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Dof splitting p-adaptive meshless method

Myung-Seok Kang† and Sung-Kie Youn‡

Department of Mechanical Engineering, KAIST, Taejon 305-701, Korea

Abstract. A new p-adaptive analysis scheme for hp-clouds method is presented. In the scheme, refined
global equations are resolved into two parts, one of them being related to the newly appended dof’s. The
solution obtained in previous analysis step is reflected in the force vector. The size of the p-adaptive
equation consisting of the newly appended dof’s is much smaller than the original equation. Consequently,
the computational cost is drastically decreased. Through numerical examples, the efficiency and efficacy
of the method in comparison with the existing p-refinement scheme of the hp-clouds have been
demonstrated.
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1. Introduction

The motivation behind meshless methods is to avoid the effort generating mesh in finite element
method (FEM). The concept of analysis without mesh is realized first in the methods of smoothed
particle hydrodynamics (SPH) (1997) and particle-in-cell method (PIC) (Harlow 1964). These
methods are basically particle methods which treat a body as a set of particles.

In 1992, Nayroles et al. (1992) proposed a meshless method named as diffuse element method
(DEM) which is based on moving least square approximation. Belytschko et al. (1994) developed
an element-free Galerkin method (EFGM) which improves the accuracy of the DEM by using the
exact derivative of shape function and introducing Lagrange multipliers to exactly satisfy essential
boundary conditions. They showed the fact that a meshless method could be effectively applied to
the crack propagation problem and p-refinement could be achieved by introducing singular
functions to basis function to reproduce the singularity near crack tip. This scheme does not require
increased number of fundamental variables but one should know the characteristics of the solution
before the analysis. The posteriori error estimator is also developed. The error criterion detects the
difference between the stresses obtained by the direct derivatives of displacements and the projected
stresses. The projected stresses are obtained by the linear combination of the shape functions and
nodal stresses.

Liu et al. (1997) presented a reproducing kernel particle method (RKPM) based on the SPH
method. The SPH method does not satisfy completeness conditions. They recognized that the
inaccuracy of the SPH method near the boundary of the domain is due to the lack of completeness
of the approximation, and introduced correction terms to satisfy the completeness. In RKPM, the
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error estimator is based on the multi-resolution analysis in which the solution is resolved into two
parts-one with lower frequency components and the other with higher frequency components. The
error estimator judges that the error resides in the region where the effect of the high frequency
components is dominant. The resulting shape function of RKPM is the practically the same with
that of EFGM even though the formulation is driven in different way.

Duarte et al. (1997) devised the hp-clouds method that facilitates p-refinement in the organized
manner. The higher order hp-clouds shape functions are easily generated by the multiplication of the
partition of unity functions and basis functions. The completeness of the approximation can be
increased without the increase of the radius of influence.

In this paper, a dof splitting p-adaptive meshless method (DSPMM) is presented. In p-refinement
of hp-clouds method additional dof’s are appended to the nodes to which refinements are enforced.
As a result, new shape functions are appended which do not influence the previously introduced
shape functions. The algebraic equations constructed with existing dof’s and newly appended dof’s
are not completely different from the equation of previous analysis. Furthermore the error of the
solution is concentrated in local region in most problems, and the p-refined dof’s are appended to
the nodes in the region when the solution is not accurate enough. In DSPMM, the values of the
existing dof’s are preserved in the p-refined algebraic equations thus the resulting equations are
solved for only newly appended dof’s. Consequently the computational cost is considerably
decreased.

2. Meshless approximation

2.1 EFG approximation

The EFG method constructs meshless shape functions for arbitrarily distributed nodes without
nodal connectivity, and the shape functions are complete up to the given order. The derivation of the
EFG shape functions is based on the moving least square method in which the local approximation

 of the function u(x) is

(1)

where m is the number of terms in the basis,  monomial basis functions, and  their
coefficients. Using the moving least square method the coefficients  are determined by
minimizing the following sum of weighted squares of the differences between the nodal values and
their local approximation with respect to the coefficients .

(2)

In the above, Np is the number of nodes and  is a weight function with compact support.
The coefficient  is obtained as follows:

(3)
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(4)

(5)

Substituting the coefficient ai(x) in Eq. (3) into Eq. (1), following is obtained.

(6)

where  given by

(7)

2.1 H-p clouds approximation

Hp-clouds method provides higher order basis functions of approximation with very low
computational cost. The higher order basis functions are generated by the multiplication of the
partition of unity functions and the monomial basis. When the partition of unity function

 is complete up to the order k and the monomial basis function Lijl (x, y, z) is
complete up to the order p. The family of hp-clouds shape function in R3 is expressed as follows:

{ } (8)

where

(9)

In the above, Li(x), Lj(y) and Ll(z) is monomials of x, y and z, respectively. Then, the hp-clouds
shape function  is complete up to the order p and the typical hp-clouds approximation is

(10)

Here qi(x) is a monomial basis generated by the Eq. (9) and the order can be greater than k since
the partition of unity  is complete up to the order k.

2.2 Treatment of essential boundary conditions

The general EFG approximation does not satisfy the Kronecker delta condition  at all
the nodes. Consequently, the shape functions are not interpolants. Thus the property makes the
imposition of essential boundary conditions cumbersome.

Several methods to impose essential boundary conditions have been developed by different
researchers. Among them are the introduction of Lagrange multipliers (Belytschko et al. 1994), the
formulation using the modified variational principle (Lu et al. 1994), and coupling the meshless
shape functions with those of FEM (Krongauz and Belytschko 1996), etc. They lack computational
efficiencies or traits of meshless methods.
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In Kang and Youn (2001), admissible EFG shape functions are developed. The kinematically
admissible EFG shape functions are derived by the modification of weight functions using auxiliary
weight functions. The shape functions satisfy Kronecker delta condition on the boundary nodes
where essential boundary conditions are specified and the interpolation property is kept intact along
the boundary lines.

An auxiliary weight function is defined to have an origin at a boundary node or the boundary
segment where essential boundary condition is prescribed. The value of the auxiliary weight
function is zero at the origin and monotonically increases up to 1. Then the weight functions are
modified as the following equation.

(11)

where, Nessbc is the number of nodes or boundary segments on which essential boundary conditions
are specified. The function fIJ(x) is the auxiliary function defined between the node I and the index
J. The subscript I denotes the node where the weight function is defined and the subscript J denotes
the Jth essential boundary condition to be imposed. In the case where essential boundary condition
is imposed on a node, let the node number at which essential boundary J is imposed be J for
convenience.

The essential boundary condition J could be specified on the boundary segment consisting of two
nodes J1 and J2. The boundary segment is, in general, a curved line in two dimensional space.

The auxiliary weight function is defined as a function of a normalized distance ρIJ,

(12)

where  is a distance between the evaluation point x and the boundary J where essential
boundary conditions are prescribed.

The definition of the distance  is clear by itself when essential boundary condition is prescribed
on a node.

(13)

In the above, x is an evaluation point, and  is the position of J’th restrained node. When the
essential boundary conditions are prescribed on a boundary segment with two end nodes J1 and J2,
the distance is defined as a minimum distance from the evaluation point to the boundary segment.

(14)

where, the region A, B and C are shown in Fig. 1.
The EFG shape function with modified weight function by the auxiliary weight function is

sufficiently smooth and satisfy the Kronecker delta condition. However Eq. (7) for the shape
function is not valid on the boundary where essential boundary conditions are prescribed. The
matrix A(x) is singular since the auxiliary function has the value of zero on the boundary. 
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Examples of the auxiliary weight functions are 

 for C1 continuity (15)

  for C2 continuity (16) 

3. Variational formulation for dof splitting p-adaptive meshless method

We consider the linear elastic problem defined on the domain Ω bounded by boundary Γ. The
equilibrium equation is

in  Ω (17)

where σ is the stress tensor and b a body force vector. The traction boundary condition and the
displacement boundary condition are respectively given as follows:

 (18a)

(18b)

where the bar denotes the prescribed boundary values, and n the unit normal vector to the boundary
Γt.

Consider the trial function space U and the test function space V.

{ } (19)

{ } (20)

Now, the variational form of the equilibrium Eq. (17) becomes

(21)
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Fig. 1 Distance dJ[x] between a point xI and boundary segment J
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where  is the symmetric part of . 
The discrete equation is obtained by the introduction of the hp-cloud shape functions . The

superscript o indicates that the corresponding term is related to the analysis of unrefined problem.

(22)

where

(23a)

(23b)

Once the result of analysis is obtained the region to be refined is determined by the posteriori
error estimator (Chung et al. 1998). A p-refinement process is achieved by appending additional
dof’s to the appropriate nodes in hp-clouds method. We can write the p-refined solution up(x) as the
sum of the solution of unrefined problem uo(x) and the correction ur(x) obtained by the adaptive
analysis. The trial function up(x) and the test function δvp(x) are expressed as follows:

δvp(x)=δvo(x)+δvr(x) (24)

up(x)=uo(x)+ur(x) (25)

Note that the solution of unrefined problem uo(x) is in the space U, but the correction of the
solution ur(x) should be in the space V since all the essential boundary conditions are already
satisfied by the solution uo(x). This is easily achieved by using the modified EFG shape functions
with the auxiliary weight function mentioned in Section 2.2.

The variational formulation for the p-refined problem using the expressions of the Eq. (24) and
Eq. (25) is

(26)

The matrix form of the discretized p-refined equations is 

(27)
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(28f)

Now, we can write the p-refined equation Eq. (27) as the two coupled equations.

(29)

(30)

In many problems, the errors are localized in some critical regions. The refinement process is
achieved in the region and the solutions are improved by the appended nodes or appended dof’s.
Considering the p-adaptive refinement in hp-clouds method, newly appended higher order shape
functions do not affect existing lower order shape functions. Therefore the stiffness matrix  in
Eq. (22) is the same as that in Eq. (27). Therefore the Eq. (29) is different in the coupling term
Korur from Eq. (22). Assuming that the effect of the coupling term is minor, we can substitute the
solution uo in Eq. (22) to that in Eq. (30). 

In the point of view of the multi-resolutional analysis in RKPM, the error reside in the high
frequency part of the approximation solution. Thus the effect of p-refinement is reflected
dominantly in the values of newly appended dof’s. In this reason uo is not newly calculated from
Eq. (29). Only Eq. (30) is used to obtain refined solution. This includes the construction of stiffness
matrix K rr and Kro, and therefore the computational time to form equations is comparable to that
consumed in constructing Eq. (27). However the time required for solving the equations is
considerably decreased. When N is the number of dof’s in the problem, the time needed to form the
equations is increased in the order of N2. On the other hand, the time needed in solving the
equations is increased in the order of N3. Therefore as the problem size grows, the computational
cost of the present scheme will be remarkably decreased.

4. Numerical examples

The efficiency of the dof splitting p-adaptive meshless method is demonstrated in the following
two examples.

When the order of the hp-cloud shape functions is increased, the order of integration should be
also increased because the size of the integration cell is fixed in these examples. The integration cell
is, in the examples, a quadrilateral with four nodes. The following order of integration is used.

(31)

where

n=the order of integration
M=maximum order of the shape functions of the nodes at the vertices of a integration cell.

To quantify the numerical accuracy of the two methods the energy error norm is defined as follows:
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4.1 Cantilever beam

The bending of cantilever beam in Fig. 2 is examined. The beam has a unit width and loaded by a
force P at the end. The analytic solution of the problem is provided by Timoshenko and Goodier
(1970) for plane stress case. These are shown in Eqs. (33)-(37)

(33)

(34)

(35)

(36)

(37)

In numerical model, the displacement distribution in Eqs. (33) and (34) is applied as essential
boundary condition along the line x=0 and the load P is replaced by the traction of Eqs. (35), (36)
and (37) along the line x=L. 

Young’s modulus E=1000, Poisson’s ratio ν=0.3 and geometric parameters of L=20, D=6 are
used. Nodes are uniformly distributed with nodal distance h and the radii of supports of the shape
functions for each node are set to 2.1h. 

Fig. 3 shows the nodal distribution and shape functions defined on the nodes of the numerical
model with 147 nodes. The dots denote nodes and long vertical bar contacting with a node denotes
the corresponding shape function which is used in unrefined analysis. The number of dof’s doubles
the number of the bars. The other short bars in Figs. 3(b), (c) and (d) denote the appended shape
functions. In general hp-clouds method, all the dof’s are solved in each adaptive analysis. However
in DSPMM only the appended dof’s are solved in adaptive analysis. 

Fig. 4 shows the computational costs required in forming and solving equations. As shown in the
figure, the computational cost consumed in forming DSPMM equations is almost same as that of
hp-clouds method. However, in the case of DSPMM the computational cost required in solving
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4
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x
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-----------+ 3L x–( )x2
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P
I
--- L x–( )y

σxy=− P
2I
----- D2

4
------ y2– 

 

σyy=0

Fig. 2 Cantilever beam



Dof splitting p-adaptive meshless method 543

Fig. 3 The numerical model with 147 nodes of the bending of a beam

Fig. 4 The computation times required in constructing equations and solving the equation

Fig. 5 P-convergence for bending of a beam problem
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equations is far less than that of hp-clouds method. 
Fig. 5 shows the accuracies of the hp-clouds method and DSPMM. The accuracy of DSPMM is

comparable to that of hp-clouds method.

4.2 A plate with a hole

The finite quarter plate in Fig. 6 is loaded with the stresses in Eqs. (38), (39) and (40) to
reproduce the behavior of the infinite plate with a hole at the origin under uniform unilateral tension
σ. The analytical solution of the stress distribution is given by Timoshenko and Goodier (1970) for
plane stress case.

(38)

(39)

(40)

where (r, θ) are polar coordinates with an origin at the center of the hole. The parameters of the
problem used are the width and height L=5, the radius of the plate h=1, the uniform lateral tension
δ =10, Young’s modulus E=1000, and Poisson’s ratio ν=0.3.

The numbers of nodes used are 121 and 961. The dof’s are added by introducing the higher order
hp-clouds shape functions to the nodes and the refined system is solved by the two different
formulation of normal hp-clouds method and DSPMM.

Fig. 7 shows the distribution of nodes and shape functions defined on the nodes.
Fig. 8 shows the computational costs required for constructing equations and solving the equations.
The accuracies of hp-clouds method and DSPMM are plotted in Fig. 9.
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Fig. 6 The finite quarter plate with a central circular hole
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Comparing the results of the p-adaptive refinement using hp-clouds method and DSPMM, the
accuracy of the hp-clouds method turns out to be slightly better than that of the DSPMM. However,
in the view of computational costs, the DSPMM is far more efficient than the existing p-adaptive
scheme as the number of dof’s is increased.

Fig. 7 The shape functions corresponding to each node

Fig. 8 The computation times required in constructing equations and solving the equation
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5. Conclusions

A dof splitting p-adaptive meshless method (DSPMM) is presented. In this method, only the
newly appended dof’s are solved in the p-adaptive analysis. The accuracy and the computational
cost requiring to construct the equations are comparable to those of general p-adaptive hp-clouds
method. However, it needs drastically reduced computational cost in solving the equation. This is a
noticeable feature in meshless method since meshless methods normally require very high
computational costs when compared with existing numerical method like FEM.
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