T = POY W) = POOQUY. £ = [p0)dx @

In the above equation, the functioffx) can be selected as an arbitrary function, while the
function, P(x), is expressed as a functional relation viK).
Substituting Eqg. (4) into Eq. (3) yields

d2
L o =0 )
Obviously, the exact solutions of Eq. (5) are dependent on the expres&)q )ofSeveral cases
which are important in engineering practice are considered and discussed as follows:

Case 1:
Q({) = (a+b)° (6)
Using the following functional transformation
1
_ v __1 _2v
t_(a+bZ) ly_tZlV_C+2|a ‘b‘
Eq. (5) is reduced to a Bessel's equation as
d’z , 1dz Van
AT s Ak Y
The function,y(x), can be expressed as
O 0 1 110 _
5(a+ b{) 5C1JV a(a+bQ)?’ | * Coo| a(a+ b)) E v=a non-integer
y=10 )

O 0 L g _
5(a+ b{) 5C1JV a(a+bg)® |+ CoYy| a(a+ bg)* E v=an integer

whereJ, andY, are Bessel functions of the first, second kind of owleespectivelyC; andC, are
integral constants that can be determined by the boundary conditions.

If C=-2, then substituting Eq. (6) into Eq. (5) yields an Euler equation, the solution of the
equation can be easily found.

Case 2:

Q(Q) = a(1+b)° )

This case is an alteration of Case 1. The general solution can be written as

i0 |
1+ bZ)Z%QJV{&(l,r bZ)ﬂ + CZ‘]—V[&(1+bZ)2ﬂE V=a non-integer
10
30 1 1|0 . 4o
1+bJ) %ClJV 5(1+bZ)2" +C,Y, 5(1+bZ)2" E vV =an integer

<
1
o o o o [
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where
~ _4a-b _ 1
T VT2
Case 3:

Q(Q) = ae”—c, c>0 (11)
wherea, b andc are parameters that can be determined by the valuaépf at critical sections of
the beam.

For this case, setting
1 1
b{ — _ 2a° 2c?
t= -, =5, V=F+
2 [b] [b]

Eq. (5) is reduced to a Bessel's equatiowv-afrder and the functiory(x), can be expressed as

O b{ b{
%bl\]{aei} +CZJ_V[ae7} v =a non-integer
y = Ec . . (12)
= 5| +CY,|_ % = int
E 1 [aez} 2 [aez} vV =an integer
If ¢=0, thenv=0.
Case 4: , R
Q({) = (a"+bl+c) (13)
Substituting Eq. (13) into Eqg. (5) and setting
5 O
2
Q(Q) = (al’+bl+c)"n(&) 0
e 0 (14)
E = J-Zd— 0
al”+hl+c U
one yields
2
‘;—g +AN=0 (15)
in which
A=1+ ac—%lb2 (16)
The general solution for this case is given by
1
y = (al’ + b +¢)’(CysinJAE + Cocos/AE)  for A>0 (17)

or
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1
y = (a2 +bl+c)’(C.e™+Ce™)  for A=0 (18)
or
1
y = (al’+ bl +¢)’(CysinE + Cycosf)  for  A=0 (19)
Case 5: ,
Q) = a(d’+b)” a>0, b>0 (20)
The general solution for this case is given by
1
y = (&+b)(Cysiné + C,co0sf) (21)
where
1
_ [t br? ¢
é = Op O arctan—%
b
Case 6: )
Q(Q) = a({®-b)~ a>0, b>0 (22)
The general solution for this case is as
1
y = (£-b)’(C,siné + Cyc088) (23)

where

3. Applications
3.1 Free vibration of a shear beam

As mentioned above, the governing differential equation of a shear beam with varying cross-
section is given by Eq. (1). Comparing Eg. (1) with Eq. (2) gives

f(x) = Ky, W(X) = Mo (24)

If the distribution of shear stiffnesk,, is described by
Ke = Ko(1+Bx)™ (25)

in which parameter&,, B, y are given, and({) is selected as Eqg. (9), whesea,«’, then the
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distribution of mass per unit lengtm, , can be found using Eq. (4) as
M = o1+ B)Y(1+b)°, = Ax(1+ B (26)
Ko KoB

whereay, b, C are three independent parameters that can be determined by using the vaiyes of
at three critical sections of the beam.

The general solution for mode shape funct(d,), of the shear beam is given by Eq. (10). The
frequency equation can be established by using Eq. (10) and the boundary conditions. It was report-
ed by Liet al (1999) that it is possible to regard a shear plate as two shear beams for free vibration
analysis. Thus, the method introduced above can also be used to estimate natural frequencies and
mode shapes of such a plate.

3.2 Free longitudinal vibration of a beam with varying cross-section

The governing differential equation for mode shape function of longitudinal vibration of a non-
uniform beam is the same as Eq. (1), Kutepresents the longitudinal stiffness of the beam.

3.3 Free torsional vibration of a beam with varying circular section

For this caseK,, m,, X(X) are the torsional stiffness, the polar moment of mass inertia and
torsional angle, respectively.

3.4 Free vibration of shear beam with varying cross-section on an elastic foundation (Fig. 1)
For this casef(x) in Eqg. (2) is the shear stiffness, which is given by
(x) = M~ 27)

in which €, is the coefficient of elastic foundation.

As Caoet al (1993) reported that a roof system of an one-story industrial building supported by
closely spaced columns can be treated as a shear beam on an elastic foundation as shown in Fig. 1.
Thus, the present method and solutions can also be used to analyze free vibration of such a building.

3.5 Free flexural vibration of a beam with varying cross-section

The governing differential equation for mode shape function of free flexural vibration of a beam
with varying cross-section can be written asdt.al 1994b)

2 2
;—Xz%xd—(—); o mX() =0 (28)

in which K, is the flexural stiffness of the beam.
It is not difficult to prove that ifm, an#, satisfy the following condition
4 mK,

==—— = constant (29)
my
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Fig. 1 A shear beam on an elastic foundation

or
m,K, =constant (30)

then, Eqg. (28) can be divided into the following two self-conjugate equations of the second-order,
which have the same form as Eq. (2)

d [0 =—dX(X _
SOMRSEIG mebx0 = 31)
A0/ dX(X)0 = 2y = o O
dX mx X dX D_mxwl (X)_ |:|
in which
2 _
Wi = (32)

3.6 Buckling of a beam with varying cross-section (Fig. 2)

The governing differential equation of a beam with varying cross-section subjected to concentrated
and variable axial distributed loading (Fig. 2) is given byefLal 1995)

d’M(x) __1 dN)dM(x) , N(x) _ Co dN(X) (33)
dx? N(x) dx dx Ky N(x) dx

where M(X), N(X) and K, are the bending moment, axial force and flexural stiffness at segtion

respectivelyC, is given by

Co = NF=—== (34)
It can be seen from Eq. (34) thétb:—%—'\)f wh%zo whg%/(e represents the slope of the

deflected beam.
It is evident thatCy=0 for a cantilever beam. For this case, Eq. (33) becomes
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Fig. 2 A beam with variable cross-section

d®M(x) __1 dN(XQdM(x) .
dx¥? N(x) dx dx

N}gi‘) M(x) = 0 (35)

Eqg. (35) can be also written as Eq. (2). For this case, we have

y(x) = M(x), f(x)= @ LX) = Ki (36)

Timoshenko (1930), Dinik (1955), Timoshenko and Gere (1961) only considered a special case of
Eq.(35) that isN(X)=constant. Hence, their derived solutions for buckling of non-uniform beams
result as special cases of the exact solutions obtained in this paper

3.7 Static analysis of a beam with variable cross-section on an elastic foundation (Fig. 1)

The governing differential equation for static problem of a non-uniform shear beam on an elastic
foundation is given by

A 5900 = a(x) (37)

For this casef(x) in Eq. (2) is the shear stiffneks, Y(x) is given by

W(x) = =G (38)

After two linearly independent homogeneous solutign&) andy,(x) of Eq. (37) are found, then
the general solution of Eqg. (37) can be determined by means of the Lagrange method as follows

V() = Cya() + Cayalo) a9 P i+ 200 a0 (39)

in which
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X X
D) = y2() L _y 2 (40)

If the beam shown in Fig. 1 is a flexural one, then the governing differential equation of
deflection of the beam is given by

< XzEk Y090 ¢y = g9 (41)

The homogeneous form of Eq. (41) can be divided into two self-conjugate equations.
3.8 Free vibration of a multi-step shear beam

A multi-step shear beam is shown in Fig. 3, each step beam has variably distributed stiffness and mass.
The governing differential equation for free vibration of ittle step beam can be written as

4090 m 67x,00 = 0 (42)

Eq. (42) has the same form as Eq. (1). The general solution can be obtained by using the method
mentioned above and written as follows

Xi(x) = Ci1S1(x) + Ci2S2(x) (43)

whereS1(X) andS,(x) are two linearly independent solutions of Eq. (42).
The relation between the paramet¥ys(shear displacement) ai@; (shear force) at the engl

x A

n

i

X1
2
X0
1
0

VA SR A ey ey 4 >y

Fig. 3 A multi-step shear beam
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and the parameted§, andQjo at the endk, of thei-th step beam (Fig. 3) can be expressed as

-l

[T] = [ Sl(xil) Szgxil) }{ Sl’(XiO) Sz(xio) }_l
I Ki1S1(Xi1) Ki2S2(Xi1)| [KioS1(Xi0) KioS2(Xio)
Xz = Xi(Xi1), Xio=Xi(Xi0), Qi1 = Qi(Xi1), Qio = Qi(Xi0), Kiz = Kix(Xi1)
dSi(x)
dx

in which

(45)

Kio = Kix(Xio), Sl =

X=X

[Ti] is called the transfer matrix because it transfers the parameters at thgterthose at the end
X1 of thei-th step beam.
Since

Xio = Xi_11, Qu0=Qi-11
Xi1 andQ;; can be expressed as

Xi] _ rrqre X0
o] = el 5| (46)
Settingi=n one obtains the relation between the parameters at the top (Fig. 3) and those at the
base of the beam as follows
an — XlO
= [T 47
[in} [ ][Qm} (4N
in which
[T] = [Tal[Tn-a] ... [T4] (48)

[T] is a matrix of the second-order as follows
— Tll T21
M= “9)

The elementdj (i, j=1, 2) in Eq. (49) can be found by using Egs. (48) and (45).
The frequency equation can be established by use of Eq. (47) and the boundary conditions as
follows

T,n=0 for a fixed-free beam (Fig. 3) (50)
Ti=0 for a fixed-fixed beam (51)
T,=0 for a free-free beam (52)
T +KyT2=0 for a free-spring supported beam (Fig. 4) (53)

Settingn=1 one obtains the solutions for free vibration of one-step shear beams
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4. Numerical Example 1

A 15-story building with 46.0 m height is located in Wuhan, P.R. China. Based on the field measure-
ment of dynamic behavior of this building (et al. 1994b), it can be treated as a cantilever shear
beam in analysis of free vibration of this structure. The values of mass per unit length and shear
stiffness are calculated and shown in Fig. 5.

The procedure for determining the natural frequencies and mode shapes of this building is as follows

4.1 Selection of expressions for describing the distributions of mass per unit length and
Shear stiffness

Because the variation of the mass per unit length is relatively small, it is reasonable to assume
m(x) as a constanfpn

[2.76x 10+ ( 2.84r 2.79 2.75 2.3&9] x 10°
46

= 2.79x 10(kg/ m)

The expression for describing the distribution of shear stiffness is selected as an exponential
function as follows

X

_BH
K(x) = Kee (54)
Ko andp are found as

Ko = 9.86x 10N

< A

T
fTT
ST

LI i

Fig. 4 A multi-step free-spring supported shear beam
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S . (8.07x10°)
9m 2.8x10° 8.07x10° |%
5 (8.39x10%)
9m 2.75x10° 8.49x10° |
46m L (8.73%10°%)
9m 2.79x10° 8.97x10° 3
T (9.08x10%)
9m 2.84x10° kg/m 9.21x10°
(9.44x10%)
10 2.76x10° kg/m 9.86x10° N
— Y (9.86x10°)
l 2.79x10°
(a) Mass (b) Shear stiffness

Fig. 5 The distributions of mass and stiffness of the building

_ - K(0) _ . 9.86x 10
p= InK(H) 8.07x 10

The distribution of stiffness given by Eq. (54) is also shown in Fig. 5 (dotted line and the values
in parentheses). It can be seen from Fig. 5 that the selected expression is suitable for describing the
distribution of stiffness of this typical tall building.

In = 0.20

4.2 Determination of Q({)

It is assumed tha({ ) can be expressed as special case of Case 1, i.e.,

_ mH
Q) = Tt (55)
Using Eq. (4) leads to
a= 2“2”'* 7= KB H 7o = KHB—23327>< 10° ¢ = Tef = 2.8492x 10°  (56)

KoB
The frequency equation is Eqg. (50), i.e.,

1 1 1 1
mH H 57
o] e |- | apes] p i o
A set of roots,a; (j=1, 2, ...) can be obtained by solving Eq. (57). The minimum motis
found as

a, = 7.9092x 16

Substituting a; into Eq. (56) one obtains the fundamental circular natural frequency and the
fundamental period as
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w = 6.1627 rad sé¢ T, = 1.0196 sec.
The measured value of fundamental period is 1.05 seet @li 1994b).
It is evident that the computed value of the fundamental period shows good agreement with the
measured one.

4.3 Calculation of the vibration mode shapes

The vibration mode function can be determined by using Eq. (45) and sg@##itgas follows

g ] g
B ;E R GE%HZH 1 E
y = HIRE g{a%‘%‘zg}— — Yl{a%m—HZEZ }5 (59)
E Y1 ag_rl_;l(og E
O L . O

The values of the fundamental mode shape are obtained by substtutintig Eq. (58) and are
listed in Table 1.

The field measured values of the fundamental mode shape are also listed in Table 1 for
comparison purposes. It can be seen from Table 1 that the computed values of the fundamental
mode shape are very close to the corresponding field measured ones.

It should be mentioned that using the aforementioned procedure the higher natural frequencies and
corresponding mode shapes can also be determined.

5. Numerical Example 2

This numerical example will illustrate how to determine the fundamental natural frequency and
mode shape of the building considered in the Numerical Example 1 by using the model of five-step
uniform beam shown in Fig. 6. The distributions of mass and shear stiffness of this building are
shown in Fig. 5.

The procedure for determining the natural frequencies and mode shapes by using the model of
five-step uniform beam shown in Fig. 6 is as follows:

5.1 Determination of special solutions for free vibration of each step beam

Because the distributions of mass per unit length and shear stiffness of each step are uniform for
this case, the special solutions can be found from Eq. (5) and $gff)rgonstant as follows

= sind [T cxd = cosd [T o0 59
Si(x) = smm/%i a)xD S2(x) = co m/% a)xD (59)
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Table 1 The fundamental mode shape

Story level 1 3 5 7 9 11 13 15
x/H 0 0.1522 0.2826 0.4130 0.5435 0.6739 0.8043 1.0
Computed 0 0.2431 0.4299 0.6026 0.7529 0.8708 0.9507 1.0
values 0) (0.244) (0.431) (0.604) (0.754) (0.872) (0.953) (1.0
Measured values 0 0.242 0.431 0.603 0.754 0.871 0.951 1.0

Note: the values in parentheses are calculated ones using the model of five-step beam to be described in the
Numerical Example 2.

A om 5
Om 4
46m
9m 3
9m 2
10m 1
e VAV AvED avd 77

Fig. 6 The five-step beam model of the building

Substituting the values af,  anq of thei-th step beam into Eq. (59) one obtains

Su(x) = sin(0.5291x 10%°wx) Si(X) = €05(0.5291x 107 wX)
Su(X) = sin(0.5553x 10°wx) Sp(X) = €05(0.5553% 10%wX)
Ss(X) = sin(0.5577x 10°wx) Ss(X) = €05(0.5577x 10°wx) (60)
Su(X) = sin(0.5691x 10°wx) Sia(X) = c05(0.5691x 10°wx)
S5(X) = sin(0.5890% 10%wx) Si,(X) = c05(0.5890% 10°wx)

5.2 Evaluation of the natural frequencies and mode shapes

Using Eg. (47) and the boundary conditions for a cantilever shear beam leads to

Y11
[QJ ™| g, | (61)

Y11
L] = mam) g, | (62)

Y31
[Qsj = [Tl TZ][TI]I: J (63)
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Yar | _ 0

] = mamamarm] g (64)
Yar | — 0
] = mamammaml g, | (65)

[T]] can be determined by using Eq. (45).

The frequency equation which is the same as Eqg. (50) can be determined from Eg. (5)is.e.,
determined from Eq. (65). Solving the frequency equation one obtains the fundamental natural
frequency

w, = 6.1632 rad set

Substitutinge, into Egs. (61)-(65) one obtains the fundamental mode shape that are tabulated in
Table 1 for comparison purposes.

It can be seen from the above results that the fundamental natural frequency and mode shape
determined by using the model of continuously varying cross-section (Example 1) are almost the
same as those determined by using the model of five-step beam. This fact implies that it is possible
to regard a multi-step beam as a one-step beam with continuously varying cross-section and vice
versa for free vibration analysis.

6. Conclusions

In this paper, the governing differential equations for several static and dynamic problems of a
beam with variable cross-section are written as the unified form of a self-conjugate equation, Eq. (2),
of the second-order. There are two functions in Eq. (2), unlike most previous researches dealing
with this problem, one of the functions is selected as an arbitrary expression in this paper. Using the
method of functional transformation, Eq. (2) is reduced to Eq. (5). Since there is only one function,
Q(Q), in Eqg. (9), it is easier to find the solutions of Eq. (5) as compared with Eq. (2). Because
Q(Q) is a functional expression, a solution of Eq. (5) actually represents a class of solutions. Some
solutions for buckling and free vibration problems of non-uniform beams presented previously by
Dinik (1955), Kumar and Sujth (1997), Li (1999), éfi al (1994a, 1994b, 1995, 1998), Timoshenko
(1930), Timoshenko and Gere (1961), Wang (1978), etc. result as special cases of the exact
solutions obtained in this paper. Numerical examples demonstrate that the results calculated by the
proposed method are good agreement with the corresponding experimental data, and the proposed
procedure is a simple, efficient and exact method.
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