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Application of softened truss model with plastic approach
to reinforced concrete beams in torsion

Jun-Kai Lut and Wen-Hsiung Wu#

Department of Civil Engineering, National Pingtung University of Science and Technology,
Pingtung, Taiwan 912, ROC.

Abstract. The present paper discusses the behavior of the reinforced concrete beams subjected to
torsion by applying the endochronic plastic model in conjunction with the softened truss model. The
endochronic constitutive equations are developed to describe the behavior of concrete. The mechanical
behavior of concrete is decomposed into hydrostatic part and deviatoric part. New definition of the bulk
modulus and the shear modulus are defined in terms of compressive strength of concrete. Also, new
deviatoric hardening function is developed. Then, the endochronic constitutive equations of concrete are
applied with the softened truss model for the behavior of the reinforced concrete beams subjected to
torsion. The theoretical results obtained based on the present model are compared with the experimental
data. The present model has shown the ability to describe the behavior of reinforced concrete beams
subjected to torsion.
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1. Introduction

The present paper discusses the behavior of the reinforced concrete beams subjected to torsion by
applying the endochronic constitutive equations of concrete with the softened truss model. The
endochronic theory was first proposed by Valanis (1971). Next, the theory was applied to describe
the mechanical behavior for different materials, as in Bazant and Bhat (1976, 1977), Bazant (1978),
Valanis (1980), Wu and Yip (1981), Valanis and Fan (1983), Wu and Wang (1983), Watanabe and
Atluri (1985), Wu and Aboutorabi (1988), Pan, Yang and Lu (1998), Wu and Lu (1995), Wu, Lu
and Pan (1995) and Lu (1998).

Bazant and Bhat (1976) modified the endochronic theory to describe the mechanical behavior of
concrete. Their model is powerful but a comply. Wu and Aboutorabi (1988) derived an endochronic
model for concrete based on Gibbs formulation. Their model did not discuss the strain softening
behavior of concrete. The present paper develops the endochronic constitutive equations for concrete
accounting the strain softening behavior in a simple form. Following the similar procedure of Lu
(1998), we have the endochronic constitutive equations for concrete. The mechanical behavior of
concrete are decomposed into hydrostatic part and deviatoric part. The bulk modulus and the shear
modulus used in present model are redefined in terms of compressive strength of concrete. New
version of deviatoric hardening function is developed in this paper to account the strain softening
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behavior of concrete. Then, the endochronic constitutive equations of concrete are applied with the
softened truss model to describe the behavior of reinforced concrete beams subjected to pure torsion.

The softened truss model was developed and improved by Hsu and his co-workers (Hsu and Mo
1985, Hsu 1988, 1991, Belarbi and Hsu 1994, 1995, Hsu and Zhang 1996 and Pang and Hsu 1996).
It is based on the two dimensional equilibrium, Mohr strain compatibility and biaxial constitutive
equations of materials. The softened truss model has been applied to determine the ultimate strength
and the deformation throughout its post-cracking loading history of reinforced concrete beams in torsion.
In present paper, the endochronic constitutive equations of concrete are applied with the softened
truss model to describe the behavior of reinforced concrete beams subjected to torsion. The theoretical
results are compared with the experimental data in Fang (1995). Several specimens with different
properties have been included. Reasonable agreement between theory and experiment has been
achieved.

2. The endochronic model for concrete

The endochronic stress-strain relationship for concrete can be obtained by following the similar
procedure of Lu (1998) as

1
gkkzéRakk'l'?)BOykk 1)
and
& =55 +Cay (2)
IToG™ 2Mij
Also, the evolution equation of internal variables of above equations can be obtained as
dy,
Mod_zk:"'Eoykk_Bonkzo 3)
and
dp;
de_Z;"'szij_Czsijzo (4)

In Egs. (1)-(4),&; represents the straiwy represents the stregg, denotes the internal variable
related to hydrostatic deformation amg denotes the internal variable related to deviatoric
deformation;g; ands; are the deviatoric components &fand g, respectivelyBo, Eo, Mo, Cy, F»
and N, are the material constant&; and Z, represent the hydrostatic and the deviatoric intrinsic
time, respectivelyK denotes the bulk modulus a@dis the shear modulus.

In present investigation, the mechanical response of concrete are decomposed into two parts: the
hydrostatic response and the deviatoric response. Egs. (1) and (2) are the stress-strain relation for
the hydrostatic response and the deviatoric response, respectively. Egs. (3) and (4) are the evolution
form of internal variables for the hydrostatic response and the deviatoric response, respectively. To
consider the effect of the compressive strength of concrete, new bulk modulus and shear modulus
are defined in terms of the compressive strength of concrete in this paper. To consider the strain
softening behavior of concrete, the new deviatoric hardening function is developed. These are
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discussed in the following sections:
2.1 The hydrostatic response

The hydrostatic strain incremedg can be expressed in terms of the increment of hydrostatic
stressdoy, with hydrostatic response internal variablg that is related to the hydrostatic response,
from Eq. (1), as

dey=5— dakk+SBOd Yik %)

3K

The bulk moduluX is defined in terms of the compressive strength of concrete in the present
model as

K=Ko+K,fe' (6)

whereK, andK; are material constants arfg’ represents compressive strength of concrete. Note
that, from Eq. (3), the increment of internal variab, depends on the hydrostatic intrinsic time
Zy, the current state of hydrostatic stress and internal vadiglded can be expressed as

dykk D\/I Ukk M, ykk%sz (7)
To account for strain-hardening, the hydrostatic intrinsic #mes scaled by
dd
dz,= 8
4710, ®

where the{y represents the hydrostatic intrinsic time scale and the funb(i@g) represents
volumetric hardeningf is the plastic volumetric strain-like tensor and its increment is defined by

dekk:dgkk_klﬁ (9)

wherek; denotes a material constant with the value between zero and one k\Whetd, is the
plastic volumetric strain increment. The increment of the hydrostatic intrinsic time digalis
defined interns of volumetric strain as

ddy =|d6y (10)

The volumetric hardening functidi(8) is defined as

c,—(c,—6,)e 0
h(8)="—5 g (11)

wherec, anda denote material constants afigirepresents the maximum attainable plastic volumetric
strain. The form of Eq. (7) was originally used for porous material by Wu and Aboutorabi (1988).

2.2 The deviatoric response

The deviatoric strain incremedg; can be expressed in terms of the increment of deviatoric stress



396 Jun-Kai Lu and Wen-Hsiung Wu

ds; with deviatoric response internal variallg, from Eq. (2), as

dQJ ZGdSJ C2dp|J (12)

Similar to the bulk moduluK, the shear modulu§& is defined in terms of the compressive
strength of concrete in this paper as

G=G,+G;f,' (13)

where G, and G; are material constants. It notes that, from Eq. (4), the increment of internal
variabledp; depends on the deviatoric intrinsic tirdg, the current state of deviatoric stregsand
the internal variabl@; and can be expressed as

dIDU‘EEZ p.HdZD (14)

The deviatoric intrinsic timé&y is scaled by
ddp
f(Zp)

where functionf(Zp) represents deviatoric hardening; ti@ represents the deviatoric intrinsic time
scale and defined as

dZp=

(15)

d{p=|dQ| (16)
with
ds;
0Q,=de, k5 a7

where dQ; denotes the increment of plastic deviatoric strain-like tensorkadeénotes a material
constant with the value between zero and one.

To account for the compressive strength dependence of strain hardening and strain softening of
concrete, the new definition of deviatoric hardening fundifdp) is defined in this paper as

F1(Zo)Fa(f' Joa)

f(Zp)=—tDl2 18
( D) F3( fc l‘JZd !‘JZdlllh) ( )
with
—BZp

Fi(Zp)=G—-(g-1)e (19)
Fa( £, Jaq)=by+b, f ' +D3J54(f.") by (20)

J,,0
Fa(f.' Jod" 1 d2a, 1 10) = 1+(ay =8, f") Llog' = Jod’ (Ep)ljzdl"-dZIQﬁE (21)

1h

wherecy, B, &, b, d are material constantsj, Joy and J,4' represent the first invariant of the
hydrostatic stress, the second invariant of the deviatoric stress and the second invariant of the
deviatoric strain, respectivelyl,q' &f denotes the value ak,y'  with the plastic strain equa},.to

The mark “< >" is the Macaulay function withA<B>=0 for A< B and sA-B>=A-B for A>B.
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The functionF(Zp) in Eq. (18) is the hardening function that are originally used for metal by Wu
and Yip (1981). The functiorF,(f.',J,q) accounts for the effect of compressive strength of
concrete. The functiofr;(f,',J.4",J20,11n) IS the function that governs the strain softening behavior
of concrete. Before the plastic strain reachépgheF; is equaling one.

2.3 Comparison with experimental data

We now apply the present endochronic constitutive equations to describe the mechanical behaviors
of concrete. The specimens with different compressive strength are discussed. Fig. 1 shows the
theoretical results fit experimental data of concrete under uniaxial loading condition. The material
constants are obtained from curve fitting the theoretical results with experimental data of concrete
under uniaxial loading. Note that the material constants for hydrostatic p#&§=&29 MPaK;=
0.1948, ¢;=0.000316,8,=0.005, a=1.36, By=6.234x 10°, E;=6.872x 10°, M¢=6.46% 10°, k,;=0.95
and the material constants for deviatoric part@e4.64 MPa,G,=0.1876,C,=0.539,3=152.6,N,
=3.458x 10°, F,=1.3264x 1(P, ¢4=3.7234,2,=224500,8,=2430, b,=0.3, b,=0.037, b;=0.0002, b,=
0.5544, d,=0.135, d,=1.84, k;=0.882 and theg, inl,y'(g,) equals 0.0014. The same material
constants will be used through this paper. Fig. 1 includes the specimens with concrete compressive
strengths of 21 MPa, 31 MPa and 41 MPa. The experimental data are from Hognestad, Hanson and
McHenry (1955). Fig. 2 shows the theoretical results and experimental data of concrete under
uniaxial loading/unloading condition. It includes the specimens with concrete compressive strengths
of 25.86 MPa and 40 MPa. The experimental data of concrete compressive strength equal to 25.86 MPa
are from Sinha, Gerstle and Tulin (1964) and that of compressive strength equal to 40 MPa are
from Spooner and Dougill (1975). Fig. 3 shows the theoretical results and experimental data of
concrete under biaxial compression loading condition. The compressive strength of the concrete is
32.8 MPa and the experimental data are from Kupfer, Hilsdorf and Rusch (1969). The agreements

45

40t

351

301

251

20r [}

Axial stress (MPa)

151 —: Theory 1)
Experiment

o:f,=21Mpa

+: 1, =31Mpa

x: f, =43Mpa

0 “1 é 3 4 5 6
Axial strain (102 m/m)
Fig. 1 Stress-strain curve for concrete under uniaxial loading
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Fig. 3 Stress-strain curve for concrete under biaxial compression loading

between the theoretical and experimental results are quite good.

3. The summary of softened truss model

The softened truss model, which was developed and improved by Hsu and his co-workers,
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includes the stress equilibrium equations, strain compatibility equations, the constitutive equations of
concrete in compressive and tension and the constitutive equations of reinforcing steel. They are
summarized below.

3.1 The constitutive equations of concrete
The stress-strain curve of concrete recommended by Hsu (1996) are improved version where

suggested by Belarbi and Hsu (1994, 1995)
Concrete in compression:

- . & & f &y
0,=¢ E{z 2k DZD_EEOD } <1 22)

s
Lk &
o=0, 0 1-F—=—2>—0 d
024 O ¢ [k
07" 0

>1 (23)

whereg, is strain at maximum compressive stress aadénotes softening coefficient with

{2 (24)

/1+400LF,

Concrete in tension:

o,=E.[k, & <0.00008 (25)
.00008 04
o =f,, EEpg_rD , & >0.00008 (26)
wherekE. is elastic modulus of concrete afgddenotes cracking stress of concrete.
3.2 The constitutive equations of steel

The simplified stress-strain relationships for longitudinal and transverse steel from Hsu (1991) are
below:

fi=Es[E, &<gy (27)
fi=ty, &=¢g, (28)
and
fi=Es [k, &<& (29)
f=fy, &=&y (30)

whereE; represents the elastic modulus of steel bgrsind &, are the yield strains of longitudinal
and transverse steel bars, respectivighgndfy are the yield stresses of longitudinal and transverse
steel bars, respectively.
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3.3 The equilibrium equations

0,=0y Et303201+0r ESin201+p| i (31)
0,=0y Dsin20(+ar Et:oszor+pt f; (32)
1.=(-04*0;)sina [tosa (33)

_ T
TlI_ZAe [td (34)

where g, and g; are the normal stress in theandt directions, respectivelyr; denotes the shear
stress in thé—t coordinate;gy and g; are the principal stress in tdeandr directions, respectively;
a denotes the angle of inclination of tlkaxis with respect tol-axis; o, and p, are the
reinforcement ratio in thé andt directions, respectivelyfi andf; are the steel stress in thandt
directions, respectivelyt represents the applied torqug;denotes the area within the centerline of
the shear flow ant} denotes the thickness of shear flow zone.

For pure torsiong;, g; are nil ando; is neglected, i.eg;=0, ;=0 ando;=0. Then, Eqgs. (31), (32)
and (33) can be rewritten as

gy [tosa+ p, f=0 (35)
o, Binfa+p, f=0 (36)
T,=—0y Sina [tosa (37)

P, P Ae andp, can be expressed lyas

p= ot (38)
p= (39)
A=AZD. Dt (40)
Pe=Pc—4tq (41)

wherep, represents the perimeter of the centerline of the shear glodenotes the outer perimeter

of concrete cross section aAd denotes the area bounded by the outer perimeter of concrete cross
section;A andA, are cross-sectional area of steel for total longitudinal bars and one transverse hoop
bar, respectively.

3.4 The compatibility equations

§=&4 Et:osza+gr Bin‘a (42)
&= &y Eisin201+er tofa (43)
Yii=2(—¢&4t€,)sina [tosa (44)

V=0 &ina (45)
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= (46)

£4=2 [k, (47)
Pe

TN (48)

where g, & and ); are the average strains in thandt directions and the average shear strains in
the |-t coordinate, respectivelygy and g are the average principal strains in thandr directions,
respectively;0 represents the angle of twist per unit leng§thlenotes the curvature of the diagonal
concrete struts angls denotes the maximum compressive strain.

4. Application to reinforced concrete beams

In this section, we apply the endochronic constitutive equations of concrete with the softened truss
model for the behavior of reinforced concrete beams subjected to torsion. The endochronic
constitutive equations of concrete developed by present paper are used instead of the elastic stress-
strain relationship used by Hsu and his co-workers. The theoretical results are compared with the
experimental data. Several specimens with different properties have been investigated. The experimental
data are from Fang (1995). The flow chart of numerical calculation procedure is shown in Fig. 4.

4.1 The constitutive equations of concrete

In stead of Egs. (22)-(26), the constitutive equation of concrete are used in present model and
expressed as

0,=K.f(&,) (49)

where f(gy) represents endochronic constitutive equations of concrete, i.e. Egs. (5)-(21), that are
derived previouslyK; is the coefficient for reinforced concrete beam and relates to the longitudinal
and the transverse steel ratio of reinforced concrete beam and compression strength of concrete. In
present paper, the€; is defined as

Ke= %Lso,—12 +0.14 (50)
with
K.<1 (51)

wherep, andp, are the longitudinal and the transverse steel ratio, respectively.
The other hand, they can be obtained from Egs. (35) and (36) as

—p [f
o= (52)
cos a
and
—p, [f
gL (53)

sinfa
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0.04 0.06 0.08
twist angle (rad/m)

Table 1 The properties of specimens (Fang 1995)

Fig. 5 Torque-twist curve for normal compression strength concrete specimens

Reinforcement

Specimen f.' X,(x1) v, (y1) fiy fy
No. (MPa) (mm)  (mm)  Longitudinal bars Stirups ~ (MPa)  (MPa)
N1 29.3 4#5 #3@150mm 383 494

300 180
N2 4#5 #3@120mm 383 484
N3 27.6 4#5 #3@120mm 383 484
240 240
N4 4#6 #4@ 85mm 508 397
H1 300 180 4#6 #3@ 60mm 508 484
H2 81.1 4#6 #3@ 70mm 508 484
H3 240 240 a4#7 #4@ 60mm 475 397
H4 75.9 4#8 #3@ 60mm 522 386

The gy from Eg. (49) should be the same as those from Egs. (52) and (53). The accepted
tolerances in calculation are 0.1 MPa.
Also, the angle of twist is modified in present model as

and

6'=61b.008, +76“p' pt['imﬂl for g <1

6'=05.008, 476 PTP0 for &

f, U

21

(54)

(55)
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Fig. 6 Torque-twist curve for high compression strength concrete specimens
whereg,, denotes the strain in maximum stress.
4.2 Comparison with experimental data

In this applicationgy, f.', As, P, A, A, S, fiy andfy, are knownty and a are estimated initially.
The flow chart of numerical calculation procedure is present in Fig. 4(a) and 4(b). If the differences
between thegy's from Eqgs. (49), (52) and (53) are smaller than the accepted tolerance 0.1 Mpa, the
initial value ofty anda will be used in the next step. Otherwiteand a will be modified by using
the modification procedure shown in Fig. 4(c). Following the procedure of numerical calculation,
the torque and twist angle can be obtained. The theoretical results of present model and
experimental data are shown in Figs. 5 and 6. The experimental data are from Fang (1995). Fang
has investigated two major groups of specimens. One group is normal compressive strength
concrete specimens and the other group is high compressive strength concrete specimens. The
properties of the specimens are shown in Table 1. Fig. 5 shows the theoretical results of present
model and experimental data for the normal compressive strength concrete specimens. Fig. 6 shows
the results for the high compressive strength concrete specimens. It is seen that the agreement is
quite satisfactory for both cases.

5. Conclusions

The present paper modifies the endochronic constitutive equations to describe the mechanical
behavior of concrete. The mechanical behavior of concrete investigated includes hydrostatic
response and deviatoric response. The bulk modulus and the shear modulus are redefined in terms
of compressive strength of concrete. To account the strain softening behavior of concrete, new
version of deviatoric hardening function is developed. Then, the endochronic constitutive equations
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of concrete are applied with the concepts of the softened truss model to describe the behavior of
reinforced concrete beams subjected to torsion. The theoretical results of the present model are
compared with the experimental data. The present model has shown the ability to describe the
behavior of reinforced concrete beams subjected to torsion.
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