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Progressive fracture analysis of concrete using finite
elements with embedded displacement discontinuity
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Department of Civil Engineering, Yonsei University, Seoul 120-749, Korea

Abstract. In this paper, a finite element with embedded displacement discontinuity which eliminates the
need for remeshing of elements in the discrete crack approach is applied for the progressive fracture
analysis of concrete structures. A finite element formulation is implemented with the extension of the
principle of virtual work to a continuum which contains internal displacement discontinuity. By introducing a
discontinuous displacement shape function into the finite element formulation, the displacement discontinuity
is obtained within an element. By applying either a nonlinear or an idealized linear softening curve
representing the fracture process zone (FPZ) of concrete as a constitutive equation to the displacement
discontinuity, progressive fracture analysis of concrete structures is performed. In this analysis, localized
progressive fracture simultaneous with crack closure in concrete structures under mixed mode loading is
simulated by adopting the unloading path in the softening curve. Several examples demonstrate the
capability of the analytical technique for the progressive fracture analysis of concrete structures.
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1. Introduction

The progressive fracture analysis of concrete structures can be performed effectively by modeling
concrete’s fracture process zone during crack initiation and propagation. Two main approaches to
the finite element fracture analysis of concrete structures are the smeared crack approach, which
treats a cracked material as an equivalent continuum, and the discrete crack approach, which regards
a crack as an inter-element displacement discontinuity. Several versions of smeared crack models
have been proposed: the fixed crack model (Rashid 1968, Cervenka 1970), the rotating crack model
(Cope et al. 1980) and the multiple fixed crack model (de Borst and Nauta 1985, Okamura and
Maekawa 1991). Although these smeared crack models have been widely used in the fracture
analysis of concrete, they can not simulate the actual formation of discrete cracks. The discrete
crack approach (Ngo and Scordelis 1967) can do this, but the complexities in implementation, such
as continuous remeshing or addition of new nodes, and the constraint on the direction of crack
propagation along element boundaries are major drawbacks (Bocca 1991). As an attempt to remove
these drawbacks, a new approach has been proposed recently to model a crack as a displacement
discontinuity within an element. For the so-called embedded crack approach, an extended principle
of virtual work for a continuum with an internal displacement discontinuity was utilized for
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embedding the discontinuity within an element (Wan et al. 1990, Dvorkin and Assanelli 1991) and
another extension of the three-field Hu-Washizu variational statement for a continuum with an
internal discontinuity was also utilized recently for formulating elements with a discontinuous
displacement field (Lofti and Shing 1995). 

In this paper, analysis technique using finite elements embedded displacement discontinuity is
applied to the analysis of progressive fractures in concrete. The technique in this paper was initially
proposed for the analysis of the shear band in geomaterials by Wan et al. (1990). The embedded
discontinuous finite element is a pseudo discrete crack element without the difficulties associated
with using the discrete crack approach. More specifically, a discontinuous shape function for this
element circumvents the aforementioned drawbacks in the discrete crack approach. Our research
focuses on the application of Wan et al.’s embedded crack approach to the analysis of concrete
structures. A softening curve which can be obtained from experimental data on the Fracture Process
Zone (FPZ) is utilized for constitutive equation of the discontinuous line. Then, the results obtained
using linear and nonlinear softening curve are compared. Also, a localization algorithm is utilized
by simultaneously using the unloading behavior of a crack closing with the loading behavior of a
crack opening in localized failure analysis. A rational method based on the embedded crack
approach suitable for the analysis of progressive fracture in concrete structures under general
loading and boundary condition is thus established. Several case studies including types of softening
curves and the unloading path in the tension softening behavior are examined.

2. Formulation of progressive fracture

2.1 Modified virtual work

The modified form of the principle of virtual work (Malvern 1969) can be obtained by applying
the principle of virtual work to each continuum which has been divided into two parts by a
discontinuous line, as shown in Fig. 1. 

By applying the modified form of the principle of virtual work to a continuum Ω containing a
discontinuous line Γsb, we obtain

(1)

where σij is stress in the continuum, δεij is virtual strain, fi is body force, δui represents the virtual
displacement,  is the traction acting on the continuum boundary Γ, and ti and δdi are traction and
virtual embedded discontinuous displacement acting on the embedded discontinuous line Γsb,
respectively.

The constitutive equations for the continuum and the discontinuous line can be written as Eqs. (2a)
and (2b), respectively.

∆σij = Lijkl∆εkl (2a)
∆ti = −ηij∆dj (2b)

where Lijkl is the elastic constitutive tensor of continuum and ηij is the second order tensor which
represents constitutive relation along the discontinuous line Γsb. For the progressive fracture analysis
of concrete structure, softening curves which characterizes concrete’s fracture process zone and

 
Ω∫ δε i j σi j dΩ =  

Γ∫ δuiTidΓ +  
Ω∫ δui  fidΩ +  Γsb∫ δditidΓ

Ti
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assures a correct energy dissipation during fracture are applied as a constitutive equation for this
embedded discontinuous line. 

If Eq. (1) is modified into an incremental form by using Eqs. (2), the modified incremental form
of the principle of virtual work is obtained as

(3)

Eq. (3) can be used for the finite element formulation for progressive fracture analysis.

2.2 Embedded discontinuous finite element

Using the modified incremental form of the principle of virtual work equation on a continuum
with an embedded discontinuity, the element stiffness matrix governing the embedded discontinuous
finite element is derived. For the discretization of this element, the continuum displacement domain
Ω and embedded discontinuous line Γsb can be discretized as shown in Fig. 2.

In the displacement domain of element volume Ωe, displacement increment ∆u and strain
increment ∆ε are expressed with nodal displacement increment ∆  and nodal discontinuous
displacement increment ∆ . These equations are expressed as

(4a)

(4b)

where superscripts α and β represent continuity and discontinuity, respectively. Here N(α) and N(β)

are shape functions and B(α) and B(β) are compatibility matrices which can be expressed as a
differential form of N(α) and N (β). Element volume Ωe is divided into positive element volume 
and negative element volume  by embedded discontinuous line Γsb, as shown in Fig. 3. The
embedded shape function N (β) of the discontinuous line for a 4-node quadrilateral element and its
compatibility matrix B (β) can be written as Eqs. (5) and (6), respectively (Wan et al. 1990).

 
Ωt∫ δ ∆ε i j( )Lijkl ∆εkldΩ =  

Ωt∫ δ ∆ui( )∆fidΩ +  Γσ∫ δ ∆ui( )∆TidΓ +  Γsb∫ δ ∆di( )η i j ∆djdΓ.

u
d

∆u = N α( ) ∆u + N β( ) ∆d⋅ ⋅

∆ε  =B α( ) ∆u +B β( ) ∆d⋅ ⋅

Ωe
+

Ωe
−

N1
β( )+ = 14

--- 1 ξ–( ) 1 η–( )          N1
β( )− = −1

4
--- 1+ξ( ) 1 η–( )

Fig. 1 Continuum with embedded discontinuous line Fig. 2 Finite element discretization of domain
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(5)

[ ] (6)

The resulting stiffness matrix of the embedded discontinuous element can be written as 

2.3 Dual mapping integration 

If there are discontinuous regions in a finite element, a normal 2× 2 Gauss integration for a 4-
node quadrilateral finite element can not be used to properly consider the embedded discontinuity.
Therefore, integration of each element volume divided by the embedded discontinuous line is
needed. This integration can be executed by means of dual mapping (Wan 1990). The dual mapping
shown in Fig. 4 is a practical application of Gauss integration achieved by integration of a

N2
β( )+ = 1

4
--- 1 ξ–( ) 1+η( )            N2

β( )− = −1
4
--- 1+ξ( ) 1+η( )

Bi
β( ) =
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β( )
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------------
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with  i=1, 2

(7)

Fig. 3 Discontinuous shape function for a 4-node quadrilateral element
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discontinuous quadrilateral element with 10 integration points. More specifically, integration of an
element stiffness matrix of cracked element  is carried out at each region using Eq. (8).

(8)

where ξ i and ηj are local coordinates, ri and sj are sub-local coordinates, J is Jacobian
transformation from global coordinates to local coordinates, J* is Jacobian transformation from local
coordinates to sub-local coordinates, and wi and wj are weighting values.

2.4 Constitutive equation of discontinuous line

When maximum tensile stress reaches predefined tensile strength at an integration point in an
element, a discontinuous line is embedded into the element in the direction normal to the maximum
stress. For simplicity, nonlinear behavior in compression is ignored and elasticity is assumed. As
constitutive equations for the discontinuous line having crack opening displacement ω and crack
slip displacement δ at a center node in a discontinuous line, tension and shear softening curves,
which can be obtained quantitatively from fracture experiments on concrete (Kitsutaka and Mihashi
1998), are introduced as shown in Fig. 5. In Fig. 5, the total areas under tension and shear softening
curves f(ω) and g(δ) are fracture energies Gf I (mode I) and GfII (mode II), respectively. In Fig. 5, ft
is tensile strength, τt is shear strength, ωc is critical crack opening displacement of the softening
curve, and δc is critical slip displacement of the softening curve. If tension and shear stresses exist
simultaneously, the interaction between tension and shear stresses have to be considered in the
softening effect. However the interaction is ignored in this paper for simplicity. Then, the
constitutive tensor for the discontinuous line is expressed as Eq. (9). The terms ηnn and ηtt in Eq. (9)
are defined in Eqs. (10a) and (10b), respectively.

Kij
e

Kij
e=  

i=1
∑  

j =1
∑ Kij

e+ r i , sj( ) det Ji j( ) det Ji j
*( )wiwj+  

i =1

∑  
j =1

∑ Kij
e− r i , sj( ) det Ji j( ) det J i j

*( )wiwj

Fig. 4 Dual mapping technique
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(9)

(10a)

(10b)

For the analysis, a nonlinear tension softening curve proposed by Hordijk based on fracture
experiment of concrete (Kitsutaka and Mihashi 1998) is used. The equation is defined as 

(11)

where C1=3 and C2=6.93. Then, an idealized linear tension softening curve can be obtained simply
by drawing a line tangential to the nonlinear tension softening curve, as shown in Fig. 6. Note that
the slope of the linear softening model coincides with the initial slope of Hordijk’s nonlinear model.
Then, ηnn and ηtt from Eq. (9) can be written for the analysis with the linear softening curves as
Eqs. (12a) and (12b), respectively,

(12a)

(12b)

where ft is tensile strength,  is critical crack opening displacement of the linear tension softening
curve, τt is shear strength, and  is critical slip displacement of the linear shear softening curve.

2.5 Unloading path in softening curve

The major crack in concrete structure is assumed to be a crack that propagates more than other

ηe=
 ηnn 0

0 ηt t  

 ηnn=
∂ f ω( )

∂ω--------------

 ηt t=
∂ g δ( )

∂δ--------------

σ
ft
---= 1+ C1

ω
ωc
------ 

  3

 
 
 

exp −C2
ω
ωc
------ 

  − ω
ωc
------ 1+C1

3( )exp −C2( )

ηnn=− ft

ωcL

-------

ηtt=− τt

δcL

------

ωcL

δcL

Fig. 5 Tension and shear softening curves of discontinuous line
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distributed cracks. The major crack will therefore continue to grow and will ultimately cause the
structure to fail. For concrete structure without a notch or a stress concentrator, initially distributed
cracks tend to localize into the major crack simultaneous with closures of nearby distributed cracks.
This localization can be simulated only when a proper localization algorithm is implemented in the
analysis. A localization algorithm is implemented by using unloading path in the softening curve
(Horii 1993). Various unloading paths can be considered in the softening curves (Reinhardt 1984).
For example, possible three unloading paths in an idealized linear tension softening curve are shown
in the Fig. 7 and can be written as

(13)

In Eq. (13), γf =0 defines the condition when the deformation is perfectly recovered as transfer
stress normal to the crack surface reaches 0, and γf =1 defines the condition when the fracture
deformation is unrecoverable, γf =0.2 represents partial recovery of the fracture deformation which is
assumed in this study.

3. Applications and results

3.1 Double-notched tensile specimen

For the double-notched concrete specimen with given material properties shown in Fig. 8, fracture
analysis is carried out to check mesh size objectivity of the embedded crack element. For simplicity,
a linear tension-softening curve defined by the critical crack opening displacement  and the
tensile strength ft of concrete is used with the two different mesh configurations shown in Fig. 8.
Fig. 9 shows that the load-displacement curves obtained from the failure analysis for two different
mesh configurations are almost identical except for minor differences due to boundary constraints. If
the boundary constraint effect is neglected, then global failure behaviors of the two mesh
configurations become identical. It was further shown that numerical results obtained with the
embedded crack approach were not sensitive to the mesh size and orientation (Wan 1990, Lofti and
Shing 1995).

ω = γf + 1 γf–( )σ 

fα
---- ωα

ωcL

Fig. 6 Nonlinear and linear tension softening curves Fig. 7 Tension softening curve and unloading paths
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3.2 Beam specimen in tensile loading condition

A three point bending test specimen by Bazant and Gettu (1992) is used for a progressive fracture
analysis of a concrete beam in tensile loading condition. The geometries and material properties of
the single notched beam specimen are shown in Fig. 10. The finite element mesh refinement is
shown in Fig. 11. For linear and nonlinear tension softening curves, = 0.01 cm and ωc=0.07 cm
are used in the analysis, respectively.

Fig. 12 compares the load versus vertical displacement at loading point between our analysis
results, other fracture analysis result from Wu et al. (1998), and experimental data from Bazant and
Gettu (1992). As shown in Fig. 12, the displacements corresponding to peak loads are very different
between the analysis results and experimental result, although the peak loads from the three data are
very close. These differences are due to the usage of given concrete elastic moduli and idealized
boundary condition in the analyses which are different from those of the specimen in the
experiment. It should be noted that large discrepancy in initial elastic stiffnesses of the load-
displacement curves between the analytical results including the result by other analysis technique
(Wu et al. 1998) and the experimental data has nothing to do with the failure analysis techniques

ωcL

Fig. 8 Models for mesh size objectivity

 Fig. 9 Load-displacement responses
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after cracking. The relationship between the load and CMOD (Crack Mouth Opening Displacement),
which is a more reliable basis for the comparison, shows a good agreement with experimental
results, as shown in Fig. 13. It can be seen that almost identical peak loads are obtained even when
different softening curves are used. The post-peak result obtained with the nonlinear tension
softening curve is slightly higher and closer to the experimental results than that obtained with the
linear tension softening curve.

Fig. 10 Notched beam specimen under three point bending

Fig. 11 Mesh refinement of notched beam specimen

Fig. 12 Load-displacement responses Fig. 13 Load-CMOD relationships
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3.3 Beam specimen in mixed mode loading condition

In order to apply embedded crack elements to the fracture analysis of concrete under mixed mode
loading, the concrete test specimen from Uchida et al. (1993) is selected for analysis (Fig. 14). The
mesh refinement of mixed mode fracture specimen is shown in Fig. 15. For linear and nonlinear
tension softening curves, =0.013 cm and =0.09 cm are used, respectively. 

The experiment was executed in such a way that a localized failure in shear would be achieved by
mixed mode loading (Uchida et al. 1993). From an experimental observation that the fracture
energy of the mixed mode is slightly higher than that of mode I fracture, a linear shear softening
curve for mode II producing the same amount of fracture energy as mode I is used in the analysis.
A load-displacement response obtained from the analysis is compared with experimental results and
shown in Fig. 16, while a comparison with other analysis result (Wu et al. 1998) is shown in Fig. 17.
It can be seen that the analysis result on the load-displacement response including peak load shows
good agreement with the experimental results and other analysis result, except for a slight
discrepancy in initial elastic stiffnesses of the responses due to the aforementioned reasons. Both
linear and nonlinear tension softening models give nearly identical results up to the peak load but a
significant difference in the results occurs at post-peak stages, as shown in Fig. 17. As shown in
Fig. 18, the direction of crack propagation changes according to the loading steps and heads toward
the loading point coinciding with the direction observed from the experiment as described in step E
in Fig. 18.

3.4 Pull out specimen

A pull out test specimen (Fig. 19) with lateral confinement from Ohlsson and Elfgren (1991) is
selected to examine the performance of the localization algorithm with unloading path in softening
curve. Finite element meshing is performed for only a half of the specimen utilizing the symmetry

ωcL
ωc

Fig. 14 Mixed mode fracture specimen

Fig. 15 Mesh refinement of specimen



Progressive fracture analysis of concrete using finite elements 601

condition, as shown in Fig. 20. For linear and nonlinear tension softening curves, =0.0041 cm
and =0.0285 cm are used, respectively.

The load-displacement responses obtained from fracture analyses and experimental results are
compared in Fig. 21. A comparison of the two analysis cases with and without the implementation
of the unloading path is done. The analysis results indicate that the analysis effectively predicts
global failure behavior of the concrete specimen observed in the experiment, but slightly
underestimates peak load. It is also found that the aforementioned differences in deformations exist

ωcL

ωc

Fig. 16 Load-displacement responses Fig. 17 Analytical load-displacement responses

Fig. 18 Crack propagation under mixed mode loading
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for experimental and analytical results. Very close peak loads are obtained from the two analysis
cases, although post-peak responses are very different. The sudden drop in the post-peak response
predicted by the analysis with the nonlinear softening curve along with the unloading characteristics
represents severe brittle failure due to the localization of cracks to a major crack simultaneous with
closures of other cracks, which is shown in Fig 22. The simulation of the localized progressive
failure obtained from the analysis, according to different loading steps as indicated in Fig. 21, is
shown in Fig. 22. The first crack is formed in the element near the anchor, as shown at Step A in
Fig. 22. The crack propagates progressively in a horizontal direction and the propagating direction
of this major crack is changed toward the support at Step C. Vertical cracks on the anchor are also
formed at Step B and propagate up to Step E, but they are closed as the major crack keeps
propagating as shown at Step F. Eventually, failure occurs when the major crack reaches the
support. In the steps F and G, the closing of vertical cracks on the anchor is clearly shown along
with the progressively propagating fracture of the major crack in the horizontal direction.

Fig. 19 Pull out test fracture specimen Fig. 20 Mesh refinement of pull out test specimen

Fig. 21 Load-displacement responses
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Fig. 22 Progressively propagating fracture

4. Conclusions

For the progressive fracture analysis of concrete, a finite element with embedded displacement
discontinuity is utilized along with proper constitutive modeling of the fracture process zone in
concrete. The performance of the so-called embedded crack approach for concrete fracture analysis
is verified by several analytical examples on concrete specimens. It is shown that the embedded
crack analysis retains mesh size objectivity and simulates localized failure without the major
drawbacks of the discrete crack analysis. From the comparison of analytical results obtained with
different softening curves, it has been shown that a simple idealized linear softening curve can be
used to effectively predict the peak load of concrete structures. It has also been shown that the
embedded crack approach is capable of predicting progressive fracture under mixed mode loading.
By considering the unloading path in the softening curve as a localization algorithm, the localized
progressive fracture is successfully simulated. It can be concluded that the embedded crack
approach can be an effective alternative method to the smeared and discrete crack approaches. 
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