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Analysis of building frames with viscoelastic
dampers under base excitation

A.K. Shukla† and T.K. Datta‡
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Abstract. A frequency domain response analysis is presented for building frames passively controlled
by viscoelastic dampers, under harmonic ground excitation. Three different models are used to represent
the linear dynamic force-deformation characteristics of viscoelastic dampers namely, Kelvin model, Linear
hysteretic model and Maxwell model. The frequency domain solution is obtained by (i) an iterative
pseudo-force method, which uses undamped mode shapes and frequencies of the system, (ii) an
approximate modal strain energy method, which uses an equivalent modal damping of the system in each
mode of vibration, and (iii) an exact method which uses complex frequency response function of the
system. The responses obtained by three different methods are compared for different combinations of
viscoelastic dampers giving rise to both classically and non-classically damped cases. In addition, the
effect of the modelling of viscoelastic dampers on the response is investigated for a certain frequency
range of interest. The results of the study are useful in appropriate modelling of viscoelastic dampers and
in understanding the implication of using modal analysis procedure for building frames which are
passively controlled by viscoelastic dampers against base excitation. 

Key words:  viscoelastic dampers; base excitation; storage and loss moduli; pseudo-force; modal strain
energy.

1. Introduction

Building frames subjected to earthquake excitations are conventionally designed for lateral forces
smaller than those required for strong or even moderate earthquakes. Design procedures allow
reduction of design forces according to ductility capacity of the structure. A ductile structure is
capable of dissipating energy in joints and connections designed to withstand plastic deformations.
This ductility demand on the structure implies damage of the structural system, and often, damage
of non structural components such as partitions and walls. By incorporating energy dissipating
devices (EDDs) such as viscoelastic dampers to the resistance scheme of the structure, the
deformation can be reduced significantly. As a result, the ductility demand can be attenuated. This
reduced deformation is a natural consequence of an increase of the resistance, stiffness and energy
dissipating capacity provided by the dampers.

The impact of a good design of EDDs added to a structure is two fold. First, it can enhance the
performance of a structural system designed according to conventional design procedures by means
of an increase in the structural damping, a corresponding reduction in the deformation demand on
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the structure and a consequent saving over the life time of the structure. Second, by means of an
integrated design of the main structure with supplemental dampers, the resistance scheme of the
main structural system can be reduced compared to a structural system without dampers.

Viscoelastic dampers (VEDs) are the devices in which vibrations take place in a fluid media.
Zhang, et al. (1989) evaluated the effect of added viscoelastic dampers on reducing the earthquake
response of multi-storey steel frame structures. They used the properties of viscoelastic materials
independent of the frequency and temperature, and followed a modal approach to asses their effect
on the structural response control. Inaudi, et al. (1993) reported various modelling aspects for the
constitutive relations of linear viscoelastic materials with the help of frequency-dependent storage
and loss moduli of the viscoelastic materials.

The modal equations of the structural systems with viscoelastic dampers may be uncoupled and
coupled depending upon the relationship between the structure’s dynamic property and the
viscoelastic damper’s property. Generally, structures with viscoelastic dampers are non-classically
damped and therefore, the modal equations of the system become coupled. The dynamic analysis of
nonclassically damped systems, as such, has received considerable attention. Early efforts in solving
the problem centered around different ways of approximating the damping matrix by an equivalent
proportional damping (Tsai 1974) so that classical mode superposition method can be applied. For
structural systems like, nuclear power plants and dams, however, such an approximation leads to
unsatisfactory results as pointed out by Warburton and Soni (1977). For such cases, a rigorous
modal superposition method utilizing a set of complex non-classical normal modes is available
(Singh and Suarez 1987), but is seldom used. Igusa, et al. (1984) presented a modal decomposition
method, wherein the solution of the resulting uncoupled first order equations is put into a form
involving a familiar displacement and velocity impulse response functions and their Duhamel
integrals. Ibrahimbegovic, et al. (1990) presented `Ritz Method' for the dynamic analysis of large
discrete linear systems with non-proportional damping, in which they concluded that the real vector
basis approach is more efficient than the complex vector basis approach. However, the complex
vector basis has the advantage on the accuracy and this does not require the eigenvalue problem to
be solved. Claret and Venancio (1991) presented an iterative technique using classical mode shapes
of the structure to solve the non-classically damped systems. Jangid and Datta (1993) extended the
work of Claret and Venancio (1991) for spectral analysis of structural systems with non-classical
damping. Chang, et al. (1993) proposed the use of an approximate modal strain energy technique in
the analysis of structures with added viscoelastic dampers in the context of earthquake engineering.

Although there have been some studies on the use of VEDs in building frames for the reduction
of seismic response, the relative uncertainty in the prediction of responses by different models used
to characterize VEDs is not thoroughly investigated. This evaluation is important in relation to the
appropriate modeling of VEDs. There is also a lack of studies regarding applicability of
approximate analysis techniques used for finding the seismic response of frames with VEDs. In this
paper, shear frame model of building frames with viscoelastic bracings is analyzed to obtain the
storey displacements and absolute accelerations under harmonic base excitations. Three different
mathematical models to represent the behavior of the viscoelastic dampers (VEDs) are considered
namely, Kelvin model, Linear hysteretic model and Maxwell model. An example problem of two
storey shear frame with VED resistance scheme is solved by two widely used approximate methods,
namely, the pseudo force method and the modal strain energy method for two cases of damping.
The results are compared with those obtained by the exact method of analysis in order to investigate
the applicability of the two approximate methods for the dynamic analysis of the frames with VEDs
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under base excitation. The relative uncertainty in the prediction of the responses of the structure
with VEDs is assessed by comparing the storey displacements and absolute accelerations obtained
by analyzing the same two storey frame and a 12-storey frame with the three models used to
characterize the VEDs.

2. A linear model for viscoelastic damper

The linear model uses a linear spring which models a potential energy, quadratic in deformation,
and linear dashpot which models a dissipative force, proportional to deformation rate. Viscoelastic
damper elements are modelled as parallel and series combinations of those linear springs and
dashpots. The rate dependence is introduced by using the time derivative of the deformation and/or
force.

In general, series and parallel combinations of linear springs and dashpots provide a force
deformation relation of the form

(1)

where C [.] and D [.] are linear differential operators with constant coefficients. Using Laplace
transformation, Eq. (1) provides a transfer function H(s) in the form

(2)

which relates force F(s) to the deformation δ(s).
The frequency response function of the viscoelastic element is then obtained by substituting s=jω

in Eq. (2), where j=  to yield

(3)

Es(ω) is referred to as the storage modulus, and El(ω) is called the loss modulus (Fig. 1). These
moduli provide a physical understanding of the element resistance as composed of a frequency-
dependent spring kd(ω), and a frequency-dependent dashpot cd(ω) given by

C f t( )[ ]=D δ t( )[ ]

F s( )=D s( )
C s( )
-----------δ s( )=H s( )δ s( )

1–

H  jω( )=Es ω( )+jEl ω( )

Fig. 1 Storage and loss moduli of viscoelastic damper



74 A.K. Shukla and T.K. Datta

(4)

Es(ω) is an even function of frequency, while El(ω) is an odd function of frequency.

2.1. Kelvin element

The Kelvin model of VED (element) consists of a linear spring in parallel with a viscous damper.
The force in the element satisfies

(5)

In the frequency domain, Eq. (5) can be written as

(6)

The dissipation of energy per cycle in harmonic deformation is linearly proportional to the
deformation frequency:

(7)

The main disadvantage of this model in modelling the viscoelastic material is that it defines a loss
modulus linearly dependent on the frequency and a storage modulus independent of frequency
which is not an accurate representation for most materials and in particular, for polymers or rubbers.

2.2. Linear hysteretic element

In this model, the force satisfies the following equation in the frequency domain

(8)

The loss factor ξ (ratio of the loss and the storage moduli of the element) is frequency
independent for this element. This model has the property of frequency independence of the
dissipated energy in a deformation cycle

(9)

Thus, this model is more versatile than the Kelvin model since many materials exhibit energy
dissipation independent of the frequency of the deformation. The fact that frequency-domain
techniques must be used to analyze structures with structural damping, constitutes its most
significant limitation.

2.3. Maxwell element

A Maxwell element consists of a linear spring with constant α in series with a linear viscous
dashpot with constant τα. This model satisfies the following differential equation

(10)

In frequency domain, it may be represented as

kd ω( )=Es ω( )      cd ω( )=
El ω( )

ω
--------------

f t( )=kdδ t( )+cdδ· t( )

F  jω( )= kd jcdω+( )δ  jω( )

Wcycle=δmax
2

cdπω

F  jω( )=kd 1+jξ ω( )sgn( )δ  jω( )

Wcycle=δmax
2 ξπkd

f· t( )+1
τ
--- f t( )=αδ· t( )
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(11)

From Eq. (11), the storage modulus and the loss modulus for the Maxwell model may easily be
obtained. Using a Maxwell model, the mechanical behavior of the viscoelastic damper can be
modeled with much more accuracy since both storage modulus and loss modulus are fully
dependent on the excitation frequency. The main mechanical characteristic of a Maxwell model is
its relaxation time τ. The energy dissipation in one cycle is given by

(12)

Eq. (12) shows that the energy dissipated in a cycle in this model increases with frequency for
frequencies less than 1/τ and monotonically decreases with frequency for frequencies larger than 1/τ.

3. MDOF system with viscoelastic damper

Consider a linear, damped N-degree-of-freedom structure containing linear energy dissipation
devices as shown in Fig. 2. The system can be described by the following differential equation

(13a)

(13b)

where y(t) and  are vectors of displacements and absolute accelerations, respectively; M, K
and C represent the mass, the stiffness and the damping matrices, respectively;  represents the
ground acceleration; I0 is the influence coefficient vector;  is the force in the i-th energy
dissipation device, and Ne is the number of such devices; Bi is the coefficient matrix which is

F  jω( )= αω j
jω 1/τ+
--------------------δ  jω( )

Wcycle=δmaxαπ ωτ
1 ωτ( )2+
-----------------------

M y·· t( )+C y· t( )+K y t( )+  
i =1

Ne

∑ Bi
Tfi t( )=I0x··g t( ),  y 0( )=y0,  y· 0( )=y·0

M y··a t( )+C y· t( )+K y t( )+  
i =1

Ne

∑ Bi
Tfi t( )=0

y··a t( )
x··g t( )

fi t( )

Fig. 2 Model of a 2DOF structure with viscoelastic damper: (a) two storey shear frame with VED;
(b) idealized model



76 A.K. Shukla and T.K. Datta

defined later. The element forces are related to the element deformations by one of the models of
the linear constitutive relations described before. The element deformations are related to the
coordinates y(t) by

(14)

In frequency domain, Eq. (13) may be written as

(15a)

(15b)

in which , ,  and  are the fourier transforms of y(t), , fi(t) and
 respectively. Writing  in terms of storage and loss moduli, Eqs. (15a) and (15b) may

also be written in the form

(16a)

(16b)

in which

(17a)

(17b)

3.1. Transformation for modal analysis

Y( jω) may be written in terms of modal co-ordinates as

(18)

where Φ is a real-valued matrix of size Nxm and Q( jω) is the Fourier transform of the modal
coordinates ql(t) l=1, 2, ..., m. Using the modal transformation, and premultiplying Eq. (16a) by Φ T,
the following equation is obtained

(19)

where

(20)

3.2. Conditions for modal decoupling and coupling

 will not be diagonal for any modal matrix Φ, unless C,  and 

δ i t( )=Bi  y t( )

 jω( )2
M  jω( )C+K+[ ]Y  jω( )+  

i =1

Ne

∑ Bi
TFi  jω( )=I0X

··
g  jω( )

MY··a  jω( )+  jω( )C+K[ ]Y  jω( )+  
i =1

Ne

∑ Bi
TFi  jω( )=0

Y  jω( ) Y··a  jω( ) Fi  jω( ) X··g  jω( ) y··a t( )
x··g t( ) Fi  jω( )

S  jω( )Y  jω( )=I0X
··

g  jω( )

MY··a  jω( )+S1  jω( )Y  jω( )=0

S  jω( )=−ω2M+jωC+K+  
i =1

Ne

∑ Bi
TESi

ω( )Bi+j  
i =1

Ne

∑ Bi
TEl i

ω( )Bi

S1  jω( )=jωC+K+  
i=1

Ne

∑ Bi
TESi

ω( )Bi+j  
i =1

Ne

∑ Bi
TEl i

ω( )Bi

Y  jω( )=ΦQ  jω( )

Γ  jω( )Q  jω( )=ΦTI0X
··

g  jω( )

Γ  jω( )=ΦT −ω2M+jωC+K+  
i=1

Ne

∑ Bi
TESi

ω( )Bi+j  
i =1

Ne

∑ Bi
TEli

ω( )Bi

 
 
 
 

Φ

Γ  jω( )  
i=1

Ne

∑ Bi
TESi

ω( )Bi
 

i=1

Ne

∑ Bi
TEli

ω( )Bi
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are classical for all ω. When these terms are classical  would be diagonal and the following
equations could be written in modal coordinates:

(21)

The solution of Eqs. (16a) and (16b) can then be obtained by solving m independent modal
equations in the frequency domain. Using FFT techniques and modal combination (y(t)=Φq(t)), the
time history of responses y(t) and  can be obtained. The conditions under which the modal
equations can be decoupled is illustrated by the 2-DOF model of the building frame shown in
Fig. 2. The mass matrix is characterized by the masses m1 and m2 associated to the degrees of
freedom y1(t) and y2(t), respectively. The stiffness matrix is characterized by the parameters k1 and
k2. Two viscoelastic dampers modeled by Maxwell elements are located in the model, B1= [1 0] and
B2 = [−1 1]. The dampers have the same relaxation time τ and stiffnesses α1 and α2 at high
frequency . Defining  and , the following
equation in frequency domain may be written:

(22a)

(22b)

in which
If α2/α1=k2/k1 and C is mass (M) and stiffness (K) proportional, the system 

can be uncoupled into two modal equations. Let φ1 and φ2 be normalized with respect to the mass
matrix, then for α2/α1=k2/k1 the following equations hold:

(23)

(24)

When the damping matrix or the resistance scheme of the viscoelastic elements of the structure is
non-classical, Γ ( jω) in Eq. (20) is not diagonal and the mxm coupled Eq. (19) can be solved to
directly obtain the responses y(t) by some approximate methods. There are various approximate
methods (Claret et al. 1991, Ibrahimgovic et al. 1990, Igusa et al. 1984, Inaudi et al. 1993, Jangid
et al. 1983, Singh et al. 1987, Tsai 1974, Warburton et al. 1977) to solve the coupled equations of

Γ  jω( )

Ql  jω( )=
φl

TI0X
··

g  jω( )
φ l

TS  jω( )φl

-----------------------------=
φl

TI0X
··

g  jω( )
Γ l l  jω( )

-----------------------------     l=1,2,..., m

Γl l  jω( )=φl
T −ω2

M+jωC+K+  
i =1

Ne

∑ Bi
TESi

ω( )Bi+j  
i=1

Ne

∑ Bi
TEl i

ω( )Bi

 
 
 
 

φl

y··a t( )

αi=ESi
∞( )( ) θ ω( )=ω2/ω2 1/τ( )2+ ϑ ω( )=ω/τ/ ω2 1/τ( )2+( )

[  jω( )2M+  jω( )C+K+
α1 α2+ α2–

α2– α2

θ ω( )+j
α1 α2+ α2–

α2– α2

ϑ ω( )]Y  jω( )=MIX··g  jω( )

MY··a  jω( )+[  jω( )C+K+
α1 α2+ α2–

α2– α2

θ ω( )+j
α1 α2+ α2–

α2– α2

ϑ ω( )]Y  jω( )=0

M=
m1 0

0 m2

   C=
c1 c2+ c2–

c2– c2

   K=
k1 k2+ k2–

k2– k2

   I= 1–

1–

Qi  jω( )=
φi

TMI
Γ i i  jω( )
-------------------X··g  jω( ),  i=1, 2

Γ i i  jω( )=−ω2+ω i
2+ωi

2α1

k1

-----θ ω( )+jωi
2α1

k1

-----ϑ ω( )   i=1,2
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motion as given by Eq. (19). The simplest solution for Eq. (19) can be obtained by ignoring the off-
diagonal terms of the coupled equations of motion and solving a set of uncoupled equations, equal
to the number of modes considered in the analysis. The accuracy of the response thus obtained
depends upon the relative magnitude of the off-diagonal terms in the coupled equations of the
motion. Here-in the solutions of Eqs. (15a) and (15b) are obtained by two approximate methods
namely, Iterative Pseudo-Force method and Modal Strain Energy method, which are supposed to
provide a good estimate of the response. The reason for choosing these two methods is that both
use undamped mode shapes and frequencies and solve a set of uncoupled set of equations equal to
the number of modes. The applicability of the methods for the case of structures with VEDs is
investigated by comparing the responses obtained by these methods with those obtained by the
exact method of analysis.

4. Iterative pseudo force (P-F) method

In this technique of solution, the modal coupling introduced by the off-diagonal terms are treated
as Pseudo-Force and are transferred to the right hand side of Eq. (25). The equations of motion are
solved iteratively, each time solving a set of uncoupled equations of motion. At the n-th iteration,
the following equations of motion are solved

(25)

where

(26)

The elements of the matrix A( jω) are

(27)

and  is given by

(28)

It can be shown that the necessary and sufficient condition for the algorithm to converge to the
exact solution for any excitation  is that the eigen values of A( jω) be in the unit circle for
( ) (Claret and Venanci 1991). A sufficient condition for the convergence of the algorithm
is given by

(29)

Q n( )  jω( )=Q 0( )  jω( )+A  jω( )Q n-1( )  jω( )     n=1,2,3,....

Q n( )  jω( )=

Q1
n( )  jω( )

Q2
n( )  jω( )
…

Qm
n( )  jω( )

Aij =
Γ i j  jω( )
Γ i i  jω( )
------------------- if   i j≠

Aij =0   if   i=j

Qi
0( )  jω( )

Qi
0( )=

φi
TI0

Γi i  jω( )
-------------------X··g  jω( ),  i=1, 2,…,m

x··g t( )
∞– ω ∞< <

 
i =1

m

∑ Ali  jω( ) 1    l=1, 2,…, m<
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Furthermore, this condition can be stated in terms of the matrix , since from Eq. (27) it is
clear that the condition given by Eq. (29) holds if and only if the matrix  is diagonal
dominant, that is if

(30)

5. The modal strain energy method

The modal strain energy (MSE) method is a procedure to determine a set of real-valued mode
shapes, natural frequencies and damping ratios for linear structures with frequency-dependent
stiffness and damping matrices to approximate the dynamics of those structures. In this approach,
the mode shapes and natural frequencies of the approximate system are obtained by solving an
eigen value problem that neglects the loss moduli of the viscoelastic elements of the structure. Once
a set of mode shapes and natural frequencies are obtained, the modal damping ratios of the
approximate system are computed equating the loss moduli of the viscoelastic elements of the
structure at the natural frequencies of the modes, to that of the modal equations. As a consequence,
the MSE method seeks a set of uncoupled modal equations to approximate the response of the
system described by Eq. (16). The method is briefly described below:

Consider the vectors, , and natural frequencies, , that solve the following eigen value problem:

(31)

Here the functions  are necessarily nonnegative, nondecreasing, and bounded as in the case
of viscoelastic materials.

Let . With these , the modal transformation of Eq. (16) will be same as that given
by Eq. (20) except that Φ is replaced by . By neglecting the off-diagonal terms of the
transformed equation, taking  in  in the l-th equation, and dividing equation l by

, the following equation is obtained:

(32)

By taking  in the term  of Eq. (32), the l-th modal equation can then be
transformed back to the time domain in the form of a second-order differential equation to yield

(33)

where the modal frequencies  and damping ratios  can be expressed as:

(34)

Γ  jω( )
Γ  jω( )

φ i
TS  jω( )φi  

l=1,l i≠

m

∑ φi
TS  jω( )φl ,  i=1, 2,…, m  ∞– ω ∞< <>

φ̂l ω̂l

ω̂l
2
Mφ̂l=(K+  

i =1

Ne

∑ Bi
TESi

ω̂l( )Bi)φ̂ l    l=1, 2,…, m

ESi
ω( )

Φ̂= φ̂1…φ̂m[ ] φ̂
Φ̂

ω=ω̂l ESi
ω( )

φ̂l
T
Mφ̂ l

[ ω– 2+jω 1

φ̂l
T
Mφ̂ l

--------------- φ̂l
T
(C+  

i =1

Ne

∑ Bi
TEli

ω( )
ω

---------------Bi)φ̂ l+ω̂l
2
] Q̂l  jω( )=

φ̂l
T
I0X

··
g  jω( )

φ̂l
T
Mφ̂ l

-----------------------------  l=1, 2,…, m

ω=ω̂l El i
ω( )/ω

q··l t( )+2ω̂ l ξ̂ lq·l t( )+ω̂l
2
ql t( )=

φ̂ l
T
I0x··g t( )

φ̂l
T
Mφ̂l

----------------------   l=1, 2,…, m

ω̂ l ξ̂l

ω̂l
2
=

φ̂ l (K+  
i=1

Ne

∑ Bi
TESi

ω̂l( )Bi )φ̂ l

φ̂TMφ̂l

------------------------------------------------------------,  ξ̂ l=

φ̂ l
T
(ω̂ lC+  

i=1

Ne

∑ Bi
TEli ω̂l( )Bi )φ̂ l

2φ̂ l
T
(K+  

i =1

Ne

∑ Bi
TESi

ω̂l( )Bi )φ̂ l

------------------------------------------------------------------
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Once ql(t) is obtained, the response y(t) may be determined as before by modal superposition.

6. Exact method

In this method, direct inversion of the complex matrix S( jω) of Eq. (16) is done to obtain the
frequency components of the response:

(35)

y(t) is then obtained by inverse fourier transform.
Once Y( jω) is determined by any of the above methods,  can be obtained from Eq. (16b).

 is then determined by inverse fourier transform of .

7. Numerical study

Consider the 2-DOF structure (Fig. 2) subjected to unit harmonic support excitation. The mass
matrix is characterized by the masses m1 and m2 associated to the degrees of freedom y1(t) and y2(t)
respectively. The stiffness matrix is characterized by the parameters k1 and k2. For the numerical
study, following parameters of the structure are selected:

The viscoelastic damper parameters are so selected that both uncoupled and coupled cases are
covered. The following two cases are considered for the numerical study.

Case 1: when damper properties are classical (uncoupled case) and represented by Kelvin model,
the stiffness and damping matrices added on to the structure take the form:

Case 2: when damper properties are non-classical (coupled case) and represented by Kelvin
model, the stiffness and damping matrices added on to the structure take the form:

For other VED models, the form of the stiffness and damping matrices remain the same as above
with suitable parameters replacing kd and cd. The damper parameters for the three VED models are
listed in Table 1.

For the structural system selected, the undamped natural frequencies and mode shapes (without
viscoelastic dampers) are:

ω1 = 7.65 rad/s = [0.383 0.924]

Y  jω( )=S 1–  jω( )I0X
··

g  jω( )

Y··a  jω( )
y··a t( ) Y··a  jω( )

M=m 1 0

0 1
   K=ks

3 1–

1– 3
    C= 0 0

0 0
    ks/m=100

kd=
3 1–

1– 3
   and   cd=

3 1–

1– 3

kd=
3 0

0 0
   and   cd=

3 0

0 0

φ1
T
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ω 2 = 18.48 rad/s = [0.924 −0.383]

In Figs. 3-8, variations of the  and  with frequency ω are compared between
those obtained by the P-F method, the MSE method and the exact method, for all the three models
and for both classically and non-classically damped conditions. For classically damped condition
(Figs. 3-5), the responses obtained by the three methods compare well over the entire frequency
range of interest, except for the Maxwell model. For this model (Fig. 3), the responses obtained by
the MSE and exact methods differ by varying degrees at lower frequency range. Between the
frequency range of 0-6 rad/s, the difference is quite significant; the MSE method underestimates the

φ2
T

Y  jω( ) Y··a  jω( ) /5g

Table 1 Properties of viscoelastic dampers

Maxwell Model Kelvin Model Linear Hyst. Model

α /m τ kd/m cd/m kd/m ξ
100 0.1 50 5 50 0.9

Fig. 3 Frequency variation of responses (Maxwell model, uncoupled case)

Fig. 4 Frequency variation of responses (Kelvin model, uncoupled case)
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Fig. 5 Frequency variation of responses (Linear hysteretic model, uncoupled case)

Fig. 6 Frequency variation of responses (Maxwell model, coupled case)

Fig. 7 Frequency variation of responses (Kelvin model, coupled case)
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responses.
For the non-classically damped condition, the responses obtained by the three methods are shown

in Figs. 6-8. It is seen that the P-F method provides same results as those obtained by the exact
method. The MSE method underestimates the response significantly under resonating condition (at
the first natural frequency). For frequencies greater than the resonating frequency, the responses
predicted by the MSE method are quite comparable with those predicted by the exact method. For
frequencies lower than the resonating frequency, the MSE method gives less response than that
obtained by the exact method. However, the difference between the two is not large.

8. Comparison between the responses obtained by different models

The three models for VEDs are designated as: (I) the Linear hysteretic model; (II) the Kelvin
model; and (III) the Maxwell element. In order to make the models comparable, the parameters of
models (II) and (III) are selected as functions of those of model (I) such that all models exhibit the
same hysteresis loop in a cycle of harmonic deformation of frequency , where ω1

is the first undamped natural frequency of the structure. This implies that for model (II)

(36)

while for model III

(37)

The responses  and  are computed for comparable models
designated by I, II, III. The following symbols are used to compare the responses:

(38)
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Fig. 8 Frequency variation of responses (Linear hysteretic model, coupled case)
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Similarly

(39)

The above quantities are determined for (ξ1=ξ2=0.8), , and for excitation frequencies
near the first natural frequency of the undamped structural system. The responses are obtained for
three excitation frequencies ω = 0.75ω1, ω1 and 1.25ω1. Figs. 9 and 10 show the variations of the
g1, g2, ga1 and ga2 with kd/ks for non-classically damped (case 2) condition. It is seen that the ratios
g1, g2 etc. remain almost insensitive to the variation of kd/ks and is equal to almost unity for the
three frequencies of excitation. 

Figs. 11 and 12 show the variations of f1, f2, fa1 and fa2 with kd/ks for the same cases considered
before. It is seen that f1 increases linearly with kd/ks for the frequency of excitation equal to 0.75ω1

and ω1. For other cases, the ratios f1, fa1, f2 etc remain almost insensitive to the variation of response
for certain cases of excitation.

ga1
= Y··a1

II
 jω( ) / Y··a1

I
 jω( )      fa1

= Y··a1

III
 jω( ) / Y··a1

I
 jω( )

ga2
= Y··a2

II
 jω( ) / Y··a2

I
 jω( )      fa2

= Y··a2

III
 jω( ) / Y··a2

I
 jω( )

0 kd/ks 2< <

Fig. 9 Comparison of displacements for Kelvin and Linear hysteretic models: (a) For displacement ratio g1;
(b) For displacement ratio g2

Fig. 10 Comparison of absolute accelerations for Kelvin and Linear hysteretic models: (a) For acceleration
ratio ga1

; (b) For acceleration ratio ga2
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In order to investigate the relative performance of different models in actual practice, a 12
storeyed shear building frame with VED bracings in all storeys is analysed for harmonic ground
excitation. The mass and stiffness properties are shown in Table 2. For the unbraced frame 2%
modal damping is assumed for all modes. VEDs are uniformly distributed in all stories with
stiffness property of the ith storey VEDs given as Kdi=ΣKi/8N, in which N=12, ΣKi is the stiffness
of the ith storey. Kdi is defined for the linear hysteretic model. For other models, comparable visco
elastic damper properties are obtained like those for the 2 storey building frame.

The responses of the 12 storey building frame provided with VEDs for harmonic ground motion
are shown in Table 3. The excitation frequency is equal to the undamped natural frequency of the

Fig. 11 Comparison of displacements for Maxwell and Linear hysteretic models: (a) For displacement ratio
f1; (b) For displacement ratio f2

Fig. 12 Comparison of absolute accelerations for Maxwell and Linear hysteretic models; (a) For acceleration
ratio fa1

; (b) For acceleration ratio fa2

Table 2 Properties of 12 storey shear building frame

Storey 1 2 3 4 5 6 7 8 9 10 11 12

Mass 103 Kg 115 110 108 108 100 91 91 85 85 79 79 70

Stiffness 106 N/m 205.7 192.5 164 139.7 102.3 89 71.5 67.7 56 49.5 44 40.5
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frame, and the amplitude of ground acceleration is taken as 0.8 m/sec2. It is seen that the
displacement responses obtained by linear hysteretic model and the Kelvin model are practically the
same. Maxwell model provides slightly higher value of the response. Same trend of results is
observed for the absolute acceleration response.

9. Conclusions

The response of building frames passively controlled by VEDs is obtained for harmonic ground
excitation. The VEDs are modeled using three different models namely Kelvin model, Linear
hysteretic model and Maxwell model and the responses are obtained by three different methods ie.
an iterative pseudo-force method, an approximate modal strain energy method and the exact
method. The relative displacement and absolute acceleration obtained by different methods using
different models for VEDs, are compared. The results of the numerical study lead to the following
conclusions:

1. The Pseudo-Force method provides exact responses for all the three models being used to
describe the force-deformation characteristics of VED.

2. The MSE method provides exact responses when properties of viscoelastic dampers are such
that the total system is classically damped.

3. For the general case of non-classically damped system, the MSE method under-estimates the
responses significantly near resonating condition. For frequencies greater than the resonating
frequency, the MSE method predicts fairly good responses.

4. The Linear-hysteretic and Kelvin models of VEDs provide almost the same responses.
5. The Maxwell model generally tends to provide higher responses than the other two models. 
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