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Dof splitting p-adaptive meshless method
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Abstract. A new p-adaptive analysis scheme figp-clouds method is presented. In the scheme, refined
global equations are resolved into two parts, one of them being related to the newly appended dof’s. The
solution obtained in previous analysis step is reflected in the force vector. The size pphdhptive
equation consisting of the newly appended dof’s is much smaller than the original equation. Consequently,
the computational cost is drastically decreased. Through numerical examples, the efficiency and efficacy
of the method in comparison with the existimgrefinement scheme of thép-clouds have been
demonstrated.
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1. Introduction

The motivation behind meshless methods is to avoid the effort generating mesh in finite element
method (FEM). The concept of analysis without mesh is realized first in the methods of smoothed
particle hydrodynamics (SPH) (1997) and particle-in-cell method (PIC) (Harlow 1964). These
methods are basically particle methods which treat a body as a set of particles.

In 1992, Nayroleset al (1992) proposed a meshless method named as diffuse element method
(DEM) which is based on moving least square approximation. Belytssthkb (1994) developed
an element-free Galerkin method (EFGM) which improves the accuracy of the DEM by using the
exact derivative of shape function and introducing Lagrange multipliers to exactly satisfy essential
boundary conditions. They showed the fact that a meshless method could be effectively applied to
the crack propagation problem armrefinement could be achieved by introducing singular
functions to basis function to reproduce the singularity near crack tip. This scheme does not require
increased number of fundamental variables but one should know the characteristics of the solution
before the analysis. The posteriori error estimator is also developed. The error criterion detects the
difference between the stresses obtained by the direct derivatives of displacements and the projected
stresses. The projected stresses are obtained by the linear combination of the shape functions and
nodal stresses.

Liu et al (1997) presented a reproducing kernel particle method (RKPM) based on the SPH
method. The SPH method does not satisfy completeness conditions. They recognized that the
inaccuracy of the SPH method near the boundary of the domain is due to the lack of completeness
of the approximation, and introduced correction terms to satisfy the completeness. In RKPM, the
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error estimator is based on the multi-resolution analysis in which the solution is resolved into two
parts-one with lower frequency components and the other with higher frequency components. The
error estimator judges that the error resides in the region where the effect of the high frequency
components is dominant. The resulting shape function of RKPM is the practically the same with
that of EFGM even though the formulation is driven in different way.

Duarteet al (1997) devised thép-clouds method that facilitatgsrefinement in the organized
manner. The higher ordép-clouds shape functions are easily generated by the multiplication of the
partition of unity functions and basis functions. The completeness of the approximation can be
increased without the increase of the radius of influence.

In this paper, a dof splitting-adaptive meshless method (DSPMM) is presenteg:-réfinement
of hp-clouds method additional dof's are appended to the nodes to which refinements are enforced.
As a result, new shape functions are appended which do not influence the previously introduced
shape functions. The algebraic equations constructed with existing dof's and newly appended dof’s
are not completely different from the equation of previous analysis. Furthermore the error of the
solution is concentrated in local region in most problems, ang-théned dof’s are appended to
the nodes in the region when the solution is not accurate enough. In DSPMM, the values of the
existing dof’'s are preserved in therefined algebraic equations thus the resulting equations are
solved for only newly appended dof's. Consequently the computational cost is considerably
decreased.

2. Meshless approximation

2.1 EFG approximation

The EFG method constructs meshless shape functions for arbitrarily distributed nodes without
nodal connectivity, and the shape functions are complete up to the given order. The derivation of the

EFG shape functions is based on the moving least square method in which the local approximation
uh(x) of the functionu(x) is

m
u'(x)= 3 pi(x)a(x) (1)
where m is the number of terms in the basfs(x) monomial basis functionsaéryl their
coefficients. Using the moving least square method the coefficiglig are determined by

minimizing the following sum of weighted squares of the differences between the nodal values and
their local approximation with respect to the coefficiem{x)

J=szw(x—xl)[u(x—x,)—u(x)]z @

In the aboveN; is the number of nodes ama(x —X;) is a weight function with compact support.
The coefficienta;(x) is obtained as follows:
a(x)=A(x) B(x)u 3)

where
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A (x)= NZplW(X —x)Ri(x)p;(x) (4)
By (X)=w(x =x)pi(xy). ()
Substituting the coefficiers(x) in Eq. (3) into Eq. (1), following is obtained.
u(x)= g ¢y (6)
where ¢,(x) given by
$,09=3 POIAK) B, ™

2.1 H-p clouds approximation

Hp-clouds method provides higher order basis functions of approximation with very low
computational cost. The higher order basis functions are generated by the multiplication of the
partition of unity functions and the monomial basis. When the partition of unity function
Sﬁ,p(x)z{ ¢E(x)}§£’1 is complete up to the ordé&rand the monomial basis functidf(x, y, 2) is
complete up to the ordex The family ofhp-clouds shape function iR® is expressed as follows:

FeP={ {0500} O { oKLy (X)}; 1<a<N; 0<i,j,l<p,iorjorl>k; p=k (8)
where
Lij (x,y,2)=Li(X)L;(y)Li(2) O<i,j,l<p %)

In the above,lr_‘}x), Lj(k/) and Ly(2) is monomials ofx, y and z, respectively. Then, thbp-clouds
shape functiong;,” 0 FN’S is complete up to the ondemd the typicahp-clouds approximation is

Np n
(=3 ¢T(x)[u. +3 b qi(x)} (10)

Here gi(x) is a monomial basis generated by the Eq. (9) and the order can be greakesitttan
the partition of unitySﬁ,p(x) is complete up to the order

2.2 Treatment of essential boundary conditions

The general EFG approximation does not satisfy the Kronecker delta conglifion) # J,; at all
the nodes. Consequently, the shape functions are not interpolants. Thus the property makes the
imposition of essential boundary conditions cumbersome.

Several methods to impose essential boundary conditions have been developed by different
researchers. Among them are the introduction of Lagrange multipliers (Belytsichkd 994), the
formulation using the modified variational principle (let al. 1994), and coupling the meshless
shape functions with those of FEM (Krongauz and Belytschko 1996), etc. They lack computational
efficiencies or traits of meshless methods.
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In Kang and Youn (2001), admissible EFG shape functions are developed. The kinematically
admissible EFG shape functions are derived by the modification of weight functions using auxiliary
weight functions. The shape functions satisfy Kronecker delta condition on the boundary nodes
where essential boundary conditions are specified and the interpolation property is kept intact along
the boundary lines.

An auxiliary weight function is defined to have an origin at a boundary node or the boundary
segment where essential boundary condition is prescribed. The value of the auxiliary weight
function is zero at the origin and monotonically increases up to 1. Then the weight functions are
modified as the following equation.

W (X)=w;(x) I fi3(x) (11)
1<J< Nogope
1£J

where, NesshciS the number of nodes or boundary segments on which essential boundary conditions
are specified. The functiofy(x) is the auxiliary function defined between the nbdmd the index
J. The subscript denotes the node where the weight function is defined and the subsigipdtes
the Jth essential boundary condition to be imposed. In the case where essential boundary condition
is imposed on a node, let the node number at which essential bounhdalynposed bel for
convenience.

The essential boundary conditidrcould be specified on the boundary segment consisting of two
nodesJ; andJ,. The boundary segment is, in general, a curved line in two dimensional space.

The auxiliary weight function is defined as a function of a normalized distance

_dy[x]

Pd,1x]

where d;[x] is a distance between the evaluation poiand the boundary where essential
boundary conditions are prescribed.

The definition of the distancd,[x] is clear by itself when essential boundary condition is prescribed
on a node.

(12)

dy[x1=[x - x5 (13)

In the abovex is an evaluation point, anzdjC is the positionJth restrained node. When the
essential boundary conditions are prescribed on a boundary segment with two endl aodeds,
the distance is defined as a minimum distance from the evaluation point to the boundary segment.

s, [XT=|x =, |, if X is in the region A
dy[X]=0x =X if X is in the region B (14)
Eﬁjz[x]zux—szn, if X is in the region C

where, the regiod\,, B andC are shown in Fig. 1.

The EFG shape function with modified weight function by the auxiliary weight function is
sufficiently smooth and satisfy the Kronecker delta condition. However Eq. (7) for the shape
function is not valid on the boundary where essential boundary conditions are prescribed. The
matrix A(x) is singular since the auxiliary function has the value of zero on the boundary.
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Equi-distance line

Linear boundary segment ]

Region A Region B Region C
Fig. 1 Distanced;[x] between a point, and boundary segmet

Examples of the auxiliary weight functions are

M-(1-p,)% if 0sp, <1

f,(x)=f (p,)=0 . for C! continuity (15)
m, if P21
_ -(1-p,.)° if 0<p.<1
£ ()= f (p)= =P 0S5 <1 2 Continuity (16)

M, if p;=21

3. Variational formulation for dof splitting p-adaptive meshless method
We consider the linear elastic problem defined on the do@abounded by boundary. The
equilibrium equation is
0 Co+b=0 in Q a7)

where g is the stress tensor afida body force vector. The traction boundary condition and the
displacement boundary condition are respectively given as follows:

oglh=t on I, (18a)
u=u on ", (18b)

where the bar denotes the prescribed boundary values, tiedunit normal vector to the boundary
[
Consider the trial function spatkand the test function spave

U={uOH(Q),u=u on I} (19)

v={vOH'(Q),v=0 on I} (20)
Now, the variational form of the equilibrium Eg. (17) becomes
[ 5(DSVT):GdQ—J’,_‘ 5VTEbdF—Ir ov' [fdr=0, OoévOH! (21)
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where 0" is the symmetric part &fv’
The discrete equation is obtained by the introduction ohgheloud shape functiong’(x) . The
superscripb indicates that the corresponding term is related to the analysis of unrefined problem.

K*0°=F° (22)

where
KS=[, Bf DBSdQ (23a)
Fi=[, @#Tdl + [,¢’bdQ (23b)

Once the result of analysis is obtained the region to be refined is determined by the posteriori
error estimator (Chungt al. 1998). A p-refinement process is achieved by appending additional
dof’s to the appropriate nodes lip-clouds method. We can write tiperefined solutionuP(x) as the
sum of the solution of unrefined probleuf{x) and the correction/(x) obtained by the adaptive
analysis. The trial functioo®(x) and the test functiodvP(x) are expressed as follows:

N P(X)=0v"(x)+V (x) (24)
WP)=u’(x)+U'(¥) (25)

Note that the solution of unrefined probleuf(x) is in the spaceJ, but the correction of the
solution u'(x) should be in the spacé since all the essential boundary conditions are already
satisfied by the solution’(x). This is easily achieved by using the modified EFG shape functions
with the auxiliary weight function mentioned in Section 2.2.

The variational formulation for thp-refined problem using the expressions of the Eq. (24) and
Eq. (25) is

0 nT., o 0 T — o T
o =[, Oy(v’ +V') :(0 +o”)dQ—J’,_t 8(v° + V) 1 Tdr = [, 8(v"+V') :bdQ
DUo 0u, Dl,lr av, DVO oV, DVr av (26)

The matrix form of the discretizqurefined equations is

KOO KOI’ DJOD D:OD

o |0 CF0 D (27)
K™K J@WD OF'O

where

Key=[,, Bf DBSAQ, (28a)
K®=[, B DBidQ, (28b)
KIS=(, B} DBSdQ, (28¢)
K[\=[, B/ DBYQ, (28d)

F = [ @tdr+ [ @bdQ, (28e)
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F[=J’rt(nrfdl' o @bdQ, (28f)

Now, we can write th@-refined equation Eq. (27) as the two coupled equations.
K00uO=F0_K0rur (29)
K"u'=F"-K"u’. (30)

In many problems, the errors are localized in some critical regions. The refinement process is
achieved in the region and the solutions are improved by the appended nodes or appended dof’s.
Considering thep-adaptive refinement imp-clouds method, newly appended higher order shape
functions do not affect existing lower order shape functions. Therefore the stiffness Kiatrix in
Eq. (22) is the same as that in Eq. (27). Therefore the Eq. (29) is different in the coupling term
K°U" from Eq. (22). Assuming that the effect of the coupling term is minor, we can substitute the
solutionu® in Eq. (22) to that in Eqg. (30).

In the point of view of the multi-resolutional analysis in RKPM, the error reside in the high
frequency part of the approximation solution. Thus the effectp-oéfinement is reflected
dominantly in the values of newly appended dof’s. In this rea8as not newly calculated from
Eq. (29). Only Eg. (30) is used to obtain refined solution. This includes the construction of stiffness
matrix K™ and K™, and therefore the computational time to form equations is comparable to that
consumed in constructing Eqg. (27). However the time required for solving the equations is
considerably decreased. Whiris the number of dof’s in the problem, the time needed to form the
equations is increased in the order Nt On the other hand, the time needed in solving the
equations is increased in the orderN5f Therefore as the problem size grows, the computational
cost of the present scheme will be remarkably decreased.

4. Numerical examples

The efficiency of the dof splitting-adaptive meshless method is demonstrated in the following
two examples.

When the order of thép-cloud shape functions is increased, the order of integration should be
also increased because the size of the integration cell is fixed in these examples. The integration cell
is, in the examples, a quadrilateral with four nodes. The following order of integration is used.

n=40/M (31)
where

n=the order of integration
M=maximum order of the shape functions of the nodes at the vertices of a integration cell.

To quantify the numerical accuracy of the two methods the energy error norm is defined as follows:
1

” EeH2= l:%J.Q ( gh _ gexact)T( O'h _ a_exact)dQJz (32)
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Fig. 2 Cantilever beam

4.1 Cantilever beam

The bending of cantilever beam in Fig. 2 is examined. The beam has a unit width and loaded by a
force P at the end. The analytic solution of the problem is provided by Timoshenko and Goodier
(1970) for plane stress case. These are shown in Egs. (33)-(37)

2
u;%[ (6L = 3X)X+(2+ V) E}zz—%g} (33)
P (L x4+ 592 X3l -0 34
=gl vl -0 +(4+ 5 22+ (BL - (34
0= (L-X)y (35)

2

ny:—ZBIEJDZ—yZE (36)
0,,=0 (37)

In numerical model, the displacement distribution in Egs. (33) and (34) is applied as essential
boundary condition along the linee0 and the loadP is replaced by the traction of Egs. (35), (36)
and (37) along the ling=L.

Young’'s moduluse=1000, Poisson’s rati’=0.3 and geometric parameters lof20, D=6 are
used. Nodes are uniformly distributed with nodal distance h and the radii of supports of the shape
functions for each node are set to 2.1h.

Fig. 3 shows the nodal distribution and shape functions defined on the nodes of the numerical
model with 147 nodes. The dots denote nodes and long vertical bar contacting with a node denotes
the corresponding shape function which is used in unrefined analysis. The number of dof’s doubles
the number of the bars. The other short bars in Figs. 3(b), (c) and (d) denote the appended shape
functions. In generahp-clouds method, all the dof’s are solved in each adaptive analysis. However
in DSPMM only the appended dof’s are solved in adaptive analysis.

Fig. 4 shows the computational costs required in forming and solving equations. As shown in the
figure, the computational cost consumed in forming DSPMM equations is almost same as that of
hp-clouds method. However, in the case of DSPMM the computational cost required in solving
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Fig. 3 The numerical model with 147 nodes of the bending of a beam
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Fig. 5P-convergence for bending of a beam problem
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equations is far less than thathgfclouds method.
Fig. 5 shows the accuracies of thgclouds method and DSPMM. The accuracy of DSPMM is
comparable to that dfp-clouds method.

4.2 A plate with a hole

The finite quarter plate in Fig. 6 is loaded with the stresses in Egs. (38), (39) and (40) to
reproduce the behavior of the infinite plate with a hole at the origin under uniform unilateral tension
0. The analytical solution of the stress distribution is given by Timoshenko and Goodier (1970) for
plane stress case.

O, (X, y)= agl - D1=cos26+ cos4GD+—cos495 (38)
2r

a,,(X,y)= a %cosze—coszldl—cosﬁg (39)

O,,(X,y)= a %sm29+sm465+—sm465 (40)

O

where ¢, 6) are polar coordinates with an origin at the center of the hole. The parameters of the
problem used are the width and heigh®t, the radius of the plate=1, the uniform lateral tension
0=10, Young’s modulug€=1000, and Poisson’s ratie=0.3.

The numbers of nodes used are 121 and 961. The dof’s are added by introducing the higher order
hp-clouds shape functions to the nodes and the refined system is solved by the two different
formulation of nhormahp-clouds method and DSPMM.

Fig. 7 shows the distribution of nodes and shape functions defined on the nodes.

Fig. 8 shows the computational costs required for constructing equations and solving the equations.

The accuracies dip-clouds method and DSPMM are plotted in Fig. 9.
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Fig. 6 The finite quarter plate with a central circular hole
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Fig. 7 The shape functions corresponding to each node
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Fig. 8 The computation times required in constructing equations and solving the equation

Comparing the results of the-adaptive refinement usingp-clouds method and DSPMM, the
accuracy of théap-clouds method turns out to be slightly better than that of the DSPMM. However,
in the view of computational costs, the DSPMM is far more efficient than the existidgptive
scheme as the number of dof’s is increased.
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Fig. 9 P-convergence for infinite plate with a hole

5. Conclusions

A dof splitting p-adaptive meshless method (DSPMM) is presented. In this method, only the
newly appended dof’s are solved in th@daptive analysis. The accuracy and the computational
cost requiring to construct the equations are comparable to those of geadeagitivehp-clouds
method. However, it needs drastically reduced computational cost in solving the equation. This is a
noticeable feature in meshless method since meshless methods normally require very high
computational costs when compared with existing numerical method like FEM.
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