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Analysis and design for torsion in reinforced
and prestressed concrete beams

Khaldoun N. Rahal†

Department of Civil Engineering, Faculty of Engineering and Petroleum, Kuwait University,
P.O. Box 5969, Safat 13060, Kuwait

Abstract. This paper presents a simplified method for the design and analysis of non-prestressed,
partially prestressed, and fully prestressed concrete beams subjected to pure torsion. The proposed model
relates the torsional strength to the concrete compressive strength and to the amounts of transverse and
longitudinal reinforcement. To check the adequacy of this simple method, the calculated strength and
mode of failure are checked against the experimental results of 17 prestressed concrete 66 reinforced
concrete beam tests available in the literature, and very good agreement is found. The simplicity of the
method is illustrated by two examples, one for design and another for analysis.
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1. Introduction

Many structural components in bridges and buildings are subjected to significant torsional
moments that are critical in design. Box girder bridges, beams in eccentrically loaded frames of
multi-deck bridges, edge members in shells, and spandrel beams in buildings are typical examples
of such elements.

Research on the torsional behavior of reinforced concrete began in 1929 with Rausch, who
derived torsional strength equations based on the space truss model (Rausch 1929). In the 1960s,
computers made the calculation of the torsional moments in space frames possible, leading to a
significant interest in research on torsion.

Rahal and Collins (1996) categorized the currently available methods for computing the ultimate
torsional strength into two main categories. Methods in the first category use semi-empirical
equations chosen to fit the available experimental data. The main advantage of these methods is
their simplicity. Methods in the second category use procedures based on more rational models such
as the space truss analogy. These models are generally more time demanding, and suitable for
microcomputers or programmable calculators. Their strength comes from their rationality, and from
their ability to give the engineer a feel for the behavior of the structural member being designed.

The American building code (ACI 1995) and the Australian code (AS3600 1994) are based on
semi-empirical models. On the other hand, the current American bridge code (AASHTO 1998) and
Canadian building code (CSA 1994) offer two alternative design methods for shear and torsion. The
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first approach, referred to as the “simplified method”, is based on the traditional semi-empirical
models. The second approach, referred to as the “General Method”, is a simplification of a more
rational model named the Modified Compression Field Theory (MCFT). The MCFT is a powerful
rational model capable of calculating the full response of sections subjected to shear, axial load,
bending and torsional moments (Vecchio and Collins 1986, 1988, Collins and Mitchell 1991, Rahal
and Collins 1995). The General Method is not as popular as the traditional methods because in
some cases, it could be more time consuming. In conclusion, there is a lack of a unified approach,
which blends the simplicity of the traditional semi-empirical approach and the rationality of the
alternative approach.

A recently developed simplified model (Rahal 2000a) was shown to be an accurate and rational
tool for calculating the strength of membrane elements subjected to shear. This model is based on
the equations of the Modified Compression Field Theory (MCFT). The new model was able to cast
the results of the rational MCFT into a simple procedure. The applicability of the model was
extended (Rahal 2000b) to cover non-prestressed concrete beams subjected to shearing and axial
forces and bending moments. The effects of axial loads and bending moments on the shear strength
were accounted for by a simplified superposition procedure. The model was also generalized to
apply to non-prestressed concrete beams subjected to pure torsion (Rahal 2000c), and it was shown
that the assumptions adopted for the torsion application did not affect the rationality nor the
accuracy of the model.

This method was proposed (Rahal 2000a) as the basis for a simple and unified approach for the
design of reinforced concrete sections. An attractive method should also account for the effects of
prestressing in a rational and simplified manner.

In this paper, the applicability of the new method is extended to prestressed sections subjected to
pure torsion. The adequacy of the new method is checked by comparing the calculated torsional
strength and mode of failure (MOF) results with experimental results of 17 prestressed and 66 non-
prestressed reinforced concrete beams available in the literature. The use and simplicity of the
model are illustrated by two examples, one for analysis and one for design.

2. Hollow tube analogy for torsion

Torsional moments acting across a beam cross section cause shearing stresses that circulate near
the periphery as shown in Fig. 1(a). For this reason, torsion design has typically been linked to
shear design, and the design provisions for both stress resultants are addressed in the same chapter
in the building and bridge design codes (CSA 1994, AASHTO 1998, ACI 1995, AS3600 1994).
The proposed method for torsion is an extension of the method for shear.

In a comprehensive experimental testing program, Hsu (1968) showed that hollow and solid
beams have similar ultimate torsional strength. This indicates that the contribution of the inside core
of the concrete to the capacity of the section is not significant. Similarly, strain measurements by
Mitchell and Collins (1974) showed that the principal compressive strains between the cracks vary
in a linear manner, with the maximum near the surface, and zero at a distance td below the surface.
This enforces the conclusion from Hsu’s tests regarding the contribution of the inside core of
concrete. 

The hollow tube analogy assumes that near ultimate conditions, a concrete beam can be idealized
as a hollow tube with the same outer dimensions and with a thickness td (see Fig. 1b). A field of
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shearing stresses ν circulating in the tubular section resists the torsional moment. These stresses
vary from zero on the inside face to a maximum at the outer face of the tube as shown in Fig. 1(b).
Similar to the concept of equivalent compressive stress block in flexure, an equivalent field of
constant shear flow q acting over a thickness ao can be obtained (Collins and Mitchell 1991). The
area enclosed by the centerline of the shear flow is named shear flow area Ao. For thin walled
closed sections, the relationship between the ultimate torque Tu, the shear flow qu, and the shear
flow area Ao is given by:

Tu = 2quAo (1)

The shear flow qu and the nominal shear stress vu can be related by:

qu = aoνu (2)

The thickness of the tube depends on the amounts of longitudinal and transverse reinforcement,
the concrete strength, and the geometry of the section (Mitchell and Collins 1974). Based on a
simplified model, Rahal and Collins (1996) found that the average value of the thickness of the
concrete that is effective in resisting the torsional moment was:

(3)

where
Ac = area enclosed by outer concrete dimensions
pc = perimeter of outer concrete dimensions

A similar relationship but in terms of the stirrup dimensions can be found in the Canadian code
(CSA 1994) as the minimum required thickness of hollow sections for which the presence of the
void does not reduce the torsional capacity.

For normal strength concrete (below 50 MPa), the stress-strain relationship in compression can be
represented by a parabola. Assuming a parabolic stress-strain relationship of concrete in compression
and a linear variation of the concrete principle compressive stress along td, the depth of the
equivalent stress block ao can be taken as (Collins and Mitchell 1991):

ao = 0.833 td (4)

td =0.5
Ac

pc

-----

Fig. 1 (a) Shearing stresses across cross section, (b) Equivalent hollow tube and centerline of shear flow
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The assumption that the principal compressive strains vary linearly from a maximum at the
surface to zero at a depth td was first proposed by Mitchell and Collins (1974) based on their
experimental findings.

Based on the results of the simplified approach proposed by Rahal and Collins (1996), the area
enclosed by the centerline of the shear flow Ao can be approximated as:

Ao = 0.8 Ac (5)

Combining Eqs. (1) to (5) gives:

(6)

Eq. (6) gives a simple relationship between the ultimate torsional moment Tu and the ultimate
shearing stress in the walls of the equivalent tube.

It is to be noted that due to the simplifying assumptions, Eq. (6) does not depend on the shape of
the cross section. Consequently, it can be applied to a wide range of cross section shapes such as
square, rectangular, circular and multi-cellular sections and T, L, and I shaped sections.

Eq. (6) calculates the torque at high strains after considerable cracking and non-linearity in the
behavior of concrete. The torsional strength is not to be smaller than the cracking torsional moment
Tcr:

(7)

where fpc is the compressive stress in the concrete due to the prestressing operation, and  is the
compressive strength of concrete. Eq. (7) is adopted from the Canadian building code (CSA 1994).

If the nominal shearing capacity of the reinforced concrete in the walls of the tubular section can
be calculated, the ultimate torsional moment can be easily obtained using Eq. (6). In the proposed
method, the walls of the section can be idealized as reinforced concrete membrane elements
subjected to pure in-plane shearing stresses. Eqs. (6) and (7) are combined with the simplified
method for shear in membrane elements (Rahal 2000a) to calculate the torsional capacity of
reinforced and prestressed concrete cross sections.

3. Proposed method

The simplified method was originally developed to calculate the ultimate shear strength of non-
prestressed membrane elements (Rahal 2000a). This section presents a summary of the original
method, and the proposed modifications required in order to extend its applicability to prestressed
and non-prestressed beams subjected to pure torsion.

3.1 Membrane shear method

The ultimate in-plane shear stress is related to the following two non-dimensional indexes:

(8)

Tu=0.67
Ac

2

pc

-----νu

Tcr=0.4
Ac

2

pc

----- fc′ 1
fpc

0.4 fc′
-----------------+

fc′

ωt=
ρt  fyt

fc′
-----------
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(9)

where
ρL = ratio of longitudinal steel per unit area of concrete
ρt = ratio of transverse reinforcing steel per unit area of concrete
fyL = yield strength of non-prestressed longitudinal steel
fyt = yield strength of transverse steel

The indexes are commonly referred to as the reinforcing indexes. The subscript letters L and t in
the terms ωL and ωt refer to longitudinal and transverse respectively. The relationship between the
indexes and the normalized shear resistance νu /  is shown in Fig. 2, and is based on the
equations of the MCFT. Rahal (2000c) describes how the curves in Fig. 2 were developed and the
assumptions taken.

Each curve in Fig. 2 represents the relationship between νu /  and ωt at a given ωL. It is shown
that as ωt increases, the strength νu /  increases. At low ωt values, the strains in the transverse
steel exceed the yielding strains before the ultimate capacity is reached. After a specific level of
reinforcement ωt, the concrete crushes before yielding. Fig. 2 shows a curve passing in those points
past which the section is over-reinforced where crushing of the concrete takes place before yielding
of the reinforcement. A similar curve can be obtained for the yielding of the longitudinal
reinforcement.

It is to be noted that ωt, ωL and νu /  are dimensionless, and can be applied in SI as well as
American Customary Units. Due to symmetry of the shear element problem, the longitudinal and
transverse indexes can be interchanged in Fig. 2 without affecting the results.

3.2 Application to torsion problem

For the case of torsion in the equivalent hollow tube, the reinforcement ratios can be calculated
using the following equations:

ωL=
ρL fyL

fc′
-------------

fc′

fc′
fc′

fc′

Fig. 2 Normalized shear strength curves for reinforced concrete
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(10)

(11)

where
AL = total area of non-prestressed longitudinal steel
At = area of stirrups within a distance s of a single wall
s = spacing of the stirrups measured along the length of the beam

In Eq. (11), it is assumed that the longitudinal steel is distributed over an effective area of
thickness ao, and of length po, where po is the perimeter of the centreline of the shear flow. Based
on the results of their simplified method, Rahal and Collins (1996) proposed that the term po can be
approximated as:

po = 0.9 pc (12)

By combining Eqs. (3), (4), (9), (11) and (12), the term ωL for the case of torsion can be
calculated using: 

(13)

and by combining Eqs. (3), (4), (8), and (10), the term ωt can be calculated using:

(14)

Mitchell and Collins (1974) have shown that the prestress does not affect the ultimate strength if
the prestressing steel yields at ultimate conditions. To account for the effects of prestressing, it is
proposed to modify the nominator of Eq. (13) to include the contribution of the prestressing steel to
the total amount of longitudinal steel. Hence, the longitudinal index can be approximated as:

(15)

where
Ap = total area of prestressed longitudinal steel
fyp = yield strength of prestressed longitudinal steel

Along with reinforced concrete, Eq. (15) can be applied to partially or fully prestressed concrete
beams.

3.3 Mode of failure

The two solid “yield” curves divide Fig. 2 into four regions. The relative position of a point of
coordinates (ωL, ωt) with respect to these curves or regions, indicates the expected mode of failure
(MOF) of an element with these reinforcement indexes. Four modes of failure are possible. The first
mode is for completely under-reinforced sections where the longitudinal and transverse steel yield
(marked I in Fig. 2). The second and third modes are for partially over-reinforced sections: only

ρt=
At

s ao

---------

ρL=
AL

po ao

------------

ωL=
AL fyL

0.375 Ac fc′
---------------------------

ωt=
At fyt pc

0.42 s Ac fc′
------------------------------

ωL=
AL fyL Ap fyp+
0.375 Ac fc′

----------------------------------
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transverse steel yields mode (marked II in Fig. 2), and: only longitudinal reinforcement yields
(marked III in Fig. 2). The fourth mode is for completely over-reinforced sections where the
concrete crushes before steel yielding (marked IV in Fig. 2). The mode of failure of the beam
subjected to torsion is similar to that of the walls subjected to pure shear.

3.4 Use of curves for analysis

The following steps are followed to calculate the strength and the mode of failure of a reinforced
or prestressed concrete cross section: 

1. Calculate the reinforcement indexes ωt and ωL using Eqs. (14) and (15) respectively.
2. Use Fig. 2 to obtain νu /  and mode of failure (the relative position of a point of coordinates

(ωL =ωt) with respect to the yield curves indicates the expected mode of failure).
3. Calculate Tu from Eq. (6).
4. Ensure Tu is larger than Tcr calculated using Eq. (7).
Appendix A provides an example where the torsional capacity and the mode of failure of a

prestressed concrete cross section is calculated.

3.5 Use of curves for design

The following steps are followed to design the reinforcement of a section subjected to a torsional
moment: 

1. Given the design torque, calculate νu/  using Eq. (6).
2. Use Fig. 2 to obtain the reinforcement indexes ωt and ωL (select one and obtain the other from

the figure).
3. Calculate the reinforcement areas from Eqs. (14) and (15).
4. To ensure ductility, a minimum level of reinforcement or reserve strength past the cracking

torque should be provided.
If the value of νu/  calculated in step 1 can not be achieved with an under-reinforced section,

larger sectional dimensions or higher concrete strength is required.
In step 2, the selection of the reinforcement indexes is not unique as would be expected in a

design situation. The most straight forward solution is to select ωt =ωL, which, for the case of under
reinforced sections gives ωt =ωL =νu /  as will be shown later. In many situations, manufacturing
and placing transverse reinforcement is more expensive than longitudinal reinforcement. In those
cases, a larger longitudinal index is selected to minimize the required transverse reinforcement. In
other cases such as in some prestressed concrete beams, the amount of longitudinal reinforcement
and prestressing is near the maximum that the section can fit. In such situation, it is more suitable
to select a larger transverse index to minimize the longitudinal steel requirements.

To show how the proposed method is used for design, Appendix B provides an example where
the reinforcement in a concrete cross-section is selected to resist a specified torque.

4. Experimental verification

The proposed method is used to calculate the strength and mode of failure of 83 test specimens
available in the literature (66 non-prestressed, and 16 partially prestressed, and 1 fully prestressed

fc′

fc′

fc′

fc′
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beams). Fifty-three of these specimens were tested at the PCA labs (Hsu 1968), 22 at the University
of Calgary (McMullen and Rangan 1978, El-Degwy and McMullen 1985), and 8 at the University
of Toronto (Mitchell and Collins 1974, Mardukhi and Collins 1974). 

4.1 Ultimate torsional strength

Table 1 compares the observed ultimate torsional moments and the calculations of the proposed
method. The mean of the ratios Texp/Tcalc of the 83 test results is 1.03 and the coefficient of variation
is 11.1%. The ratios ranged from 0.76 to 1.37.

Table 1 also shows the results obtained using the “General Method” (CSA 1994, AASHTO 1998)
and the ACI method (ACI 1995). The mean and the coefficient of variations were 1.38 and 17.0%
for the “General Method” and 1.40 and 19.3% for the ACI method. Table 1 also shows a larger
scatter in the two code methods relative to that in the proposed method. The ratios were between
1.01 and 2.06 for the General Method, and 0.95 and 2.15 for the ACI method.

Fig. 3 shows a plot between the Texp/Tcalc ratio and the concrete compressive strength for the three
methods. It shows that the accuracy of the method was resonably uniform for the wide range of
concrete strength used in the 83 specimens (14 to 46 MPa). Fig. 3 also shows no significant loss of
accuracy if the longitudinal steel is prestressed. Similar conclusions can be drawn regarding the
performance of the code methods. The proposed method however shows a narrower range of scatter

Table 1 Comparison between experimental and theoretical results

Torsion Texp/Tcalc−83 beams

Average Std. Dev. COV (%) Maximum Minimum

Proposed method 1.03 0.114 11.1 1.37 0.76

General method 1.38 0.234 17.0 2.06 1.01

ACI code 1.40 0.271 19.3 2.15 0.95

Shear νexp/νcalc−46 shear panels (Rahal 2000a)

Average Std. Dev. COV (%) Maximum Minimum

Proposed method 1.01 0.126 12.5 1.36 0.83

General method 1.07 0.142 13.3 1.49 0.83

ACI code 1.13 0.372 32.9 2.27 0.60

Fig. 3 Correlation ratio Texp/Tcalc with concrete strength
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at different levels of concrete compressive strengths.
El-Degwy and McMullen (1985) tested 12 partially prestressed beams to study the effects of the

amount of reinforcement and the aspect ratio. The beams were divided into three groups, with a
different aspect ratio in each group. Both the longitudinal and transverse reinforcement were
proportionally increased in the beams of the same group. These test results are used to verify the
ability of the method to accuratly capture the effects of the amount of reinforcement and the aspect
ratio.

Beams PA1R, PA2, PA3 and PA4 of series PA were solid and square with 254 mm (10 in) outer
dimension, and the reinforcement index ωt ranged from 0.13 to 0.5 (ωL ≅ 2ωt). Fig. 4(a) compares
the experimental results from these beams with the calculations of the proposed method, and good
agreement is observed. The calculations of the two code methods are significantly conservative.

Beams PB1, PB2, PB3 and PB4 of series PB were solid and rectangular with 178 mm × 356 mm
outer dimensions, and the reinforcement index ωt ranged from 0.13 to 0.45 (ωL ≅ 2ωt). Beams PC1,
PC2, PC3 and PC4 of beam series PC were solid and rectangular with 146 mm × 438 mm outer
dimensions, and the reinforcement index ωt ranged from 0.13 to 0.45 (ωL ≅ 2ωt). Figs. 4(b) and 4(c)
compare the experimental results from the beams of series PB and PC respectively with the
calculations of the proposed method, and good agreement is observed. The calculations of the two
code methods are conservative.

In specimens P3, P1, P2, and P5 tested by Mitchell and Collins (1974), the level of transverse
reinforcement remained practically unchanged (ωt ≅ 0.17) while the longitudinal steel index ωL

increased from 0.16 to 1.02. Fig. 4(d) compares the experimental results from these beams with the

Fig. 4 Effects of amount of reinforcement on torsional strength
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calculations of the proposed method and the two code methods, and good agreement is observed.
Similar comparisons for non-prestressed members were reported by the author (Rahal 2000c), and

similar agreement between the experimental and calculated results was observed.
The aspect ratio is the ratio of the longer to smaller outer dimension of the concrete section. The

aspect ratio of specimens PA2 (254 × 254 mm), PB2 (178 × 356 mm), and PC2 (146 × 438 mm)
tested by El-Degwy and McMullen (1985) were 1, 2, and 3 respectively. The level of reinforcement
remained practically unchanged in all three specimens. Fig. 5(a) shows a plot between the aspect
ratio and the observed and calculated shear strength ratio Tpo/Ac

2/  (equal to νu / /1.5 as given
by Eq. 6). Fig. 5(b) shows a similar comparison for beams PA3, PB3, and PC3 which were similar
to the specimens shown in Fig. 5(a) except that the reinforcement levels were higher. A good
agreement is observed. The calculations of the code methods are also shown in Fig. 5, and they are
significantly conservative.

Figs. 5(c) and 5(d) show similar comparisons for reinforced beams tested by Hsu (1968). In this
comprehensive series of tests on the torsional strength of reinforced concrete beams, Hsu studied the
effects of numerous variables including the aspect ratio. Fig. 5(c) shows the comparison for
specimens C1, B1, G2, G6, and K1 which had similar reinforcement levels and concrete strength,
but aspect ratios ranging from 1 to 3.25, and cross-section dimensions ranging from 254 × 254 mm
to 152 × 495 mm. These specimens failed in an under-reinforced mode. 

Fig. 5(d) shows a similar plot for specimens C4, B4, G5, and K3 (254 × 254 mm to 152 × 495 mm),
which had larger reinforcement levels causing specimens C4 and G5 to fail in an over-reinforced
mode. Again, good agreement is observed between the experimental results and the calculations of

fc′ fc′

Fig. 5 Effect of aspect ratio on torsional strength
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the proposed method. The results of the code methods were conservative.
From Fig. 5, it is shown that the normalized shear strength calculated using Eq. (6) is practically

independent of the aspect ratio, and that the proposed method and the code methods captured this
phenomenon. The calculations of the proposed method were closer to the experimental results than
the two code methods.

4.2 Mode of failure

Even though the proposed method clearly differentiates between under-reinforced and over-
reinforced sections, experimental results are not always this simple to interpret. Steel strains in
experiments are normally measured using strain gauges fixed to the reinforcement at different
locations. The strain reading depends significantly on the location of the gauge with respect to the
crack location, with larger strain measured at a crack. Experimental readings hence give
measurement of local instead of average strains. To simplify the comparison, it will be assumed that
a section is under-reinforced if the strain in at least one gauge exceeded the strain at yield.

In the 83 torsion tests used in this study, the measured transverse strains exceeded the yield strains
in 57 specimens while the measured longitudinal strains exceeded this limit in 46 specimens.

The proposed method correctly predicted the state of transverse stress (yielding versus non-
yielding) in 51 out of the 83 beams. The corresponding numbers for the General Method and the
ACI method were 53 and 48 respectively. 

The proposed method also correctly predicted the state of longitudinal stress (yielding versus non-
yielding) in 55 out of the 83 beams. The corresponding number for the General Method was 64.
The ACI code does not give a clear procedure to check if the section is under-reinforced in the
longitudinal direction, especially if the steel is prestressed. In fact, the minimun longitudinal steel
equation in ACI caused the calculations of the ACI method to be excessively conservative for
prestressed for prestressed beams as shown in Figs. 4 and 5.

5. Nominal shear stress

There is a lack of a unified equation to calculate the maximum torsional shear stress and its
distribution across the thickness of the equivalent tube. It is however commonly accepted that the
shearing stresses are largest near the surface of the concrete cross section and that they decrease to
zero at the inside face of the tube. The North American codes give different equations for the
“nominal” shear stress due to torsion. The “General Method” (CSA 1994, AASHTO 1998) assumes:

(16)

where ph and Aoh are respectively the perimeter and area enclosed by the stirrups. The ACI code
(ACI 1995) assumes:

(17)

Based on Eq. (6), the proposed method uses:

νu=
Tu ph

Aoh
2

------------

νu=0.59
Tu ph

Aoh
2

------------
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(18)

It is critical to prove that the assumptions adopted to develop Eq. (6) and (18) on one side and
Eqs. (14) and (15) on the other side are compatible.

It was suggested by the author (Rahal 2000a) that for under-reinforced sections with equal
reinforcement indexes (ωL = ωt < 0.27), the normalized strength νu /  can be taken equal to ωt and
ωL. This is correctly reflected in Fig. 2. For example, at ωL = 0.2 and ωt = 0.2, it can be found that
νu / = 0.2. Fig. 6 compares νexp/  and ωL = ωt for 46 reinforced concrete shear panels (Rahal
2000a), and 20 PCA reinforced concrete beam torsion tests. A line representing the equality νexp/  =
ωL = ωt (theoretical calculations) is also shown, and very good agreement was observed. 

Fig. 6 shows a similar comparison for one prestressed beam tested at the University of Toronto.
Again a good agreement is observed. This agreement shown for reinforced members subjected to
torsion indicates that the assumptions adopted to develop Eqs. (6) and (18) on one side and Eqs.
(14) and (15) on the other side are compatible. It is to be noted that Eqs. (6), (14), and (15) did not
include any empirical modifications to improve the accuracy of the proposed method. Further test
results are needed to draw a similar conclusion for prestressed concrete beams.

6. Conclusions

A simple method for the calculation of torsional strength of prestressed and reinforced concrete
beams was presented. The proposed method is a generalization of a recently developed simplified
approach to the calculations of the ultimate strength of (reinforced) shear panels. This method was
also extended to reinforced concrete beams subjected to shearing and axial forces, and bending
moment, and to non-prestressed reinforced beams subjected to torsion. 

The results of the method were compared with the experimental results from 17 prestressed and
66 reinforced concrete beams, and good agreement was obtained. The accuracy of the method for
the cases of pure torsion and pure shear were very similar, which points to the adequacy of the

νu=1.5
Tu pc

Ac
2

------------

fc′

fc′ fc′
fc′

Fig. 6 Strength of under-reinforced sections with ωt =ωL
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assumptions adopted to apply the method to the torsion problem.
The experimental results were also compared with the results from the current ACI code method

and the current CSA and AASHTO code methods. It was shown that the results of the proposed
method agreed better with the experimental results. Another advantage of the method is that it
combines the rationality of the General method (CSA and AASHTO code) and the ACI method.

It is suggested that the proposed method can serve as a unified and rational basis for the design
and capacity calculations of reinforced and prestressed beams and panels subjected to combined
stress resultants.
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Appendix A: Capacity calculation example

The torsional strength of prestressed specimen P2 tested by Mitchell and Collins (1974) at the University of
Toronto labs is calculated to illustrate the simplicity of the proposed method.

Problem statement: Calculate the strength of the prestressed concrete hollow beam P2 shown in Fig. A1.
Given b=356 mm, h=432 mm, fc' =32.9 MPa, At =71 mm2, fyt =327.6 MPa, s=96.5 mm, AL=568 mm2, fyL =
327.6 MPa, Ap=463 mm2, fyp =1476 MPa, fpc =3.5 MPa.

Solution:
pc=1567 mm, Ac=153,790 mm2.

From Eq. (15)

From Eq. (14)

From Fig. 2, νu / =0.24. The calculated ultimate torque is given by Eq. (6): 

kN.m

The observed Texp=86.2 kN.m. The cracking torque calculated using Eq. (7) is 54.6 kN.m and does not
govern the results. The ratio Texp/Tcalc is hence 86.2/79.9=1.08.

Mitchell and Collins (1974) reported transverse strains ranging from 0.00278 to 0.00445 (yielding) and
longitudinal strains ranging from 0.00042 to 0.0013 (not yielding). The relative position of the point (ωL =
0.46; ωt =0.177) in Fig. 2 indicates that the method correctly predicts that only the transverse steel yields at

ωL=
AL  fyL Ap fyp+
0.375Ac fc′

--------------------------------=
568( ) 327.6( ) 463( ) 1476( )+

0.375( ) 153,790( ) 32.9( )
----------------------------------------------------------------------=0.46

ωt=
At fytpc

0.42 s Ac fc′
-----------------------------=

71( ) 327.6( ) 1567( )
0.42( ) 96.5( ) 153,790( ) 32.9( )

-----------------------------------------------------------------------=0.177

fc′

Tu=0.67
Ac

2

pc

-----νu=0.67
153,790( )2

1567
-------------------------- 0.24( ) 32.9( )=79.85

Fig. A1 Cross-section of beam P2 tested by Mitchell and Collins (1974)
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ultimate conditions.

Appendix B: Design example

To provide a basis of comparison between the proposed method and other available methods, the design
example is adopted from Hsu and Mo (1985) after changing the example to SI units.

Problem statement: Design a reinforced concrete hollow beam to resist a torsional moment of 836 kN.m
(7400 in.-kips). The material properties are: =27.6 MPa (4000 psi), and fyt = fyL =414 MPa (60,000 psi).
The cross-section is shown in Fig. B1.

Solution:
 pc =3990 mm, Ac =975,500 mm2.
The cracking torque for the cross section is given by Eq. (7):

 kN.m.

which is significantly less than the design torque. Hence, the reinforcement required to resist the design torque
will provide adequate ductility past the cracking level.

From Eq. (6), the normalized shear stress is:

From Fig. 2, selecting equal longitudinal and transverse reinforcement levels (ωL=ωt) gives ωL=0.19 and ωt

=0.19. From Eq. (15) and (14), the amounts of longitudinal and transverse reinforcement are:

mm2

mm2/mm

fc′

Tcr=0.4
Ac

2

pc

----- fc′ 1
fpc

0.4 fc′
-----------------+ =0.4

975,500( )2

3990
-------------------------- 27.6=501.2

ν
fc′
-----=

Tupc

0.67 Ac
2fc′

-----------------------=
836,000,000 3,990

0.67 975,500( )2 27.6
--------------------------------------------------=0.19

AL=
0.375 Acfc′

fyL

--------------------------ωL=
0.375( ) 975,500( ) 27.6( )

414
----------------------------------------------------------0.19=4,635

At/s=
0.42 Acfc′

fytpc

-----------------------ωt=
0.42( ) 975,500( ) 27.6( )

414( ) 3990( )
-------------------------------------------------------0.19=1.30

Fig. B1 Cross-section of beam designed by Hsu and Mo (1985)
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Appropriate bar details can now be selected in accordance with general code requirements. It is to be noted
that the method proposed by Hsu and Mo (1985) required AL=4760 mm2 and At /s=1.37 mm2/mm in a more
time demanding procedure.

Notation

ao = depth of equivalent stress block
Ao = area enclosed by shear flow resultant
Aoh = area enclosed in closed stirrup
Ac = gross area of within concrete outer dimensions
AL = area of non-prestressed longitudinal steel in section
Ap = area of prestressed longitudinal steel in section
At = area of one leg of transverse reinforcement within a distance s
fc' = specified compressive strength of concrete
fpc = compressive stress in the concrete due to the prestressing operation
fyL = yield strength of non-prestressed longitudinal bars in section
fyp = yield strength of prestressed longitudinal bars in section
fyt = yield strength of the stirrups
po = perimeter of shear flow resultant
pc = perimeter of outer concrete dimensions
ph = perimeter of closed stirrup
qu = shear flow at ultimate
s = spacing of the stirrups measured along the length of the beam
Tcalc = calculated ultimate torsional moment
Tcr = cracking torsional moment
td = thickness of tube resisting torsion
Texp = experimentally measured ultimate torsional moment
Tu = ultimate torsional moment
ωL = non-dimensional longitudinal reinforcement index
ωt = non-dimensional transverse reinforcement index
ρL = ratio of total longitudinal reinforcement
ρt = ratio of transverse reinforcing steel
νexp = ultimate experimental shearing stress resistance
νu = ultimate shearing stress resistance




