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Use of semi-active tuned mass dampers for vibration
control of force-excited structures
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Abstract. A new class of semi-active tuned mass dampers, named as “Ground Hook Tuned Mass
Damper” (GHTMD) is introduced. This TMD uses a continuously variable semi-active damper (so called
‘Ground-Hook’) in order to achieve more reduction in the vibration level. The ground-hook dampers have
been used in the auto-industry as a means of reducing the vibration of primary suspension systems in
vehicles. This paper investigates the application of this damper as an element of a tuned damper for the
vibration reduction of force-excited single degree of freedom (SDOF) models that can be representative of
many structural systems. The optimum design parameters of GHTMDs are obtained based on the
minimization of the steady-state displacement response of the main mass. The optimum design parameters
which are evaluated in terms of non-dimensional values of the GHTMD are obtained for different mass
ratios and main mass damping ratios. Using the frequency responses of the resulting systems, performance
of the GHTMD is compared to that of equivalent passive TMD, and it is found that GHTMDs are more
efficient. A design methodology to obtain the tuning parameters of GHTMD using the relationships
developed in this paper is presented.
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1. Introduction

Application of tuned mass dampers (TMD) to reduce vibrations dates back to the beginning of
last century (Frahm 1911), where they were used for the reduction of rolling motion of ships. Since
then there have been a large number of research efforts dedicated to the understanding and various
applications of TMDs to reduce vibrations. Ormondroyd and Den Hartog (1928), and Den Hartog
(1947) investigated the use of tuned mass dampers for the reduction of the amplitude of vibration of
un-damped single degree of freedom systems. Tuned mass dampers have been used to control the
vibration level of different structural and mechanical systems. Several variations of these systems
including non-linear springs (Roberson 1952), tuned liquid dampers (Yeh et al. 1996), and multiple-
tuned mass dampers (Yamaguchi and Harnpornchai 1993) have been applied to various structural
systems. In general, the tuned mass dampers work based on adding a secondary vibrating system to
a main vibrating system at resonance such that the natural frequency of the secondary system is
tuned to the primary system and oscillates to counteract the motion of the primary system.
Typically, the secondary system has only a fraction of the primary system mass. Therefore, by
adding only a small amount of secondary mass the vibration of the primary system can be reduced
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significantly.
The most widely used tuned mass dampers have been passive TMDs. For this type of device,

there is not any external forces added to the system, and the characteristics of the spring and/or
damping do not change with time. There have been different studies on the use of active TMDs,
based on the introduction of an external source of power to produce additional forces on the
primary system to reduce its levels of vibrations (Udwadia and Tabaie 1981, Lund 1980, Chang and
Soong 1980). Even though the active TMDs have better performance than passive TMDs, they have
several disadvantages including: need for actuators, pumps, etc., high operational costs; and high
power requirements. 

In order to avoid the above disadvantages a new class of tuned mass dampers have been
introduced using variable damping or stiffness. This class of tuned mass dampers (so called semi-
active TMDs) have simple hardware requirements, low operational costs, and low power
requirements. Different variations of semi-active TMDs have been introduced for transient vibration
control such as wind induced vibrations in tall buildings (Hrovat et al. 1983), and for the seismic
protection of civil structures (Abe 1996).

There is a large body of research on the application of semi-active dampers as primary suspension
systems in vehicles. They have been used to control wheelhop (the axle vertical motion), and
vehicle-body acceleration (Karnopp and Crosby 1974, Crosby and Karnopp 1973, Krasnicki 1980,
Miller 1988, Ahmadian and Marjoram 1989).

A class of semi-active dampers called “skyhook” and “groundhook” (will be explained later) have
resulted in significant control of vehicle vibrations (Miller 1988, Ahmadian 1997). However, these
dampers can not be effective where the relative motion of the system is small. Therefore, for these
situations tuned mass dampers using this type of dampers are being considered. 

This paper studies the application of ground hook semi-active damper in a tuned mass damper
configuration to reduce the vibration of single degree of freedom (SDOF) force excited systems.
The resulting device is called ‘Ground-Hook Tuned Mass Damper (GHTMD)’. The optimum design
parameters of the GHTMD will be found and its effectiveness as compared to equivalent passive
TMD will be investigated. 

2. Description of the GHTMD

Fig. 1 shows a single degree of freedom system consisting of mass m1, stiffness k1, and damping
c1 subjected to a harmonic force . When the exciting frequency (ω) becomes close to the
system natural frequency (ω1), it will be in resonance and the main mass will be subjected to large
amplitudes of motion (x1). In order to reduce the vibration level, a secondary mass (m2), will be
attached to the main mass through a spring and dashpot with the stiffness coefficient of k2, and a
variable damper of c2, respectively.

The “ground hook control policy” assumes that the variable damping c2 can be switched between
a low state and a high state. The two common types of this semi-active damper are on-off ground
hook and continuously ground hook (Miller 1988). For the on-off ground hook dampers, the
damping is switched between a minimum and a maximum level. The switching is performed based
on the following conditions:

F=F0e
i ωt

x·1 x·1−x·2( ) 0 c2=cmax→≥
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 (1)

where  and  are the velocities of masses m1, and m2, respectively.
For the continuous ground hook dampers, the damping is adjusted in the range between a

minimum (off) and a maximum (on) level according to:

 (2)

The variable G is the gain that relates the damping level to the absolute velocity of the main mass
m1. It has been shown that the continuous semi-active damper performs better than the on-off
damper (Ahmadian 1997). Therefore, this paper only studies the performance of continuous ground
hook dampers as used in tuned mass dampers.

3. Response of GHTMD compared to TMD

The differential equations of motion of the system shown in Fig. 1 are as follows:

 (3)

Since this is a nonlinear system the approximate forms of the response are:

(4)

The following non-dimensional parameters as used for the passive TMDs are defined (Den Hartog
1947):

x·1 x·1−x·2( ) 0 c2=cmin=coff→<

x·1 x·2

x·1 x·1−x·2( ) 0 c2=con→≥ =min G x·1 , cmax{ }

x·1 x·1−x·2( ) 0 c2=cmin=coff→<

m1x··1+c1x·1+c2 x·1−x·2( )+k1x1+k2 x1−x2( )=F

m2x··2+c2 x·2−x·1( )+k2 x2−x1( )=0

x1=X1e
i ωt

x2=X2e
i ωt

Fig. 1 Vibrating system with the GHTMD



344 Mehdi Setareh

=mass ratio

=frequency ratio of the TMD or GHTMD to the main system

=damping ratio of the main system

=frequency ratio of the excitation to the natural frequency of the main system

In the above ω1=2π f1 and ω2=2π f2, where f1, and f2 are the natural frequencies of the main system
and TMD or GHTMD individually in Hz. 

Substituting (4) into equations of motion (3), and simplification of the results, the equations of
motion are: 

(5)

The displacement responses  and  in terms of non-dimensional amplification factors A1 and
A2 are defined as:

(6)

in which ∆st is the static displacement for mass m1.
Substitution of (6) into Eq. (5) will result in:

(7)

The above equations are in terms of non-dimensional parameters except the damping term c2.
Depending on the type of damper (passive or semi-active) the above equations can be re-written as
will be shown below: 

3.1 Passive TMD

For the passive TMDs, c2 is a constant term which is defined as c2=2m2ω2ξ2, in which ξ2 is the
TMD damping ratio. Upon substitution of c2 in Eq. (7) the following set of equations in terms of
non-dimensional parameters will be obtained:

µ=
m2

m1

------

f =
ω2

ω1

------=
f2

f1

---

ξ1=
c1

2m1ω1

----------------

g=
ω
ω1

------

g
2– X1+2igξ1X1+ig

c2

m1ω1

------------- X1−X2( )+X1+µf
2

X1−X2( )=
F0

m1ω1
2

-------------

µg
2– X2+ig

c2

m1ω1

------------- X2−X1( )+µf
2

X2−X1( )=0

X1 X2

X1=A1∆st=A1

F0

k1

-----=A1

F0

m1ω1
2

-------------

X2=A2∆st=A2

F0

k1

-----=A2

F0

m1ω1
2

-------------

g
2– A1+2igξ1A1+ig

c2

m1ω1

------------- A1−A2( )+A1+µf
2

A1−A2( )=1

µg2– A2+ig
c2

m1ω1

------------- A2−A1( )+µf 2 A2−A1( )=0
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(8)

Solution of the above equations will determine the magnitudes of A1, A2, and the phase angle
between the main mass and TMD (θ) in the following familiar forms:

(9)

in which:

c=f 2−g2

d=2g fξ2

p= f 2

q=2g fξ2

3.2 Semi-active GHTMD

In the case of semi-active GHTMD, c2 varies with time based on the rule set by Eq. (2). When
the damper is off, the damping value c2 can be defined as c2=2m2ω2ξoff . Substituting into Eq. (7)
will result in a set of equations similar to (8) with ξoff replacing ξ2:

(10)

According to Eq. (2) when c2 is on, it is defined as c2= . In order to keep Eq. (7) in non-
dimensional form, a non-dimensional parameter ‘e’ is defined as:

(11)

Substituting the parameter ‘e’ and c2 into Eq. (7) results in the following non-dimensional set of
equations of motion:

g2– A1+2igξ1A1+2igµfξ2 A1−A2( )+A1+µf 2 A1−A2( )=1

µg
2– A2+2igµfξ2 A2−A1( )+µf

2
A2−A1( )=0

A1=
c

2+d
2 

a
2

 +b2 
---------------

 
 
  1/2

A2=
p2+q2 

a
2

 +b2 
---------------

 
 
  1/2

θ =tan1– dp−cq
cp+dq
----------------

a= 1−g
2

 

 
  f

2  

 −g
2

 

 
  −g

2
f µf+4ξ1ξ2( )

b=2g ξ1 f
2  

 −g
2

 

 
  +ξ2 f

  
 1−g

2−µg
2

 

 
    

 

g2– A1+2igξ1A1+2ig f µξoff A1−A2( )+A1+µf 2 A1−A2( )=1

µg2– A2+2ig f µξoff A2−A1( )+µf 2 A2−A1( )=0

G x·1
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GF0

m1
2ω1

2
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(12)

Using the control policy of Eq. (2), since the damping c2 varies with time, the GHTMD system is
a nonlinear dynamic system. In general, these systems do not have any closed form solutions,
however, approximate techniques have been proposed to solve the equations of motion (Miller
1988). Here, it is shown that depending on the state of the system according to Eq. (2), the
equations of motion switch between Eqs. (10) and (12) in terms of non-dimensional parameters.
Therefore, as will be shown later the parameters defined here can be used for the general design of
GHTMDs. In order to solve the equations of motion (3), the Newmark Method (Newmark 1959),
which is a direct integration technique is used. After calculation of  and , using Eq. (6) A1 and
A2 are found for the tuned system. Other non-dimensional design parameters (e, f, ξoff) are also
obtained accordingly.

4. Performance of the GHTMD

In order to evaluate the efficiency of GHTMD in reducing the vibration of force-excited systems,
a non-dimensional parameter (p) representing the system performance is defined as follows:

(13)

For the GHTMD to perform better than its equivalent TMD (having, the same mass ratio as the
GHTMD) the value of ‘p’ has to be less than 1.0. The smaller the ‘p’, the more efficient GHTMD
is as compared to its equivalent TMD. Note that in the above equation A1 is the magnitude of the
amplification factor. In addition, in the following sections of this paper A1 (amplification factor of
the main mass) and A2 (amplification factor of the GHTMD mass) represent the magnitudes of these
parameters. 

5. Parametric studies

In order to study and compare the behavior of GHTMD with its equivalent TMD and establishing
guidelines for the design of GHTMDs, a simple single degree of freedom system which can be
representative of many structural systems is considered here. The dynamic parameters of the system
are m1=17.5 N-sec2/mm (100 lb-sec2/in); f1=2 Hz; F0=44,500N (10,000lb). It has to be noted that
even though the results reported here are for a particular model since the GHTMD design properties
are defined in terms of non-dimensional parameters they can be applied to any dynamic system as
will be shown later in the design guide section.

In order to study the behavior of the GHTMD with different mass ratio µ, m2 was varied to range
µ from 0.01 to 0.50. In addition the main system damping ratio, ξ 1, was assumed to be 0.0, 0.01,
0.05, and 0.10 to study its effect on the system behavior. In order to perform time history analyses
of the system, a time step size of 0.005 second was chosen. This selection was based on the fact

g2– A1+2igξ1A1−g2 eA1 A1−A2( )+A1+µf 2 A1−A2( )=1

µg2– A2−g2 eA1 A2−A1( )+µf 2 A2−A1( )=0

X1 X2

p=
A1( )maxGHTMD

A1( )maxTMD
---------------------------------------
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that it takes about 0.01 second for the valves in the semi-active dampers to respond from a fully
open to a fully closed position (Miller 1988). Similar to the passive TMDs (Den Hartog 1947), the
optimum GHTMD design parameters f, ξoff , and e were computed based on minimization of the
maximum amplification factor, (A1)max. In addition, in order to perform a direct comparison of the
results with the passive TMD, the optimum parameters of the equivalent TMD (f, ξ2) were
calculated, where ξ2 is the damping ratio of the TMD. Fig. 2 shows the variation of the
amplification factor for system with ξ1=0.01 with various mass ratios (µ). The maximum main mass
amplification factors (A1) reduce with an increase in the mass ratios as can be expected in TMDs. In
addition, from this figure it can be concluded that the optimality condition of TMD, which is having

Fig. 2 Variation of the GHTMD main mass amplification factor (A1) with excitation frequency ratio (g) for
different values of µ [ξ1=0.01]

Fig. 3 Variation of the phase angle difference between the main mass (m1), and the GHTMD mass (m2) with
excitation frequency ratio (g) for different values of µ [ξ1=0.01]
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two equal peak amplitudes is also applicable to GHTMDs. Fig. 3 shows the variation of the phase
angle difference between the main mass and the GHTMD mass (θ ) as a function of the excitation
frequency ratio (g). It has to be noted that for the system without the device the maximum
amplification factor, (A1)max is 1/2ξ1.

Fig. 4 shows the variation of the amplification factor of the GHTMD mass (A2) with respect to
the excitation frequency ratio (g). As in the case of passive TMD, the GHTMD mass has much
higher amplification factor at the resonance frequency than the main mass. Figs. 5, and 6 show the

Fig. 4 Variation of the GHTMD mass amplification factor (A2) with excitation frequency ratio (g) for different
values of µ [ξ1=0.01]

Fig. 5 Variation of the GHTMD main mass amplification factor (A1) with mass ratio (µ) for different values
of ξ1
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variation of the maximum main mass amplification factors with mass ratio (µ) for the GHTMD, and
TMD respectively. Comparison of the two figures indicate similar patterns in changes of the
amplification factors with respect to the variation of the primary system damping. As could be
expected there is a much larger reduction in the amplification factor for the mass ratios of up to
10%. Beyond this point the increase in the secondary system mass (m2) has less significant effect on

Fig. 6 Variation of the passive TMD main mass amplification factor (A1) with mass ratio (µ) for different
values of ξ1

Fig. 7 Variation of the optimum frequency ratio (f ) of the GHTMD with mass ratio (µ) for different values of
ξ1
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the reduction of the main mass amplification factor.
Figs. 7 and 8 show the variation of the optimum frequency ratios (f ) with respect to the mass

ratio (µ) for the GHTMD, and TMD respectively. Comparison of these figures demonstrates the
similarity of the changes in the optimum frequency ratios for the two systems. Fig. 9 shows the
changes in the optimum parameter (e) of the GHTMD with mass ratio (µ). Since the gain (G) is
proportional to ‘e’, it can be concluded that the optimum gain increases with the mass ratio (µ) and
the primary system damping (ξ1).

The variation of the optimum off-damping ratio (ξoff ) of the GHTMD with mass ratio (µ) is
shown in Fig. 10. The off-damping as defined earlier increases with the mass ratio (µ) and
decreases with the increase in the main system damping (ξ1). The variation of performance (p) as
defined in Eq. (13) with respect to the mass ratio (µ) for different values of ξ1 is shown in Fig. 11.
As is observed in this figure, the GHTMD can outperform an equivalent TMD. The GHTMD
performs better with a decrease in primary system damping (ξ1). In general, TMDs are effective
only when the main system damping (ξ1) is low. This fact shows that GHTMDs can be used as
substitutes for TMDs. In the case studied here the GHTMD can outperform the equivalent TMD by
about 14% where ξ1=0, and about 12% when ξ1=0.01.

The next two plots represent the sensitivity of the system response due to changes in the design
parameters. Fig. 12 shows the variation of the main mass amplification factor (A1)max with respect to
changes in the frequency ratio (f ) and parameter (e). Fig. 13 displays the variation of A1 with
respect to f and off-damping ratio (ξoff ). In both cases it can be observed that the frequency ratio is
the most important design parameter, and system response varies significantly once it becomes off-
tune due to changes in the frequency ratio. 

One of the problems that the designer is faced when using GHTMD, is the possibility of off-
tuning due to the changes in the main mass (m1). Fig. 14 shows the variation of (A1)max due to
changes in m1. As can be noticed if m1 is more than its optimum value (m1)opt the response is

Fig. 8 Variation of the optimum frequency ratio (f ) of the passive TMD with mass ratio (µ) for different
values of ξ1
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significantly larger than when m1 is less than (m1)opt by the same amount. Therefore, when
designing a GHTMD, it is recommended to be tuned to the maximum possible main mass (m1). 

In order to compare the effects of off-tuning due to changes in frequency ratio on the
performances of GHTMD and TMD, Fig. 15 is included. As can be observed the variation in the
maximum amplification factor, (A1)max, for frequency ratios up to fopt has smaller slope for GHTMD
than for the equivalent TMD. However, beyond fopt both lines have approximately the same slopes.
Therefore, it can be concluded that a GHTMD performs better than its equivalent TMD for
frequency ratios below fopt.

Fig. 9 Variation of the optimum parameter (e) of the GHTMD with mass ratio (µ) for different values of ξ1

Fig. 10 Variation of the optimum off-damping ratio (ξoff ) of the GHTMD with mass ratio (µ) for different
values of ξ1
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6. Design of the GHTMD

This section details how to use the graphs in this paper to design GHTMDs. In general, the first
step in the design is to select the GHTMD mass (m2) or the mass ratio (µ) based on the desirable
amplification factor. This can be accomplished using Fig. 5. Once the mass ratio is selected, using
Figs. 7, 9, and 10, the non-dimensional design parameters fopt, eopt, and (ξoff )opt can be found. Using
Eq. (11), the optimum gain (G) can be computed, and therefore, the design parameters required in

Fig. 11 Variation of the performance (p) of the GHTMD main mass with mass ratio (µ) for different values
of ξ1

Fig. 12 Off-tuning effects on the main mass response of GHTMD with respect to changes in frequency ratio
( f ), and parameter (e) [µ=0.05, ξ1=0.01]
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Eq. (2) can be obtained.

7. Conclusions

The behavior of the Ground Hook Tuned Mass Damper (GHTMD) to reduce the vibration of
structures was studied. A single degree of freedom (SDOF) system subjected to harmonic force
excitation was used. Equations of motion when the GHTMD is attached to the SDOF system were

Fig. 13 Off-tuning effects of the main mass response of GHTMD with respect to changes in frequency ratio
( f ), and off-damping ratio (ξoff) [µ=0.05, ξ1=0.01]

Fig. 14 Off-tuning effects on the main mass response of GHTMD with respect to changes in m1 [µ=0.05]
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developed in terms of non-dimensional parameters. The optimum design parameters of the GHTMD
were found for various mass ratios and system damping, and its performance was compared to the
passive TMD with the same mass ratio. A procedure was proposed for the design of GHTMDs.

From this study the following are concluded:
(1) A GHTMD can perform better than an equivalent passive TMD in reducing the vibration.

However, its effectiveness depends on the main system damping ratio. The GHTMD with the
control policy used here can perform up to about 14% better than its TMD counterpart. In addition,
a GHTMD is less sensitive to off-tuning due to changes in the frequency ratio (f ) than an
equivalent TMD.

(2) The optimum frequency ratio (fopt) of the GHTMD decreases with the increase in mass ratio
(µ) and main system damping ratio (ξ1). However, the optimum value of parameter (eopt) or
optimum gain (Gopt) of GHTMD increases with the increase in the mass ratio (µ) and main system
damping (ξ1). 

(3) Deviation of frequency ratio (f ) from its optimum value (fopt) has much more significant
effect on the efficiency of GHTMD than a similar change in ξoff and e. In addition, a decrease in
the frequency ratio, from its optimum value (fopt) has less effect on the efficiency of the GHTMD
than an increase in the frequency ratio.

(4) The GHTMD should be designed considering the upper bound of ξoff and e such that these
design parameters will never be less than their corresponding optimum values. In addition, the
GHTMD should be tuned using the maximum possible main mass (m1).
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Notation

A1 : amplification factor of the main mass
A2 : amplification factor of the GHTMD mass
c1 : damping of the main system
c2 : damping of the GHTMD
e : non-dimensional design parameter
f : frequency ratio
F0 : applied force magnitude
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g : excitation frequency ratio
k1 : stiffness of main system
k2 : stiffness of GHTMD
m1 : main mass
m2 : GHTMD mass
p : performance factor

: displacement, velocity, and acceleration
µ : mass ratio
ξ1 : main system damping ratio
ξoff : off-damping ratio
ω1 : natural frequency of the main system
ω2 : natural frequency of the GHTMD

x,x·,x··




