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Analysis of slender structural elements
under unilateral contact constraints
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Abstract. A numerical methodology is presented in this paper for the geometrically non-linear analysis
of slender uni-dimensional structural elements under unilateral contact constraints. The finite element method
together with an updated Lagrangian formulation is used to study the structural system. The unilateral
constraints are imposed by tensionless supports or foundations. At each load step, in order to obtain the
contact regions, the equilibrium equations are linearized and the contact problem is treated directly as a
minimisation problem with inequality constraints, resulting in a linear complementarity problem (LCP).
After the resulting LCP is solved by Lemke’s pivoting algorithm, the contact regions are identified and
the Newton-Raphson method is used together with path following methods to obtain the new contact
forces and equilibrium configurations. The proposed methodology is illustrated by two examples and the
results are compared with numerical and experimental results found in literature.

Key words: unilateral constraints; incremental-iterative strategies; geometric non-linearity; updated
Lagrangian formulation; linear complementary problem.

1. Introduction

Recent developments in structural materials, more refined design methodologies and the large
amount of research on stability of structures have led to increasingly slender structural elements
whose analysis necessitates a truly non-linear approach due to the presence of geometric non-
linearities. These systems may exhibit multiple solutions and may loose their stability due to
bifurcation or the existence of limit points along the non-linear equilibrium path.

The knowledge of the non-linear behaviour of slender structural elements, such as columns, rings
and arches, is essential in the local or global stability analysis of complex structural systems. In
many engineering applications these structural elements are subjected to unilateral contact
constraints induced by discrete or continuous supports. In some cases the deflection is prevented
from the beginning by these constraints, while in other circumstances the constraints are reached for
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the first time during the post-buckling process.
There are many circumstances where the inclusion of unilateral constraints in the stability analysis

of structural elements is unavoidable and their presence may change substantially the non-linear
behaviour of the structure and its stability characteristics (Pian et al. 1967, Stein and Wriggers 1984,
Adan et al. 1994, Koo and Kwak 1995, Silveira 1995, Givoli and Doukhovni 1996, Holmes et al.
1999, Silveira and Gonçalves 2000). This is particularly true in the analysis of some types of
foundations, railway tracks, risers and cables used in off-shore engineering, metal liners used to
protect relatively stiff structures, tanks for solid-propellants and in the analysis of composite
laminate structures (delamination problems). This is a non-classical type of stability problem, which
is termed contact problem. Even in the range of small deformations and under linear elastic
behaviour of the material, unilateral constraints introduce high non-linearities, which cannot be dealt
satisfactorily by usual non-linear structural analysis methods. So, in order to study the behaviour of
slender structural elements with unilateral constraints both types of non-linearities must be taken
into account and a reliable and efficient solution method is necessary. The complexity of this
particular class of structural problems may explain the relatively small number of papers on this
subject. For a few problems involving simple geometries and loading, simplified modal solutions
are possible (Adan et al. 1994, Holmes et al. 1999, Silveira and Gonçalves 2000). For more general
problems where the number and location of the contact regions are not known a priori, the use of
numerical techniques are usually necessary. Among various numerical techniques, the finite element
method has been shown to be a very efficient tool for the analysis of complex contact problems. In
recent years FE formulations for the analysis of contact problems were presented by, among others,
Simo et al. 1986, Klarbring 1986, Joo and Kwak 1986, Belytschko and Neal 1991, Mottershead et
al. 1992, Wriggers and Inhof 1993, Koo and Kwak 1995, 1996, Sun and Natori 1996 and Givoli
and Doukhovni 1996. Additionally, efficient algorithms capable of dealing with various types of
non-linearities were discussed by Endo et al. 1984, Nour-Omid and Wriggers 1986 and Björkman et
al. 1995.

The finite element method has also shown to be particularly appropriate for the analysis of non-
linear structural problems. The discretization process of non-linear structures by the use of finite
elements leads to a system of non-linear algebraic equations that are often solved by Newton-type
methodologies. Ideally, a solution method should be able to trace the entire equilibrium path,
including softening and stiffening branches, and identify load or displacement limit points and
bifurcations of the fundamental path. At present, the most efficient methods are the so-called
incremental-iterative strategies.

A critical step in the analysis of contact problem is the selection of a numerical methodology for
dealing with the contact constraints. Basically there are three major numerical approaches for this
problem, namely the Lagrange multiplier method (Belytschko and Neal 1991, Mottershead et al.
1992), the Penalty method (Simo et al. 1986, Wriggers and Inhof 1993) and the Mathematical
programming methods (Luenberger 1973, Joo and Kwak 1986, Klarbring 1986, Björkman et al.
1995, Koo and Kwak 1995, 1996, Sun and Natori 1996, Givoli and Doukhovni 1996). This last
alternative enables one to solve the contact problem by directly minimising the potential energy
containing explicitly moving boundary parameters and the associated inequality constraints and thus
maintaining the original mathematical characteristics of the problem. Some of the optimizations
techniques used for the contact problem are linear and quadratic programming, recursive quadratic
programming or, alternatively, methods for the solution of linear complementary problems (LCP)
such as the Dantzig’s or Lemke’s algorithms (Lemke 1968). The works by Koo and Kwak (1995,
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1996) and Sun and Natori (1996) are examples of numerical investigations where LCPs are used to
investigate buckling and post-buckling problems with contact constraints.

The aim of the present work is to develop a numerical methodology for the geometrically non-
linear analysis of uni-dimensional slender structural elements with unilateral contact constraints. The
finite element method together with an updated Lagrangian formulation is used for the beam. In
order to solve the resulting algebraic non-linear equations and obtain non-linear equilibrium paths,
the Newton-Raphson method is used together with an arc-length iteration procedure (Crisfield 1991,
1997). This incremental-iterative strategy allows limit points to be passed and, consequently, snap
buckling phenomena to be identified. Additionally, the use of very small random nodal
imperfections enables one to identify bifurcations points and the associated post-bifurcation solution.
The unilateral contact is due to the presence of tensionless supports and foundations. The influence
of friction in the contact area is neglected in this paper. At each load step, in order to obtain the
contact regions, the equilibrium equations are linearized and the contact problem is treated directly
as a minimisation problem, involving only the original variables, subjected to inequality constraints.
Then, the resulting linear programming problem is solved by the Lemke's algorithm, the contact
regions are identified and the Newton-Raphson method is used to obtain the new contact forces and
equilibrium configurations. At this point the constraint equations are checked. If they are satisfied
the optimum solution has been obtained; otherwise the procedure is repeated and improved contact
regions are identified.

In view of the complexity of buckling and post-buckling analysis of structural elements with
contact constraints, validation of the adopted model is an essential task. Here, the local one-way
buckling of rigidly confined rings under inertial loading and the buckling and post-buckling
behaviour of a column under contact constraint are analysed and compared with results found in
literature (Pian et al. 1967, Stein and Wriggers 1984, Adan et al. 1994). These results demonstrate
the accuracy and versatility of the present methodology in the solution of stability problems with
unilateral constraints.

2. Problem formulation

Consider the structural system shown in Fig. 1 consisting of an elastic body and an elastic
tensionless foundation and assume that both bodies may undergo large deflections and rotations but
small strains, within the elastic range of the material. Also, the contact surface is assumed unbonded
and frictionless.

The structure is defined as a solid elastic continuum which occupies a domain iV (i = 0, ω and
ω + ∆ω). Its boundary iS is considered to be regular and composed of three different regions: iSu, iSf

and iSc, where the surface forces are specified on iSf and the displacements are specified on iSu. The
remaining part, iSc, corresponds to the region where contact is likely to occur, which is not known a
priori.

Assume now that the kinematic and static variables are known for the equilibrium configurations
0, ∆ω, 2 ∆ω, ... and ω, and that the solution for the adjacent configuration ω + ∆ω is required. Since
the relevant physical and geometrical variables are known in the last configuration ω, it’s advisable
to refer all these quantities to this configuration and use an updated Lagrangian formulation to study
the structural problem. This, as it will be shown subsequently, is vital for the development of the
proposed numerical methodology.
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For the structural system, the equilibrium equations, the kinematic relations and the constitutive
law are given respectively by:

 (1)

 (2)

 (3)

where the customary summation convention is used. In Eq. (1), ∆Sij are the components of the 2nd
Piola-Kirchhoff stress increment tensor, the unknowns of the problem, and ω+∆ωSij, are the Cartesian
components of this same tensor at state ω + ∆ω, which are measured from the previous equilibrium
configuration ω. The stress components ∆Sij and ω+∆ωSij are related by the equation:

 (4)

where ωτij are the components of the Cauchy stress tensor at the reference configuration. In Eq. (1),
the unknown increments in the displacements ∆ui from configurations ω to ω + ∆ω are defined as:

i=1, 2  (5)

In many engineering applications, the designer is interested only on the response of the foundation
at the contact area and not on the stresses and displacements inside the foundation. So it is possible
to construct simple mathematical models for describing the response of the foundation at the contact

∆Sij j, + ∆ui j, Sω+∆ω
jk i,( ),k=0

∆ε i j =
1
2
--- ∆ui j, +∆uj i, +∆uk i, ∆uk j,( )

∆Sij =Cijkl ∆εkl

Sω+∆ω
i j = τω

i j +∆Sij

∆ui= xω+∆ω
i− xω

i ,

Fig. 1 Equilibrium configurations
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zone with a reasonable degree of accuracy. Using the well-known Winkler model (Kerr 1964) or the
formulation for an elastic half-space, the following constitutive equation can be written to describe
the elastic foundation:

 (6)

where ∆rb and ∆ub are, respectively, the incremental compressive reaction and deflection of the
foundation and Cb is the foundation elastic modulus.

For the two bodies under investigation, the following conditions must be satisfied on Sc:
1. The gap in the potential contact area, β, after the increment of the displacements, must satisfy

the following inequality constraint at configuration ω + ∆ω:

 (7)

where

 (8)

with ψ defining the gap between the bodies at configuration ω. Here ni and nb are respectively the
unit outward normal vector on the structure and foundation boundaries;

2. Under the assumption of a tensionless foundation model, contact pressure must be compressive,
i.e.:

 (9)

3. The complementary relation between β and ∆rb is given by:

 (10)

For a given load increment, the solution of the unilateral contact problem can be obtained by
solving Eqs. (1) and (6), together with relations (2) and (3), and by satisfying the appropriate
boundary conditions on Su and Sf, as well as the restrictions (7), (9) and (10) on Sc.

The non-linearity due to the unilateral constraints and the non-linear strain-displacement relations
make it difficult to solve this problem directly. For this reason, an equivalent minimisation problem
is formulated, which is particularly suitable for numerical analysis. It can be shown that the
optimization’s problem (Joo and Kwak 1986, Silveira 1995):

Min J (∆u, ∆ub)  (11)

Subject to: ,  on  Sc  (12)

where,

 (13)

is equivalent to the problem described above by Eqs. (1) to (10).

∆rb=Cb∆ub

β 0≥ ,     on      Sc
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3. Numerical methodology

The numerical strategy adopted here for the minimisation problem described by Eqs. (11)-(13),
has as starting point an approximate solution based on the known displacements and stresses
obtained at conclusion of the previous load step, ω. It is assumed that perfect convergence has been
achieved at the previous step so that the solution satisfies the equilibrium equations and all
constraints. A cycle of the proposed incremental-iterative strategy can be summarised as follows.

Considering the previous updated Lagrangian solution, the initial increment of the load parameter
∆λ0 is selected and used to calculate the initial increment of the nodal displacements ∆u0. The
approximations ∆λ 0 and ∆u0 are termed here “tangent incremental solution”. This is followed by
two corrections:
1. The first correction deals only with the non-linearity associated with the unilateral constraints and

is used to correct the dimension of the contact zone, which was assumed equal to ωSc at the
previous step. After the solution of the standard linear complementary problem, an improved
solution ω +∆ωSc for the contact regions is obtained.

2. The second correction deals with the geometric non-linearity of the structural system. Here the
Newton-Raphson method is used to solve the discretized equilibrium equations. This solution
was obtained using the improved contact solution found in the previous step. Now a new contact
region ω +∆ωSc is obtained and compared with the solution obtained in the previous step. If the
convergence criterion for the contact zone is not satisfied, a new incremental solution is obtained
and the correction procedure is repeated until the convergence criteria are satisfied.

3.1 Solution procedure

The solution procedure summarised previously will be detailed herein. In the following, the left
superscript c is the iteration counter associated with the contact problem and the right superscript k,
the iteration counter used in the Newton-Raphson procedure. The tangent incremental solution, c∆λ0

and c∆u0, corresponding to k=0 and k=1, 2, .., denotes successive iterative cycles; λ, ∆λ, δλ and u,
∆u, δu are, respectively, the total, incremental and iterative load parameter and nodal displacements.

The first step begins with the computation of the tangent stiffness matrix cKT of the beam-
foundation system, based upon the known equilibrium solution and contact region of the previous
load step. The tangent nodal displacements cδuT are then computed as the solution of:

 (14)

where Rref is the reference external load vector. This vector has an arbitrary amplitude, since only
its direction is important at the present step.

After the value of the initial load increment is determined by the use of a particular load
incrementation arc-length strategy (Crisfield 1991, 1997), the incremental displacements c∆u0 are
evaluated scaling the tangent displacements as follows:

 (15)

At this stage, the load parameter and the total displacements are updated:

Kc T δuc
T=Rref

∆uc 0= ∆λc 0 δuc
T
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(16)

Here,  are  the load and displacements obtained at the conclusion of the previous step. This
solution rarely satisfies the equilibrium equations and the contact constraints and so additional
iterative cycles are required.

Now the contact region ωSc must be corrected. To estimate the new region the following linear
complementary problem (LCP) must be solved (Silva et al. 2001):

 (17)

 (18a)

 (18b)

 (18c)

where, the Eq. (17) is the system of beam-foundation equilibrium equations while Eqs. (18a)-(18c)
are the constraints that characterise the unilateral contact problem. The constraint (18a) represents,
physically, the impenetrability condition between the bodies; (18b) defines the positivity condition
of c∆rb; and (18c) is the complementarity relation between the gap and c∆rb. The vectors c∆u, c∆rb

and ∆R are, respectively, the incremental nodal displacements of the structure, the incremental nodal
reaction of the elastic foundation and the incremental nodal load. The matrices KT, T and A
represents, respectively, the stiffness matrix of the beam, the flexibility matrix of the elastic
foundation and the joining matrix between the bodies (Ascione and Grimaldi 1984, Silva et al.
2001).

The solution of the Eq. (17), considering the constraints, is reached through the use of
mathematical programming methods, in particular, pivoting techniques developed for complementary
problems (Lemke 1968). Before the use of Lemke’s algorithms, however, it is necessary to reduce
the previous relationships to a “standard” form (cw=cq+cM cz; ; ; cwT cz=0) as
presented in Silveira (1995) and Silva et al. (2001), where alternative formulations for the contact
problem are developed. The solution of any “standard” form of the LCP enables one to compute
from its variables the new contact region, ω +∆ωSc.

Next, using the new contact region, the Newton-Raphson method is employed to restore
equilibrium. If the non-linear equilibrium path is to be obtained and possible limit points are to be
overcome, the load parameter must be allowed to vary whilst iterating to convergence. Following
the general solution strategy initially proposed by Batoz and Dhatt (1979), one can compute the
incremental change in the nodal displacements by solving the equation:

 (19)

where cg is a gradient vector to be minimised during the present iterative cycle. In Eq. (19), cg is a
function of the nodal displacements (calculated at the previous iteration) and of the current total
load parameter, cλk, which is an additional unknown. cλk can be written as:

 (20)

where δλk is the desired correction or increment of the load parameter. Substituting Eq. (20) into

λc 0= λω + ∆λc 0     and     uc 0= uω + ∆uc 0

λω uω

KT ∆uc +AT ∆rc
b−∆R=0

Ac∆u−T c∆rb 0≤

∆rc
b 0≥

A ∆uc −T c∆rb( )T ∆r c
b=0

zc 0≥ wc 0≥

Kc k−1( ) 
T δuc k=− gc u k−1( ), λk( ),      k 1≥

λc k= λc k−1( )+ δλc k
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Eq. (19), one obtains:

 (21)

where  is the internal force vector acting on the structure. Eq. (21) can be rewritten as:

 (22)

This is the desired constraint equation that controls the increment of the structure variables at each
iterative cycle. From Eq. (22), the displacements can be decomposed into two groups:

 (23)

where

and  (24)

The correction of the load parameter, cδλk, is obtained from one of the several different iterative
strategies available (Crisfield 1991, 1997). Using the corrected load parameter cδλk, the corrections
of the displacements can be obtained from Eq. (23). The incremental variables are finally updated:

and (25)

 and  (26)

Kc k−1( )
T   δuc k=− Fc k−1( )

int − λc k−1( )+ δλc k( )Rref[ ]

Fc k−1( )
int

Kc k−1( )
T   δuc k=− gc k−1( )+ δλc kRref

δuc k= δug
kc
+ δλc k δuR

k c

δug
kc
=− Kc 1– k−1( )

T g c k−1( ) δuR
kc
= Kc 1– k−1( )

T Rref

∆λc k= ∆λc k−1( )+ δλc k ∆uc k= ∆uc k−1( )+ δuc k
g+ δλ c k δuR

k c

λc k= λω + ∆λc k uc k= uω + ∆uc k

Fig. 2 Iterative solution strategy
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After the convergence of the Newton-Raphson procedure is achieved, a new contact region
 is evaluated. Here n indicates that this solution was obtained after the equilibrium cycle was

completed. Next  is compared with its previous value, i.e., . If the desired accuracy
is attained, a new initial load increment is computed and the whole process is repeated and a new
equilibrium configuration is obtained. If convergence is not achieved, an improved contact region
must be calculated. But, before of this, the following calculations are required: the stress state for
the structure and foundation at the present configuration is obtained and a new initial stress matrix
is evaluated. Also the contact nodes based on the solution  are identified and the variables
cλ, cu, c∆λ and c∆u are re-initiated. The solution procedure described previously is summarised in
Fig. 2.

4. Examples

The first numerical example used to test the present methodology is shown in Fig. 3. It consists of
a radially constrained circular ring subjected to inertial loading. The surrounding medium is
considered to be a tensionless rigid foundation, so that the ring can only deform inward. Also
shown in Fig. 3 are the geometrical and physical parameters used in the analysis. This is a typical
example of a structure that is subjected from the beginning to unilateral constraints. Here the ring
deforms locally inward and is subjected to limit point instability when the length of the contact
region reaches a critical value. It is used for the ring the non-linear finite element model developed
by Alves (1995), while the rigid foundation is described by discrete springs with a high stiffness
value (here, K=36× 105), as illustrated in Fig. 4. Lemke’s algorithm (Lemke 1968) is used to solve
the LCP (Eqs. 17 and 18), while the Newton-Raphson method, the iterative technique devised by
Chan (1988) and the automatic load increment strategy proposed by Crisfield (1991) are used to
solve the equilibrium equations and trace the non-linear equilibrium path.

It is shown in Fig. 5 the variation of the non-dimensional load parameter pR3/EI with the central
deflection v divided by R. This problem was analysed previously by Pian et al. (1967) using the
finite difference method and, more recently, by Stein and Wriggers (1984) who, using the finite

Sω +∆ω n
c

Sω +∆ω n
c Sω +∆ω

c

Sω +∆ω n
c

Fig. 3 Ring in rigid confinement
Fig. 4 Finite element model
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element method, obtained the non-linear equilibrium path up to the critical load. The results
obtained by these authors are compared in Fig. 5 with the results obtained using the present
formulation and numerical methodology. Their values for the critical load parameter are compared
with the present result in Table 1. The computed values of the separation angle φ for different load
levels, corresponding to stable, neutral and unstable configurations, are compared with those
reported by Pian et al. (1967) in Table 2. As observed, the present results compare well with those
found in literature. In order to investigate the influence of the foundation stiffness on the non-linear
response and stability of the ring, the same structure is now analysed considering increasing values
for the foundation stiffness K. The results are presented in Fig. 6, where again the non-dimensional

Fig. 5 Load-deflection curve for inertial loading

Table 1 Comparison of critical load parameter, pR3/EI

Solutions

Pian et al. Stein and Wriggers Present Work

pR3/EI 81.5 79.9 80.3

Table 2 Comparison of separation angle φ for different load levels

pR3/EI φ (Pian et al.) φ (Present Work)

34 32.9o 32.2o

57 30.1o 28.4o

81.5 24.6o 24.7o

62 23.9o 22.6o

28 27.2o 26.1o
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load parameter pR3/EI is plotted as a function of v/R. As the foundation stiffness increases the limit
point load increases and the results approach from below the results obtained by Pian et al. (1967),
considering a rigid foundation. As observed a foundation stiffness of 36× 105 practically reproduces
the non-linear response obtained by Pian et al. It should be pointed out that the use of an elastic
foundation with very large stiffness (here, for example, K >106) leads to numerical difficulties and
the response presents, as one approaches the limit point, spurious oscillations. This is a problem
typical of penalty-type methods, so care should be taken in choosing the foundation stiffness in
order to represent a rigid foundation. For soft foundations no numerical difficulties were
encountered during the analysis.

The buckling and post-buckling behaviour of a beam under contact constraint is illustrated
through a simple, but representative example, shown in Fig. 7. The model consists of an imperfect
beam located near a rigid smooth surface. The imperfection function is represented by  and d
defines the distance from the perfect beam to this surface. The beam is subjected to compression
induced by an axial load P. Experimental and semi-analytical results obtained by Adan et al. (1994)

w x( )

Fig. 6 Influence of the foundation stiffness on the non-linear response of the ring

Fig. 7 Column model for buckling under contact constraints
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revealed two distinct types of post-buckling behaviour, namely symmetric and asymmetric responses.
The finite element model used to solve this problem is shown in Fig. 8. Here 40 elements were

used for the column, while once more the rigid foundation was described by discrete springs with a
high stiffness value. The iterative technique proposed by Gierlinski and Graves Smith (1985) and
the automatic load increment method proposed by Crisfield (1991) have been used in the non-linear
solution strategy. The form of the initial asymmetric imperfection is based on the experimental
results obtained by Adan et al. (1994).

The non-linear equilibrium paths characterising the non-linear structural response are shown in
Figs. 9 and 10, where, respectively, the variations of the midspan displacement and end shortening
are plotted as a function of the non-dimensional load parameter, P/Pcr. The experimental and
numerical results obtained by Adan et al. (1994) are compared with the results obtained in this
work. Excellent agreement is observed between the present results and those obtained by Adan et
al., confirming the accuracy and efficiency of the present methodology.

In these figures, the points a0-a5 indicate transitions between characteristic stages of response.
The first part of both equilibrium curves (a0-a1) follow the familiar non-linear path of an imperfect
beam under compression. The contact between the bodies occurs at position a1 (P/Pcr ≅ 0.93).

Fig. 8 Finite element model

Fig. 9 Non-linear response of the column (Variation of the load parameter, P/Pcr, with the mid-span displacement,
(w+ )/h)w
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After this point, as the load increases the contact region increases and moves slightly to the left.
Notice that the constrained response is considerably stiffer than the free one and that a limit load
occurs at P/Pcr ≅ 2.5 (point a2), followed by a decrease in the axial force (a2-a3). Along this path
the contact region decreases and moves to the left, with the beam assuming an asymmetric form. As
the contact constraints are deactivated (P/Pcr ≅ 1.94, point a4) the beam jumps to a non-constrained
configuration. The point a5 exemplifies this unconstrained configuration, which is identical to the
large displacement response of a column without constraints. The deformation pattern associated
with the five critical points mentioned above is illustrated in Fig. 11, where the load levels
associated with these points are also shown. The numerical solution shown in Figs. 9 and 10
presents some oscillation at a small region between points a2 and a3. This is due to the
representation of the continuous rigid foundation by discrete springs with high stiffness. Along this
portion there is a fast variation of the contact region that simultaneously decreases and moves to the
left as shown in Fig. 11. This leads to sudden and discontinuous variations in the foundation
reaction and consequently in the effective stiffness of the beam.

Fig. 10 Variation of the load parameter P/Pcr as a function of the column end shortening, u/L

Fig. 11 Evolution of the deformation pattern of the imperfect column
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5. Conclusions

In this work a numerical methodology for the non-linear analysis of slender structural elements
with unilateral constraints is derived. The results show good agreement with those found in
literature and validate the formulation and the proposed numerical methodology. The examples
analysed showed that the non-linear proposed formulation can be used successfully in many
engineering phenomena involving contact.

The use of an updated Lagrangian approach enables one to linearize the contact problem at each
equilibrium configuration and solve the resulting problem as a linear complementary problem by
Lemke’s algorithm. This step is essential for the success of the present formulation. The
simultaneous use of an updated Lagrangian formulation, Lemke’s algorithm and an efficient
incremental-iterative strategy minimises the errors along the non-linear path and enables one to trace
convoluted non-linear paths with a varying number of contact regions. Also, it is shown that the use
of programming methods allows the development of logically and numerically simple algorithms for
the solution of non-classical stability problems with unilateral constraints.
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Notation

A = joining matrix between the bodies
Cb = foundation elastic modulus
Cijkl = constitutive tensor components
Fint = internal force vector
g = gradient vector
Imax = maximum iteration number
J = energy functional
Kττ = initial stress matrix
KT = tangent stiffness matrix
nb = outward normal vector on the foundation comp.
ni = outward normal vector on the structure comp.
rb = compressive reaction of the foundation
Rref = reference external load vector
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S = boundary of body (m2)
Sc, = contact region (m2)
Sjk = 2nd Piola-Kirchhoff stress comp.
Su, Sf = boundary where the displacements and forces are specified (m2)
T = flexibility matrix of the elastic foundation
u = total nodal displacement vector (m)
V = body domain (m3)
xj = coord. of the structures comp.(m)

Greek Symbols:
ψ = gap between the bodies at conf. ω
β = gap between the bodies
ω = reference equilibrium configuration
ξ = tolerance
∆λ0 = initial increment load parameter increment
∆εij = strain increment tensor components
λ,∆λ,δλ = total, incremental and iterative load parameter
τij = Cauchy stress tensor comp.
∆rb = incremental compressive reaction
∆Sij = 2nd Piola-Kirchhoff stress increment comp.
∆u,δu = incremental and iterative nodal displac.
∆ub = incremental deflection of the foundation
∆ui = incremental displacement comp.

Subscripts:
b = elastic foundation index
g = iterative change in u due to g index 
i,j,k,l = summation indexes
R = iterative change in u due to Rref index
u,f,c = boundary indexes

Superscripts:
i = equilibrium configuration index
T = transpose
n = new contact region
c = iteration counter (contact problem)
k = iteration counter (equilibrium problem)
k−1 = last iteration




