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A direct modification method for strains due to
non-conforming modes

Chang-Koon Choi†, Keun-Young Chung‡ and Tae-Yeol Lee†‡

Department of Civil Engineering, Korea Advanced Institute of Science and Technology,
Taejon 305-701, Korea

Abstract. This paper addresses an efficient modification method that eliminates the undesirable effects of
strains due to various non-conforming modes so that the non-conforming element can pass the patch test
unconditionally. The scheme is incorporated in the element formulation to establish new types of non-
conforming hexahedral elements designated as NHx and NVHx for the regular element and variable node
element, respectively. Non-conforming displacement modes are selectively added to the ordinary
(conforming) element displacement assumptions to improve the bending behavior of the distorted solid
element. To verify the validation of proposed direct modification method and the improvement of element
behavior, several numerical tests are carried out. Test results show that the proposed method is effective
and its applications to non-conforming solid elements guarantee for the element to pass the patch test.

Key words: direct modification method; non-conforming modes; effective modification method; solid
elements.

1. Introduction

The accuracy attainable by the standard and conventional isoparametric eight-node solid element
tends to be rather low in case of bending as the element deforms in a shear mode. If a single
element is used in the direction of the thickness, the accuracy degrades significantly and may lead
to unreliable results. This poor behavior of basic isoparametric element in bending is explained as
the parasitic shear deformation. Because the shape functions of basic 8-node solid element are
linear, they cannot represent true bending mode shape which is a higher order form (See Fig. 1).

A number of different techniques have been proposed for improvement of the basic behavior of
this type of elements. Among these techniques, the use of non-conforming modes may be one of the
most successful approaches in bending situations. The basic concept of this approach is to restore
true deformation by adding additional deformation modes which is called non-conforming modes
(Choi and Lee 1993, Hughes 1987). 

The use of non-conforming modes improves the element behavior significantly, but at the same
time it may create another problem that the resulting elements do not always pass the patch test. To
circumvent this defect several researchers have studied various possible modification schemes for
non-conforming modes (Taylor, et al. 1976, Wilson and Ibrahimbegovic 1990). Under the constant
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stress state, the strain energy associated with the non-conforming modes must vanish in an element
domain. To satisfy this requirement Taylor, et al. (1976) proposed a remedy that in computing
strains due to non-conforming modes the Jacobian matrix is replaced with the constant Jacobian
matrix computed at the center of an element. The non-conforming elements modified in this manner
pass the patch test and show improved accuracy. However, it has been found that this method is not
always applicable to general non-conforming modes. When the non-conforming mode is an odd
function, the scheme can not be used.

Wilson and Ibrahimbegovic (1990) proposed a different scheme in which the requirement for
passing the patch test can be satisfied by adding a constant correction matrix to the strain
displacement matrix. This remedy guarantees that the element always pass the patch test for various
types of non-conforming modes, but computing time for the correction matrix was relatively large.

In this paper a new scheme is proposed in which the merits of aforementioned two schemes are
inherited. The new proposed method corrects the strains due to non-conforming modes in a direct
way and is applicable to the cases of more general non-conforming modes. Thus, the present
scheme not only satisfies the requirement for an element with general non-conforming modes to
pass the patch test, but also requires less computational time. To show the validity and effectiveness
of the proposed method, the various solid elements with non-conforming displacement modes are
tested and the results are evaluated. 

2. Non-conforming displacement modes

The approach to improve the basic behavior of 2-D isoparametric element by eliminating the
excessive shear strains through the addition of non-conforming displacement modes was first
adopted by Wilson, et al. (1971) and expanded to use in the shell elements by Choi and Schnobrich
(1975). The non-conforming modes are of the same form as the error distribution or what are
missing in the original displacement approximation, and therefore the actual displacement field can
be better approximated by the addition of these non-conforming modes.

The interpolation matrices for both conforming and non-conforming displacement are expressed
by the shape functions Ni and non-conforming modes , respectively.

(1)

Nj

N i=
Ni

Ni

Ni

Fig. 1 Parasitic shear in a basic isoparametric element
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(2)

where

(3)

(4)

and ξ, η and ζ are the natural coordinates in the range of (−1, 1).
The total displacement field of the element with additional non-conforming displacement modes

can be expressed as

(5)

in which  are the additional non-conforming modes and  are the additional unknowns
corresponding to the additional displacement modes. These additional unknowns are not the
physical nodal displacements but can be taken simply as amplitudes of the respective non-
conforming modes.

Then, the element stiffness matrix can be obtained by direct application of variational principles.
The resulting stiffness matrix has been enlarged over the original isoparametric element matrix due
to the additional modes and the corresponding unknowns and partitioned as

(6)

where

(6a)

and subscript C denotes conforming whereas N denotes non-conforming part. The null vector in the
lower part of the load vector in Eq. (6) indicates that no nodal loads can be applied in association
with the non-conforming modes. The enlarged element stiffness matrix in Eq. (6) can be condensed
back to the same size as the stiffness matrix of the ordinary conforming elements KCC.

(7)

The elements formulated in this manner and designated as non-conforming elements show much
improved behavior over original conforming element (Choi, et al. 1998). However, this type of
elements do not always pass the path test.
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3. A new direct modification method for strains due to non-conforming modes

3.1 Review of modification schemes

One of the most significant contributions to the finite element method is the introduction of the
‘patch test’ by Bruce Irons (1972). In order that the finite element method would have an
appropriate mathematical basis, the requirement for passing patch test was introduced as a relaxed
restriction on displacement compatibility. It is generally acknowledged that an element which passes
the patch test is convergent. Unfortunately, most original non-conforming elements fail to pass patch
test. This is resulted from the fact that the constant distribution of strains in an element domain is
disturbed by the addition of strains due to the non-conforming displacement modes. To obtain the
state of constant stress  for an element to pass patch test, the strain energy associated with the
non-conforming modes should vanish in an element domain V as shown in Eq. (9) (Taylor, et al.
1976, 1986, Wilson and Ibrahimbegovic 1990).

(8)

or

(9)

where,  is the strain-displacement matrix of an element due to non-conforming modes. Most of
basic non-conforming elements do not satisfy Eq. (9), and consequently fail to pass the patch test.
To solve the above problem for non-conforming modes  and , Taylor, et al. (1976)
proposed a remedy that replaces Jacobian matrix in computing Eq. (9) with the constant Jacobian
matrix computed at a zero point in the natural coordinate system.

In an isoparametric solid element, this requirement on strain-displacement matrix  due to non-
conforming modes means that the integration should be zero for the derivative of each non-
conforming mode  with respect to global coordinate system xk (Fig. 2). For eight-node solid
element this condition reduces to

(k=1, 2, 3) (10)

or

(10a)
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(10d)

If the components of inverse Jacobian matrix  in Eq. (10) are replaced by approximated
values, e.g., constant values computed at the center of an element 

, the requirement for the patch test to be satisfied can be rewritten as

(11)

The above equation will be always satisfied if each integration term becomes zero. For the case of
typical non-conforming modes expressed by even functions, such as , ,  and

, the modification scheme of Taylor et al. given by Eq. (11) is valid.
However, for general non-conforming modes it is not always applicable in its original form. The
scheme may not work in such cases as non-conforming modes which include the odd function
terms η, the hierarchical shape function to introduce nodal drilling degrees of freedom

, and the modification of non-conforming modes due to existence of a variable
node − , and so forth.

Wilson and Ibrahimbegovic (1990) proposed a different remedy. The main idea is that the
requirement of Eq. (9) can be satisfied by adding a constant correction matrix  to non-
conforming strain-displacement matrix .

(12)
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Fig. 2 Configuration of 8-node solid element
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The constant correction matrix  is evaluated numerically before the element stiffness is
calculated. In calculating  the same integration formula used in calculating element stiffness must
be used, i.e., the correction matrix is applied at each integration point. This remedy guarantees that
the element always pass the patch test for various types of non-conforming modes, but computing
costs for the correction matrix is relatively high. 

3.2 A new direct modification scheme

As Eq. (11) will be always satisfied if each integration term becomes zero, the requirement for an
element to pass the patch test to be satisfied can be simplified as

α =1, 2, 3 (14)

In general, Eq. (14) is not always satisfied for various non-conforming modes. In this paper, the
concept of adding a correction constant  instead of the correction matrix  in Eq. (12) to the
derivatives of non-conforming mode  with respect to natural coordinate ξα is proposed.

(15)

From the fact that  in Eq. (15) is a constant, the correction constants can be calculated
analytically for derivatives of each non-conforming modes.

(16)

Finally, using the correction constants obtained analytically, derivatives of non-conforming modes
with respect to the global coordinate system xk can also be obtained in a simple manner.

(17)

When the value  in Eq. (17) equals to zero, the present scheme is identical to that of Taylor et
al. It should be noted that unlike the  in Eq. (12), the present scheme does not require the
numerical volume integration for calculation of correction constants in (Eq. 16). Instead, by the
analytical calculation of correction constants, the direct correction for the derivatives of various
types of non-conforming modes is possible. Thus, this method can substantially reduce the
computation efforts when compared with Wilson’s Scheme.

By the combination of the basic non-conforming modes ( ) and additional ones ( ),
it is expected that more general deformation configuration can be described (Fig. 3) for non-
conforming elements. The correction constants for the aforementioned general non-conforming
modes are summarized in Table 1. The correction constants make the integration of strain modes
due to non-conforming displacements in an element domain zero (Fig. 4), i.e., those values are
cancelled out in an average sense. Thus, even under the condition that the strains due to non-
conforming modes have non-zero values, the requirement for the element to pass the patch test (i.e.,
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Eq. 9) can be satisfied.

3.3 Direct modification scheme for Variable-node non-conforming elements

When several non-conforming modes are used in a variable-node hexahedral element, these non-
conforming modes  need to be modified due to variable nodes. The modified non-conforming
modes  for variable-node element will have the following form (Choi et al. 1993, 1996, 1998).

(18)

where  is the conforming shape function of variable node i, bi is a constant coefficient that is the
same value as non-conforming mode  at node i, and  is the related original non-conforming
modes. This modification enables the modified non-conforming modes to have zero value at each
node.

The new direct modification scheme can also be used for the variable-node elements. Without
imposing Choi and Lee’s (1993) additional constraints, the modification based on the present direct
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Table 1 Correction constants for various non-conforming modes

Non-conforming modes 
Correction constants

Remarks
cξ cjη cjζ

0 0 0

Basic modes
0 0 0

0 0 0

0 0 0

η 0 0

Additional 
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ζ 0 0

ξ 0 0

ζ 0 0

ξ 0 0
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---–

Fig. 3 Combined effect of the basic and additional non-conforming modes
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modification scheme can be applied to the elements of different layer patterns, i.e.,

(19a)

where

(19b)

and the integration in Eq. (19b) are obtained analytically and used directly in calculation of the
derivatives. 

4. Numerical test

Some numerical tests are performed to check the validity and applicability of the proposed direct
correction scheme. Developed elements are classified into two types by the non-conforming modes
used as listed in Table 1 and tentatively designated as Type I and II. Type I has all the
nonconforming modes listed in Table 1, while Type II has basic non-conforming modes only
( ). In the calculation of present element stiffness matrix, the 14-point integration rule (Iron
and Ahmad 1980) is adopted.

Since the shape functions of the present variable node solid element are based on those for the
connection of different layer patterns (NC-V2, Choi and Lee 1993), it is impossible to directly
calculate the Jacobian values at the center point of the element due to slope discontinuities. To
circumvent this problem the Jacobian values at a center point  are calculated based on
eight corner nodes excluding mid-edge node for the variable node hexahedral elements. 

4.1 Eigenvalue test

To identify the possible spurious zero energy mechanisms, the eigenvalue analysis of element
matrix was carried out for the 8-node solid element and the typical variable node solid element
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Fig. 4 Basic concept of direct correction scheme
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(Fig. 5). For a single element without any boundary conditions, there must be only six zero eigenvalues
associated with rigid-body modes. Test results show that no spurious mechanisms were expected to
develop in any of the elements presented in this numerical test. 

4.2 Patch Test

In order to check whether the proposed 8-node solid elements are capable of representing constant
strain states a series of patch tests were carried out. The typical test model (MacNeal and Harder
1985) is shown in Fig. 6, which contains seven distorted elements. Also additional patch tests were
carried out to check the validation of present direct correction method for variable node hexahedral
elements. The non-conforming modes  in Table 1 do not need correction since the correction
constants calculated by Eq. (16) equal to zero and therefore the correction produces no consequences.

N1~N4

Fig. 5 Examples for typical variable node hexahedral elements

Fig. 6 Patch test model for 3D solid
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The remaining non-conforming modes ( ) in Table 1 are also tested. Patch test models for
variable node hexahedral elements are shown in Fig. 7. The problems were solved with the
prescribed displacement boundary and the obtained results are identical to the theoretical solutions
(See Table 2). In addition, a single element patch (Ibrahimbegovic and Wilson 1991) as shown in
Fig. 8 were tested, and all the types of developed elements passed the test. Thus the addition of

N5~N10

Fig. 7 Patch test models for variable node hexahedral element

Table 2 Boundary conditions and theoretical results

Boundary conditions Theoretical solution

u=10−3(2x+y+z)/2 εx=εy=εz=γxy=γyz=γzx=10−3

v=10−3(x+2y+z)/2 σx=σy=σz=2000
w=10−3(x+y+2z)/2 τxy=τyz=τzx=400

Fig. 8 Single element patch test
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non-conforming modes does no longer prevent the non-conforming elements from passing the patch
test. The Taylor’s scheme is not applicable to these additional non-conforming modes, as the
correction constants do not become zero. From these test results, one can say that the new
modification scheme for strains due to non-conforming modes are valid and applicable to various
types of elements with non-conforming modes.

4.3 Cantilever Beam under Pure Bending

To overview the characteristics of bending behavior, the cantilever beam under pure bending is
considered (Fig. 9). The test meshes which are composed of 8-node and 13-node solid elements as

Fig. 9 Cantilever Beam under Pure Bending

Fig. 10 Several test meshes for pure bending problem
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shown in Fig. 10 and the basic material properties are given as E=1500, ν =0.25. For the cantilever
beam, the boundary conditions of the fastening end are imposed as shown in Fig. 9.

The vertical displacement at point A and bending stress σx at point B under pure bending are
shown in Tables 3, 4, and 5 along with the theoretical solutions and the previous studies (Choi, et
al. 1993, 1996, 2001) for comparison. The element denoted as ‘C-V1’ does not have any non-
conforming modes, and ‘NC-V1’ and ‘NC-V2’ have conventional three non-conforming modes
( ) and the correction method suggested by Wilson and Ibrahimbegovic (1990) is applied
(Choi and Lee 1993). The elements denoted as ‘NCH-3’, ‘NCH-4’ (Choi, et al. 1996) and MR-Hx
(Choi, et al. 2001) which possess rotational degrees of freedom formulated by Allman type
functions are also included for comparison.

Test results indicate that all the elements presented in this paper show good performance in
bending even with distorted meshes and that the additional non-conforming modes are effective in
improving the overall accuracy of the elements.

N1~N3

Table 3 Results of cantilever beam under pure bending for 8-node solid elements

Designation

Regular mesh (mesh A-1) Distorted mesh (mesh B-1)

point A point A point B point A point A point B

Vertical 
displacement Rotation Bending 

stress
Vertical 

displacement Rotation Bending 
stress

Type I 100.00 N/A −3000 94.53 N/A −2920
Type II 100.00 N/A −3000 92.61 N/A −2722

C-V1 (Choi and Lee 1993)  66.67 N/A −2200 44.38 N/A −1736
NC-V1 (Choi and Lee 1993) 100.00 N/A −3000 87.45 N/A −2262
NC-V2 (Choi and Lee 1993) 100.00 N/A −3000 87.45 N/A −2262
NCH-3 (Choi, et al. 1996) 100.00 −20.00 −3000 97.33 −18.62 −2270
NCH-4 (Choi, et al. 1996) 100.00 −20.00 −3000 91.75 −18.16 −2815
MR-Hx (Choi, et al. 2001) 93.75 −18.75 −3000 81.09 −16.77 −2405

Theory 100.00 −20.00 −3000 100.00 −20.00 −3000

Table 4 Results of cantilever beam under pure bending for 8- and 13-node solid elements

Designation

Regular mesh (mesh A-2) Distorted mesh (mesh B-2)

point A point A point B point A point A point B

Vertical 
displacement Rotation Bending

stress
Vertical 

displacement Rotation Bending
stress

Type I 99.88 N/A −3000 91.01 N/A −3079
Type II 99.88 N/A −3000 90.52 N/A −3081

C-V1 (Choi and Lee 1993)  69.62 N/A −2208 47.37 N/A −2049
NC-V1 (Choi and Lee 1993) 101.04 N/A −3175 80.13 N/A −2953
NC-V2 (Choi and Lee 1993) 99.96 N/A −2992 79.85 N/A −2802
MR-Hx (Choi, et al. 2001) 100.46 −19.95 −3070 86.32 −17.24 −3369

Theory 100.00 −20.00 −3000 100.00 −20.00 −3000
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4.4 Cook’s problem

This problem was originally proposed by Cook as a test for the accuracy of quadrilateral elements
(see Fig. 11). Although it is not common in solid element applications, this test is adopted for the
sake of convergence check in shear-dominated problem. Thickness t=1.0, Youngs’ modulus E=1.0
and Poissons’ ratio µ=1/3 were used, and applied load P=1.0 is distributed along edge side. The
result for the tip deflection at point A is compared with the reference value 23.91 obtained by the
numerical analysis with a refined model (MacNeal and Harder 1985). Numerical tests with the
sequentially refined meshes were carried out, and these test results are shown in Table 6.

Test results show that the behavior of present elements is satisfactory and solutions obtained by
present elements converge to the reference value. 

4.5 Twisted cantilever beam

To evaluate the performance and applicability of the proposed elements in twisted mesh, a twisted

Table 5 Results of cantilever beam under pure bending for 13-node solid elements

Designation

Regular mesh (mesh A-3) Distorted mesh (mesh B-3)

point A point A point B point A point A point B

Vertical 
displacement Rotation Bending

stress
Vertical 

displacement Rotation Bending
stress

Type I 99.81 N/A −3000 93.67 N/A −2883
Type II 99.81 N/A −3000 93.42 N/A −2876

C-V1 (Choi and Lee 1993) 69.18 N/A −2208 49.27 N/A −1738
NC-V1 (Choi and Lee 1993) 99.91 N/A −3000 91.13 N/A −2402
NC-V2 (Choi and Lee 1993) 99.92 N/A −3000 90.82 N/A −2396
MR-Hx (Choi, et al. 2001) 96.96 −19.50 −3024 90.79 −17.89 −2484

Theory 100.00 −20.00 −3000 100.00 −20.00 −3000

Fig. 11 Cook’s problem (4×4×1 Mesh)
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cantilever beam of rectangular cross section is tested. This cantilever beam is twisted 90o over its
length, and subjected to a concentrated unit load at its free end. The geometry and loading
conditions of this example are depicted in Fig. 12. The reference solutions in the case of in-plane
load and of out-of-plane load are 0.5424×10−2 and 0.1754×10−2, respectively (MacNeal and Harder
1985). The properties and dimensions used are given as Young’s modulus E=29.0×106, Poisson’s
ratio ν =0.22, thickness t=0.32, side length L=12, and concentrated load F=1.0.

Normalized end displacements with reference values are listed at Table 7. The presented elements
showed a good performance.

5. Conclusions

In this paper, a new efficient modification method for strains due to various non-conforming
modes which may cause the failure in patch tests is presented. This method is successfully applied
to the formulation of various non-conforming solid elements. Results obtained from a series of
patch tests show that all the non-conforming 8-node elements and variable hexahedral elements
formulated by incorporating the present modification scheme pass the patch tests. This implies that

Table 6 Results of Cook’s problem (end deflection)

Designation
Mesh

Patch test Element type
1×1×1 2×2×1 4×4×1 8×8×1

Type I 16.35 21.04 22.98 23.67 pass 8-node solid element
Type II 15.82 20.96 22.97 23.67 pass 8-node solid element

Iura & Atluri 1992 (M1) 17.93 21.92 23.36 23.78 fail 4-node plane stress element
Iura & Atluri 1992 (M2) 12.80 20.09 22.90 23.66 pass 4-node plane stress element

Ibrahimbegovic et al. 1992 14.07 20.68 22.99 23.67 pass 4-node plane stress element 
w/drilling d.o.f.

Reference value 23.91

Fig. 12 Twisted cantilever beam
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the undesirable effects of additional strains due to non-conforming modes of the elements can be
successfully eliminated and the elements can represent constant stress state properly. Several other
numerical tests for bending and shear also show that the new modification method for strains due to
non-conforming modes is valid and the performance of developed non-conforming eight-node
elements is satisfactory. Thus, the new modification scheme set the non-conforming modes free
from patch test failures. The best performance element in this study was the element temporarily
designated as Type I which has all the possible non-conforming modes and showed better
performance than Type II elements. Thus, it is suggested that the element Type I be re-designated as
NHx (Non-conforming Hexahedral with 8 node., e.g., NH8) for rigular element and NVHx (Non-
conforming Variable node Hexahedral element with x-nodes e.g., NVHI3) for variable node element
and used as a typical element for 3-D analysis.

It is expected that the proposed modification scheme can be further applied to various types of
non-conforming elements such as the plate element, membrane element, and so forth.
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