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Continuous and discontinuous contact problem for a
layered composite resting on simple supports

Ahmet Birinci† and RagIp Erdöl‡

Civil Engineering Department, Karadeniz Technical University, 61080, Trabzon, Turkey

Abstract. The frictionless contact problem for a layered composite which consists of two elastic layers
having different elastic constants and heights resting on two simple supports is considered. The external
load is applied to the layered composite through a rigid stamp. For values of the resultant compressive
force P acting on the stamp vertically which are less than a critical value Pcr and for small flexibility of
the layered composite, the continuous contact along the layer - the layer and the stamp - the layered
composite is maintained. However, if the flexibility of the layered composite increases and if tensile
tractions are not allowed on the interface, for P > Pcr, a separation may be occurred between the stamp
and the layered composite or two elastic layers interface along a certain finite region. The problem is
formulated and solved for both cases by using Theory of Elasticity and Integral Transform Technique.
Numerical results for Pcr, separation initiation distance, contact stresses, distances determining the
separation area, and the vertical displacement in the separation zone between two elastic layers are given.

Key words : continuous contact; discontinuous contact; separation; integral equation; elastic layer; rigid
stamp; theory of elasticity; fourier transform.

1. Introduction 

The contact problems in solid mechanics involving elastic layers have attracted the attention of
several researchers due to its application to a great variety of important structures of practical
interest. Foundation grillages, pavements in roads and runways, rolling mills, railway ballast, beams
resting on supports or stamps and foundation beams are some example of the contact problems. 

The general methods of the contact problems may be found in the works of Hertz (1895), Galin
(1961) and Uffliand (1965). The contact problems are examined using different methods, some of
which are complex variables (Muskhelishvili 1958) and Fourier transform techniques (Sneddon
1972). Problems involving contact between an elastic layer or a layered composite and a foundation
which may be either elastic or rigid have been very widely studied with improvements in computer
technology. The continuous and discontinuous contact problem between an elastic layer and a rigid
half-plane for the case of a single load in tension is analyzed by Civelek and Erdogan� (1975). The
discontinuous case of the same problem for the single load in compression is examined by the same
researchers (1976). The frictionless contact problem for an infinite elastic layer lying on a horizontal
rigid plane is examined by Civelek, Erdogan� and Çaklroglu� (1978), and the same problem is also
analyzed by Çaklroglu� (1979) in the case of elastic rather than rigid half-plane. Similar contact
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problem is also examined by Çaklroglu� and Çaklroglu� (1991) in the case of symmetrical distributed
loads and an elastic semi-infinite plane. A tensionless contact without friction between an elastic
layer and elastic foundation is studied by Geçit (1980) and the same researcher (1981, 1986)
analyzed axisymmetric contact problem for an elastic layer and elastic foundation and an
axisymmetric contact problem for an elastic half space indented by an elastic semi-infinite circular
cylinder. The general axisymmetric double contact problem for an elastic layer pressed against a
half space by an elastic stamp is investigated by Civelek and Erdogan� (1974). Geçit and Yaplcl

(1986) examined the contact problem for an infinite elastic layer resting on two rigid horizontal flat
support, and the frictionless contact problem between a rigid stamp and a layered composite resting
on simple supports is studied by Birinci and Erdöl (1999). 

In the present study, the continuous and discontinuous contact problem of a layered composite
which consists of two elastic layers having different elastic constants and heights is investigated.
The layered composite resting on two simple supports is subjected to a concentrated load 2P by
means of a rigid rectangular stamp of which width is 2a. It is assumed that all surfaces are
frictionless. The continuous contact problem between the elastic layered composite and the rigid
stamp and between two elastic layers is examined until initial separation occurs stated contact
surfaces along. In this case, the contact stress distribution, initial separation loads and distances are
investigated for various dimensionless quantities. The discontinuous contact occurs either between
the rigid stamp and the layered composite or between two elastic layers. Should applying external
load (P) be bigger than the initial separation load (Pcr), the separation occurs between two elastic
layers. Also, the separation may occur between the rigid stamp and the layered composite
depending on the flexibility of the layered composite. In the case of the discontinuous contact, the
stress distribution along the contact surface, the initial and end distances of the separation, and
vertical displacement difference between two elastic layers in the separation zone are investigated
for various dimensionless quantities. Finally, numerical results are analyzed and conclusions are
drawn.

2. General expressions for stresses and displacements 

In the absence of body forces, the two dimensional Navier equations may be written as in the
following form for considered an infinite layered composite consisting of two elastic layers and
resting on simple supports in Fig. 1. 

(1a) 

(i=1, 2). (1b) 

where ui and vi are the x and y-components of the displacement vector. µi and κi (i=1, 2) represent
shear modules and constants of the elastic layers, respectively.  for plane stress
and  for plane strain.  is the Poisson’s ratio of layer. Subscript i (i=1, 2) indicates the
values related to the layer.

For the case in which gravity forces are considered, the displacements are shown uip and vip, and
if gravity forces are not considered, the displacements are shown as uih and vih, and total field of

µi∇
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2µ i

κi−1
----------- ∂

∂x
----- ∂ui

∂x
------- ∂vi

∂y
-------+ 

  =0,

µi∇
2vi+

2µi
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----------- ∂

∂y
----- ∂ui

∂x
------- ∂vi

∂y
-------+ 

  =0,

κ i= 3−νi( )/ 1+ν i( )
κ i=3−4νi νi
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displacements may be expressed as,

ui = uih + uip, (2a)

vi = vih + vip. (2b)

Observing that x=0 is a plane symmetry, it is sufficient to consider the problem in the region
 only. Using the symmetry consideration, the following expressions may be written

(3a)

 (3b)

(3c) 

(3d)

where  and  (i=1, 2) functions are inverse Fourier transforms of ui and vi, respectively. Taking
necessary derivatives of Eqs. (3c) and (3d), and substituting them into Eqs. (1a) and (1b), and
solving second order differential equations, the following expressions may be obtained for
displacements

(4a) 

(4b)

where Ai, Bi, Ci and Di (i=1, 2) are unknown constants which will be determined from boundary
conditions of the problem. Using Hooke’s law and Eq. (4), the components of the stress without
gravity forces may be expressed as follows:

(5a)

(5b) 

(5c)

The components of the displacement and the stress for the case which gravity forces existing are
given by (A1) and (A2) in the Appendix. 

3. Continuous contact case

A layered composite consisting of two elastic layers of which heights and elastic properties are

0 x ∞≤ ≤

ui x,y( )=−ui x– ,y( ),
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different, resting on simple supports and subjected to a concentrated load with a magnitude 2P by
means of a rigid stamp on its top surface, shown in Fig. 1, will be analyzed. Particularly, the initial
separation load (λcr) and point (xcr) where the elastic layers will be separated from each other, the
distribution of the contact pressure between two elastic layers and under the stamp until the
occurrence of the initial separation will be examined.

In this case, the continuous contact problem must be solved under the following boundary
condition:

( ), (6a) 

( ), (6b) 

( ), (6c) 

( ), (6d) 

( ), (6e) 

 (6f )

( ), (6g) 

(6h) 

( ), (6i) 

in which subscripts 1 and 2 indicate related to the elastic layer 1 and the elastic layer 2,
respectively. a, b, p(x) and δ(x) are the half-width of the rigid stamp, the width of the support, the
unknown contact pressure under the rigid stamp and Dirac delta function, respectively. 

If a separation occurs between the elastic layers or the rigid stamp and the layered composite, this
will give rise to a discontinuous contact position and the following results for former solution will
no longer be valid and new solution will be attained for the latter case.

By making use of boundary conditions (6a-h), Ai, Bi, Ci and Di (i=1, 2) constants may be
calculated in terms of p(x), and by substituting the values of these constants into Eq. (6i), after some

τ2xy x,h( )=0, 0 x≤ ∞<

τ2xy x,h1( )=0, 0 x≤ ∞<

τ1xy x,h1( )=0, 0 x≤ ∞<

σ2y x,h1( )=σ1y x,h1( ), 0 x≤ ∞<

τ1xy x,0( )=0, 0 x≤ ∞<

σ1y x,0( )=−Pδ x−b( ),

∂
∂x
----- ν2 x,h1( )−ν1 x,h1( )[ ]=0, 0 x≤ ∞<

σ2y x,h( )= −p x( ), 0 x≤ a<
0, a x ∞,< <




∂
∂x
----- ν2 x,h( )[ ]=0, 0 x≤ a<

Fig. 1 Geometry of continuous contact case for the layered composite
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routine manipulations, and using the symmetry condition, p(x)=p(−x), one may obtain the following
singular integral equation for p(x).

( ),  (7)

where the kernels k1(x, t) and k2(x) are given by (A3) and (A4) in Appendix. In (7), the kernel k1(x,
t) is bounded in the closed interval , and the index of the integral equation is +1
(Erdogan� and Gupta 1972). The equilibrium condition of the problem is written as,

 (8)

In order to investigate the separation between two elastic layers, the contact stress  needs
to be evaluated. Substituting the values of Ai, Bi, Ci and Di (i=1, 2) as evaluated in terms of p(x)
into (5b), after some algebra manipulations, the contact stress is found to be,

( ),  (9)

where ρ and g2 are gravity acceleration and mass density of the layer 2, respectively. The kernels
k3(x, t) and k4(x) are given by (A5) and (A6) in Appendix.

To simplify the numerical analysis, the following dimensionless quantities are introduced:

 (10a-e)

Substituting from (10), Eqs. (7), (8) and (9) may be expressed as,

( ),  (11a)

 (11b) 

( )  (11c) 
 
Noting that the index of the integral Eq. (11a) is +1, its solution may be expressed as;

( ), (12)

where G(η) is bounded in interval ( ). Then, using the appropriate integration formula
(Erdogan� and Gupta 1972), Eqs. (14a) and (14b) are replaced by

( j=1, ..., n−1),  (13a)

 (13b)
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---k1 ξj ,η i( ) G ηi( )=1

π---k2 ξj( ),

a
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where

(i=2, ..., n−1)  (14a)

(i=1, ..., n),  (14b) 

, ( j=1, ..., n−1). (14c)

The unknowns G(ηi), (i = 1, ..., n), are determined from the system of Eqs. (13a) and (13b). By
using (12), substituting the results into (11c), and using a Gaussian integration formula, the contact
stress σy(x, h1) is evaluated. 

It should be observed that the integral Eq. (11a) is valid provided the contact stress obtained from
(11c) is compressive everywhere. For given values of a/h, b/h, h1/h and elastic properties of the
layers by evaluating the contact stress, one may obtain both the location xη (xcr) at which the
interface separation starts between two elastic layers and the corresponding critical load factor (λcr).
This factor is related to the separation load Pcr by

 (15)

4. Discontinuous contact case

The discontinuous contact may occur in two cases. Firstly, while there is the continuous contact
between two elastic layers, the separation may occur between the rigid stamp and the layered
composite. Secondly, while there is the continuous contact between the rigid stamp and the layered
composite, the separation may occur between two elastic layers. Let us examine two cases,
respectively.

4.1 The discontinuous contact between the rigid stamp and the layered composite

The discontinuous contact between the rigid stamp and the layered composite may also occur in
two cases. Depending on the flexibility of the layered composite, the separation between the stamp
and the layered composite starts from either x=0 symmetry axis (Fig. 2a) or the edges of the rigid
stamp (Fig. 2b).

4.1.1 The case of the separation starting from on the symmetry axis
The boundary conditions of the continuous contact case is valid for this case except for the fact

that ( ) and ( ) in Eqs. (6h) and (6i) must be replaced by ( ) and
( ), respectively. Therefore, the integral Eq. (7) for the continuous contact case
become as following form for this case.

( ), (16)

where the kernel  is given by (A7) in the Appendix. The equilibrium condition (8) may be
expressed as follows for this case:

W1=Wn=
1

2 n−1( )
------------------,  Wi=

1
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----------,

η i=cos i−1
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----------π 

  ,
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2
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------------ 
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Pcr

ρ2ghh2
-----------------.

0 x≤ a< a x ∞< < f x a< <
0 x≤ f< , a x ∞< <

 
f

a∫ 1
t+x
--------− 1

t−x
--------+1

h
---k1

* x,t( ) p t( )dt=−P
h
---k2 x( ), f x a< <

k1
* x,t( )
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 (17)

Defining the following dimensionless quantities,

 (18a)

 (18b)

and making use of Eqs. (10c, d), the integral Eq. (16) and the equilibrium condition (17) may be
written as follows:

( ), (19a)

 (19b)

The separation starts at  and the contact between the rigid stamp and the layered composite
will be smooth at this point and will be infinite at the end of the stamp. Therefore, g(−1) vanishes
and consequently, the index of the integral Eq. (19a) will be zero (Erdogan� and Gupta 1972).
Hence, the solution will be in the following form

g(η)=G(η)(1+η)1/2(1−η)−1/2, (−1<η<1),  (20)

where again, G(η) is bounded in interval ( ). The use of Gauss-Chebyshev integration
formula (Erdogan� and Ratwani 1974) reduces Eqs. (19a) and (19b) to

( j=1, ..., n), (21a)

 
f

a∫ p t( )dt=P.

x=a−f
2

--------ξ+a+f
2

--------,

t=a−f
2
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2

--------,
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1∫
1

η+ξ+2
a+f  

a−f  
----------

----------------------------- − 1
η−ξ----------+a−f

2h
--------k1

* ξ,η( ) g η( )dη=−k2 ξ( ), 1– ξ 1< <

a−f
2h
--------  
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1∫ g η( )dη=1.

x =f

1– η 1≤ ≤

 
i =1

n

∑ Wi

1

η i+ξj+2
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------------------------------- − 1
η i−ξ j
-------------+a−f
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--------k1

* ξ j ,η i( ) G η i( )=−1
π---k2 ξ j( ),

Fig. 2 The discontinuous contact between the rigid stamp and the layered composite
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 (21b)

where

(i=1, ..., n), (22a) 

(i=1, ..., n),  (22b)

( j=1, ..., n).  (22c)

Note that the system given by Eqs. (21a) and (21b) contains n+1 equations for n+1 unknowns,
G(ηi), (i= 1, ..., n), and f. The system is nonlinear in f and an interpolation scheme is required to
determine these unknowns. 

4.1.2 The case of the separation starting from the edges of the stamp
In this case, the integral Eq. (7) is valid except for the fact that a must be replaced by f. At 

the separation starts and the contact between the stamp and the layered composite will be smooth
near these points. Therefore, g(±1)=0 and consequently, the index of the integral Eq. (7) for this
case is −1 (Erdogan� and Gupta 1972), its solution may be expressed as

g(η)=G(η)(1−η2)1/2, ( ),  (23)

where also again, G(η) is bounded in interval ( ). The Eqs. (11a) and (11b) may be
replaced by

( j=1, .., n+1), (24a) 

 (24b)

where

(i=1, ..., n),  (25a)

(i=1, ..., n),  (25b)

( j=1, ..., n+1).  (25c)

It may be shown that the (n/2+1)th equation in (24) is automatically satisfied. Thus, the equations
given by (24) constitute a system of n+1 equations for n+1 unknowns, G(ηi), (i=1, ..., n), and f.
Note that the system is also nonlinear in f (Geçit and Gökplnar 1985) and an interpolation scheme is
required as being Eqs. (21).

a−f
2h
--------  

i =1

n

∑ WiG η i( )=1
π---,

Wi=
2 1+η i( )

2n+1
--------------------,

η i=cos 2i−1
2n+1
-------------π 

  ,

ξ i=cos 2j
2n+1
-------------π 

  ,

x =f

1– η 1< <

1– η 1≤ ≤

 
i=1

n

∑ Wi
1

η i−ξ j
-------------+

f
h
---k1 ξj ,η i( ) G ηi( )=1

π---k2 ξj( ),

f
h
---  

i =1

n

∑ WiG η i( )=2
π---,

Wi=
1−η i

2

n+1
------------,

η i=cos iπ
n+1
---------- 

  ,

ξj=cos π
2
---2j−1

n+1
------------ 

  ,
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4.2 The discontinuous contact between two elastic layers

Since the interface cannot carry tensile tractions, for P>Pcr or λ>λcr there will be separation
between two elastic layers (Fig. 3). Assuming that the separation area is described by c < x < d,
y = h1, where  c and d are unknown and are functions of P or λ. 

In this case, the separation problem must be solved under the following boundary conditions:

( ),  (26a)

( ),  (26b)

( ),  (26c)

( ),  (26d)

 (26e)

 (26f )

 (26g)

( ),  (26h)

(c < x < d),  (26i)

( ).  (26j)

Utilising the boundary conditions defined in Eqs. (26a)-(26h), the functions Ai, Bi, Ci and Di (i=1,
2) which appear in (4) and (5) may be obtained in terms of p(x) and . The new unknown
functions p(x) and  are then determined from the conditions (26i) and (26j) which have not yet
been satisfied. These conditions give the following system of integral equations:

τ2xy x,h( )=0, 0 x≤ ∞<

τ2xy x,h1( )=0, 0 x≤ ∞<

τ1xy x,h1( )=0, 0 x≤ ∞<

τ1xy x,0( )=0, 0 x≤ ∞<

σ1y x,0( )=−Pδ x−b( ),

∂
∂x
----- ν2 x,h1( )−ν1 x,h1( )[ ]= ϕ x( ),   c x d                 < <

0,       0 x≤ c< ,  d x ∞< <



,

σ2y x,h( )= p– x( ),  0 x≤ a<
    0,      a x ∞< <




,

σ2y x,h1( )=σ1y x,h1( ), 0 x≤ c< , d x ∞< <

σ2y x,h1( )=σ1y x,h1( )=0,

∂
∂x
----- ν2 x,h( )[ ]=0, 0 x≤ a<

ϕ x( )
ϕ x( )

Fig. 3 The discontinuous contact between two elastic layers
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( ), (27a)

,

(c < x < d), (27b)

where β is the ratio of the elastic constants given in the Appendix, and the kernels k1(x, t), k2(x),
k4(x, t), k5(x, t), k6(x, t) and k7(x, t) are given by (A3), (A4), (A6), (A8), (A9) and (A10) in the
Appendix, respectively.

The index of the integral Eq. (27a) is +1. On the other hand, because of the smooth contact at the
end points  c and d, the function ϕ(x) is zero at the ends and the index of the integral Eq. (27b) is
−1. In this case, the two relations which are needed to determine the unknown constants c and d are
the consistency condition of the integral Eq. (27b) and the single-valuedness condition: 

(28)

Designating the variables (x, t) on y=h and y=h1 by (x1, t1) and (x2, t2) respectively, and defining
the following dimensionless quantities, 

 (29a)

 (29b)

 (29c)

the system of integral Eqs. (27) may be expressed as follows:

( ), (30a)

,

( ), (30b)

where

 (31a)

 (31b)

 (31c)

 (31d)

  (31e)

1
π---  

a–

a∫ 1
t−x
--------+1

h
---k1 x,t( ) p t( )dt+ 1

πh
------ 4µ2

1+κ2( )
-----------------  

c

d∫ k5 x,t( )ϕ t( )dt−1
π---

P
h
---k2 x( )=0, a– x a< <

1
π---

4µ2

1+κ2( ) 1+β( )
--------------------------------  

c

d∫ 1
t−x
--------+ 1

t+x
--------+1

h
---k7 x,t( ) ϕ t( )dt+ 1

πh
------  

a–

a∫ k6 x,t( )p t( )dt−1
π---

P
h
---k4 x( )−ρ2gh2=0

 
c

d∫ ϕ t( )dt=0.

η1=t1/a,    η2=
2t2

d−c
---------−d+c

d−c
---------,

ξ1=x1/a,    ξ2=
2x2

d−c
---------−d+c

d−c
---------,

g1 η1( )=p t1( )
P/h
------------,    g2 η2( )= 4µ2

1+κ2
------------ϕ t2( )

P/h
------------,

1
π---  

1–

1∫ 1
η−ξ----------+a

h
---m1 ξ,η( ) g1 η( )dη+1

π---
d−c
2h
---------  

1–

1∫ m2 ξ,η( )g2 η( )dη−1
π---m3 ξ( )=0, 1– ξ 1< <

1
π---

1
1+β( )

---------------  
1–

1∫ 1
η−ξ----------+ 1

η+ξ+2d+c
d−c
---------

----------------------------+d−c
2h
---------m5 ξ,η( ) g2 η( )dη+1

π---
a
h
---  

1–

1∫ m4 ξ,η( )g1 η( )dη−1
π---m6 ξ( )−1

λ---=0

1– ξ 1< <

m1 ξ1,η1( )=k1 x1,t1( ),

m2 ξ1,η2( )=k5 x1,t2( ),

m3 ξ1( )=k2 x1( ),

m4 ξ2,η1( )=k6 x2,t1( ),

m5 ξ2,η2( )=k7 x2,t2( ),
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 (31f)

In Eqs. (30), the subscripts have been deleted since the variables , ,  and  all vary
between −1 and +1. Similarly, the additional conditions (8) and (28) may be expressed as

 (32a)

 (32b)

In order to solve the system of integral equations, it is found to be more convenient to assume
that (30b) as well as (30a) has an index +1 (Civelek et al. 1978) and let

( ),  (33a)

( ).  (33b)

To insure smooth contact at the end points of the separation area, it is imposed the following
condition on G2:

 (34a,b)

Using appropriate Gauss-Chebyshev integration formula (Erdogan� and Gupta 1972), Eqs. (30a),
(30b), (32a) and (32b) are reduced following algebraic expressions.

{ } ( j=1, ..., n−1), (35a)

{ }
( j=1, ..., n−1), (35b) 

 (36a)

 (36b)

where Wi, ξ j and η i are given by (14a)-(14c). Eqs. (34), (35) and (36) give 2n+2 algebraic equations
to determine the 2n+2 unknowns G1(ηi), G2(ηi), (i=1, ..., n), c and d. The system is nonlinear. So,
an interpolation scheme is required for the solution. If c and d are selected for known  and
they are substituted into (35a,b), G1(ηi) and G2(ηi), (i=1, ..., n) are obtained. But, at the same time
these values must also satisfy Eqs. (36a,b). If these equations are not satisfied, c and d must be
changed and the solution must be repeated until the Eqs. (35) and (36) are satisfied at the same
time. After G1(ηi), G2(ηi), (i=1, ..., n), c and d are determined, σy(x, h1) contact stress out of (c, d)
can be calculated by making use of Eq. (27b).

The separation between two elastic layers may be expressed as

(37a)

m6 ξ2( )=k4 x2( ).

ξ1 η1 ξ2 η2

a
h
---  

1–

1∫ g1 η( )dη=2,

 
1–

1∫ g2 η( )dη=0.

g1 η( )=G1 η( )/ 1−η2( )1/2
, 1– η 1< <

g2 η( )=G2 η( )/ 1−η2( )1/2
, 1– η 1< <

G2 1–( )=0,       G2 +1( )=0.

 
i=1

n

∑ Wi G1 η i( ) 1
η i−ξj
-------------+a

h
---m1 ξj ,η i( ) +d−c

2h
---------G2 η i( )m2 ξ j ,η i( ) =1

π---m3 ξ j( ),

 
i=1

n

∑ Wi
G2 ηi( ) 1

1+β---------- 1
η i−ξj
-------------+ 1

ηi+ξ j+2d+c
d−c
---------

------------------------------+d−c
2h
---------m5 ξ j ,η i( ) +a

h
---G1 η i( )m4 ξ j ,η i( ) =1

π---m6 ξ j( )+1
λ---,

a
h
---  

i =1

n

∑ WiG1 η i( )=2
π---,

 
i =1

n

∑ WiG2 η i( )=0,

λ λcr>

∂
∂x
----- ν2 x,h1( )−ν1 x,h1( )[ ]=ϕ x( ),       c x d< <( ),
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or

 (37b)

If the values of  is calculated from Eq. (29c), Eq. (37b) may be written as

( ), (38)

where,

(39)

Also using appropriate Gauss-Chebyshev integration formula and taking +1 the index of Eq. (38),
the following expression may be written for the separation.

(k=2, ..., n−1), (40)

where Wi and ηi are given by (14a,b).

5. Results and discussion

Some of the calculated results obtained from the solution of the continuous and discontinuous

ν x,h1( )=ν2 x,h1( )−ν1 x,h1( )=  
b

x∫ ϕ t( )dt,    c x d< <( ),

ϕ t( )

ν x,h1( )
P

------------------ 4µ2

1+κ2
------------=d−c

2h
--------- g2 1–

ξ∫ η( )dη, 1– ξ 1< <

ξ= 2x
d−c
---------−d+c

d−c
---------.

4µ2

π 1+κ2( )
---------------------ν x,h1( )

P
------------------=d−c

2h
---------  

i =1

k−1

∑ WiG2 η i( ),

Fig. 4 Contact pressure distribution under the stamp
for the case of continuous contact (b/h=1.0,
h1/h=0. 50, a/h=0.25)

Fig. 5 Contact stress distribution between two elastic
layers for continuous contact (b/h=1.0, β =
0.05, h1/h=0. 50)
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contact problems described in the previous section for various dimensionless quantities such as a/h,
b/h, h1/h, β and λ are shown in Figs. 4-10 and Table 1. Fig. 4 shows the normalized contact
pressure p(x)/P/h for the continuous contact case. The contact pressure becomes infinitely large at
the corners of the rigid stamp. As it can be seen in Fig. 4, if β defined in Appendix is sufficiently
increased (i.e., β=1.135), the contact pressure p(x) becomes zero around x=0. For bigger values of
β, p(x) changes sign and a separation of the contacting surface of the stamp and the layered
composite may take place around x=0. The solution given continuous contact case, of course, would
not be valid for this case. For fixed values of b/h, h1/h and β, Fig. 5 shows variation of the contact
stress σy(x, h1) with a/h for continuous contact between two elastic layers described in Section 3. As
a/h increases, the initial separation point xcr seems to increase and the contact stress σy(x, h1) seems
to decrease.

Fig. 6 and Table 1 show the variations of starting point of the separation with h1/h and β for
discontinuous contact between the stamp and the layered composite. As it can be seen in Fig. 6 and
Table 1, the discontinuous contact area between the stamp and the layered composite increases as
flexibility of the layered composite depending on b/h, h1/h and β increases. If the flexibility
decreases, i.e. if β decreases and h1/h increases, the discontinuous contact area decreases, and if β
sufficiently small and h1/h sufficiently big, the discontinuous contact between the stamp and the
layered composite is replaced by continuous contact. This case can be seen in Fig. 6 for β=0.10 and

 for the case of the separation starting from edges of the stamp and it can be seen in
Table 1 for either β=0.10 and  or β=0.20 and  for the case of the
separation starting from x=0 symmetry axis. Fig. 7 shows the contact pressure p(x)/P/h under the
stamp for the discontinuous contact case. For small b/h values (i.e., b/h=0.10 and 0.35), the
separation between the stamp and the layered composite starts from edges of the stamp, and for
larger b/h values (i.e., b/h=0.90, 1.00 and 1.20), the separation starts from x=0 symmetry axis. For

h1/h 0.5532≥
h1/h 0.5392≥ h1/h 0.7112≥

Fig. 6 Variations of starting point of the separation with h1/h and β for the case of the separation starting from
edge of the stamp (a/h=2.0, b/h=1.0)
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0.40 <b/h < 0.80, a separation would not occur under the rigid stamp and the discontinuous contact
case is no longer valid in this case.

Fig. 8 shows important results giving the distances c and d which define the separation zone
between two elastic layers. It appears that, for a fixed value of β and increasing load factor λ, c/h
approaches a constant asymptotic value (of approximately 1.5h). However, d/h keeps increasing
with increasing λ. Sharp point in this graphic are corresponding to the initial separation loads and
the initial separation points. In Fig. 9, the variation of the normalized contact stress σy(x, h1)/P/h at
the interface two elastic layers with a/h is given for discontinuous contact case. As it can be seen in
graphic, there are three regions in the discontinuous contact between two elastic layers. These are
the continuous contact region, separation zone, and also the continuous contact region where the
effect of the external load (P) decreases and disappears infinitely. The separation zone (d−c) is equal
to 1.0246h for a/h=0.5, 1.5407h for a/h=1.0, 1.1856h for a/h=1.5 and 0.4883h for a/h=2.0. These

Table 1 Variations of starting point of the separation with h1/h and β for the case of the separation starting
from symmetry axis (a/h=0.50, b/h=2.0)

h1/h f / h

β = 0.10 β = 0.20 β =0.30 β =1.00

0.20 0.4108 0.4181 0.4205 0.4238
0.30 0.4036 0.4280 0.4357 0.4462
0.40 0.3541 0.4165 0.4349 0.4592
0.50 0.2133 0.3769 0.4157 0.4635
0.60 0.0000 0.2914 0.3719 0.4592
0.70 0.0000 0.0903 0.2913 0.4459
0.80 0.0000 0.0000 0.1776 0.4211

'

Fig. 7 Contact pressure distribution under the stamp
for the case of discontinuous contact (a/h=1.0,
h1/h=0.50, β=0.50)

Fig. 8 Separation distances c and d between two elastic
layers as a function of load factor λ for various
values of β (b/h=1.0, a/h=0.10, h1/h=0.50)
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values show that the separation zone increases until a certain value of a/h (i.e., ), then for
a/h>1.0, it becomes decreasing.

Some sample results calculated from Eq. (40) giving the displacement  in the separation
zone c<x<d, y=h1, are shown in Fig. 10 as function x for various values of λ. As expected, The
separation zone and the separation displacement  increase with increasing load factor λ.

6. Conclusions

It has been demonstrated that the support width, the rigid stamp width, and the elastic properties
and the thickness of the layers play a very important role in the formation of the continuous and the
discontinuous contact area, the initial separation point, the separation displacement, and the stress
distribution on the contact surface. The separation both between the layered composite and the rigid
stamp, and between two elastic layers occur in various dimensionless values for various
dimensionless quantities as mentioned in section 5. However, generally, in order for the separation
not to occur or to be more difficult :

· The rigid stamp width and the support width must be sufficiently small (a/h<1.0, b/h<2.0).
· The lower layer must be more rigid than the upper layer (β<1.0).
· The thickness of the layers must be close to each other.

a/h 1.0≅

ν x,h1( )

ν x,h1( )

Fig. 9 Contact stress distribution between two elastic
layers for discontinuous contact (b/h=1.0, β=
0.05, h1/h=0.50, λ=150>λcr)

Fig. 10 Separation displacement  between two
elastic layers as a function x for various values
of the load factor λ (b/h=1.0, a/h=0.10, h1/h
=0.50, β=0.50)

ν x,h1( )
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Appendix

For the case in which gravity forces exist, i.e., special solution of the Navier equations for each strips of
which heights are h1 and h2, respectively, the components of the displacements and the stresses are given
following expressions.

(A1a)

 (A1b)

 (A1c)

u1p x( )=3−κ1

8µ1
------------ρ1gh1

2
--------------x,

v1p y( )=κ1−1
κ1+1
------------ρ1gy

2µ1
----------- y−h1( )−1+κ1

8µ1
------------y ρ2gh2+ρ1gh1/2( ),

u2p x( )=3−κ2

8µ2
------------ρ2gh2

2
--------------x,
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 (A1d)

 (A2a)

 (A2b)

(A2c)

 (A2d)

 (A2e)

where g, ρ1 and ρ2 are gravity acceleration, mass density of the strip 1 and 2, respectively.
Kernels of integral Eqs. (7), (9), (16) and (27) are expressed as follows:

(A3)

{ }

 (A4)

(A5)

 (A6)

 (A7)

(A8)

 (A9)

 (A10)

where,

v2p y( )=−ρ2gy
2µ2
----------- 1+κ2

8
------------h2−κ2−1

κ2+1
------------ h1+h−y( ) ,

σ1xp y( )=3−κ1

κ1+1
------------κ1−1

κ1+1
------------ρ1g

2
-------- 2y−h1( ),

σ1yp y( )=−ρ2gh2+ρ1g y−h1( ),       0 y h1≤ ≤( ),

σ2xp y( )=3−κ2

κ2+1
------------κ2−1

κ2+1
------------ρ2g

2
-------- 2y−h−h1( ),

σ2yp y( )=ρ2g y−h( ),       h1 y h≤ ≤( ),

τ1xyp x,y( )=τ2xyp x,y( )=0,

k1 x,t( )=  
0

∞∫ 1
∆* ω( )
--------------- K1 ω( ).K2 ω( )+βK3 ω( ).K4 ω( )[ ]−1

 
 
 

sin t−x( )ω
h
----dω,

k2 x( )=  
0

∞∫ 4βe ω–

∆* ω( )
--------------- 1−e2ωr( ).K5 ω( )+ωr 1+e2ωr( ).K6 ω( )+2 e 2– ωe2ωr−e 2– ωr( )[ ]

* sin b+x( )ω
h
----−sin b−x( )ω

h
---- dω,

k3 x,t( )=  
0

∞∫ 2e ω– e ωr–

∆* ω( )
----------------K2 ω( ) e 2– ωr−e 2– ω−K6 ω( )[ ]cos t−x( )ω

h
----dω,

k4 x( )=  
0

∞∫ 2β eωr

∆* ω( )
---------------K7 ω( ).K8 ω( ). cos b+x( )ω

h
----+cos b−x( )ω

h
---- dω,

k1
* x,t( )=  

0

∞∫ 1
∆* ω( )
--------------- K1 ω( ).K2 ω( )+βK3 ω( ).K4 ω( )[ ]−1

 
 
 

* sin t+x( )ω
h
----−sin t−x( )ω

h
---- dω,

k5 x,t( )=  
0

∞∫ 2e ω– e ωr–

∆* ω( )
----------------K2 ω( ).K9 ω( ). cos t−x( )ω

h
----−cos t+x( )ω

h
---- dω,

k6 x,t( )=  
0

∞∫ 2e ω– e ωr–

∆* ω( )
----------------K2 ω( ).K9 ω( ) cos t−x( )ω

h
----+cos t+x( )ω

h
---- dω,

k7 x,t( )=  
0

∞∫ 1+β( )
∆* ω( )
---------------K2 ω( ).K7 ω( )−1 sin t+x( )ω

h
----+sin t−x( )ω

h
---- dω,

∆* ω( )=−K2 ω( ).K3 ω( )−β.K4 ω( ).K7 ω( ),

K1 ω( )=e 4ωr– +e 4ω– −2e 2ω– e 2ωr– ,

K2 ω( )=1+e2ωr −2−4ω2r2+e2ωr( ),

K3 ω( )=e 4– ω−e 4– ωr−2e 2ω– e 2ωr– 2ω−2ωr( ),

K4 ω( )=1−e2ωr 4ωr+e2ωr( ),

K5 ω( )= 1+ω( )e 2– ωr+ 1– +ω( )e 2– ω,
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and,

K6 ω( )= ω– +ωr( ) e 2– ωr+e 2– ω( ),

K7 ω( )=e 4– ωr+e 4– ω−e 2ω– e 2ωr– 2+4ω2+4ω2r 2−8ω2r( ),

K8 ω( )= 1– +ωr+e2ωr 1+ωr( ),

K9 ω( )=e 2ω– −e 2ωr– +K6 ω( ),

β=
1+κ1

1+κ2
------------µ2

µ1
-----,         ω=αh,         r=h1/h.




