Structural Engineering and Mechanics, Vol. 11, No. 1 (2001) 49-70 49
DOI: http://dx.doi.org/10.12989/sem.2001.11.1.049
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Jin-Rae Chot and Dae-Yul Ha#

School of Mechanical Engineering, Pusan National University, Pusan 609-735, Korea

Abstract . This paper is concerned with a study on thermo-elastoplastic characteristics of functionally
graded composite. Compared to the classical layered composites, it shows a wide range of thermo-
elastoplastic characteristics according to the choice of two major parameters, the thickness-wise volume
fraction of constituents and the relative thickness ratio of the graded layer. Therefore, by selecting an
appropriate combination of the two parameters, one is expected to design the most suitable heat-resisting
composite for a given thermal circumstance. Here, we address the parametric investigation on its charac
teristics together with theoretical study on thermo-elastoplasticity and numerical techniques for its finite
element approximations. Through the numerical experiments, we examine the influence of two parameters
on the thermo-elastoplastic characteristics.

Key words : functionally graded material (FGM); graded layer; volume fraction; relative thickness ratio;
material properties; stress concentration; thermo-elastoplastic characteristics.

1. Introduction

Materials for the high-temperature engineering applications are required to posses superior thermo-
mechanical performances such as high temperature-strength and creep-resistance, excellent fracture
toughness and thermal shock resistance. Since single-composed materials are almost impossible to
meet simultaneously such multi-performances, conventional laminated composites (CLC) manufac
tured by combining metals and ceramics have been successfully used for several decades.

However, owing to the inherent methodology, CLCs possess an inevitable disadvantage,—a discon
tinuity in material composition at layer interfaces. This material discontinuity may lead to sharp
kinks in thermal stress distribution, and which may bring stress concentration or cracking near such
interfaces. In addition, those may trigger the initiation of plasticization or cracking reaching at
unexpected structural failure (Williamsemn al 1993, Sureskt al. 1995, Tanak&t al 1993, Hirano
and Wakashima 1995, Reddyal 1999, Cho and Oden 2000).

To resolve this problem, a notion of functionally graded materials (FGM) has been introduced in
late 1980s. In FGMs, dual-phase heterogeneous layers called the graded layer are included in which
a material composition varies continuously from one end to the other. This material technology was
initiated originally for the development of heatproof structures of space shuttles éNahd 990).

According to the advancement of manufacturing techniques such as chemical or physical vapor
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deposition, thermal spray and powder metallurgy, active and intensive research activities are currently
ongoing for diverse engineering applications to turbo-engines, high-speed tools, automobile engines,
and so on. However, an elaborate tailoring of the material composition and the geometry dimension

is essential to satisfy the target performance. This is because the success of designed FGMs depends
definitely on the suitability of combination of the volume fraction and the relative thickness ratio of

the graded layer.

In order to design an optimum heat-resisting FGM, one preliminarily needs to explore the thermo-
elastoplastic characteristics with respect to the design parameters. In other words, one needs the
parametric analysis to examine the plastic zone and its location, distributions of equivalent plastic
strain and thermal stress and so on, for a variety of combinations of the two parameters.

In this paper, we first address the parametric and material characteristics of FGMs together with
the fundamental thermo-elastoplasticity theory. Next, we approximate heat diffusion and elastoplas-
tic deformation fields according to the unconditionally stafdank-Nicolson-Galerkirscheme and
the incremental numerical technique, respectively. With the introduced finite element approximation
scheme we conduct numerical experiments, with a representative two-dimensional beam-like func-
tionally graded structure, in order to investigate the effect of the volume fraction and the relative
thickness on the thermo-elastoplastic characteristics.

2. Functionally graded composite structures

Fig. 1 shows a three-dimensional symmetric metal-ceramic FGM composite, whearel 22
indicate respectively thickness of the plate and the graded layer. As mentioned earlier, the material
composition varies continuously through the thickness such that no discontinuity occurs.

Throughout this paper, we assume that layers are perfectly bonded and initially stress-free.
Furthermore, the ceramic layer is linearly elastic while the metal layer obeys linearly elastic
rigidplastic behavior. Then, the graded layer becomes a transversely isotropic (with respect to the
xy-plane) and linearly elastic rigid-plastic material.

As discussed in our pervious work (Cho and Oden 2000), the thermo-mechanical behavior of
FGMs is strongly characterized by two parameters, the relative thicknesg odititbe graded layer
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Fig. 1 Three-layered heat resisting functionally graded composite plate
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defined by
X=0dg/d, 0<sx<1 1)

and the volume fraction function¥.(z2) and V(2 of metal and ceramic constituents (here,
subscriptam andc refer to metal and ceramic, respectively).

Since two volume-fraction functions satisfy the relativh+V.=1 at every point in FGMs, one
needs to define either of the two. Here, we define the volume fraction of the metal such that.

Crdls — !

V@=L (gege gy @

=D, ds<z<d

where power indeX are positive real numbers.

As a first step, we consider the characteristics of FGM when two parameters approach lower or
upper limits. It is obvious that FGMs approach classical layered composites (CLE)tex@s to
zero whilefull FGMs (f-FGMs) asy tends to unity.

On the other hand, the graded layer becomes to be dominated by metal or ceramic compound
when the power index N, approaches 0 or<p, as illustrated in Fig. 2. In this paper, we denote a
FGM dominated by metal layer as tmetal layer-extende@LC (m-CLC) while one dominated by
ceramic layer as theeramic layer-extendeGLC (c-CLC), respectively.

According to the two parameters, we construct two different families of FGMs. First, for a given
power index N(O<N <0 ), the x~family F, is defined as a set of infinite FGMs that are
sequentially distinguished by the choice of relative thickness ratio:

F, = {M{:M} = CLC, My =f-FGM, 0< x< 1} (3)

Similarly, the N-family Fy is constructed by sequentially varying the power index, for a fixed
relative thickness ratig (0 <y < 1):
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Fn = {M}:M}=m-CLG M, = c—CLGC, 0< q+o} (4)

The purpose of such FGM families is to examine sort of sequential variations in thermo-
elastoplastic characteristics along the two defined parameters. In this study, our concerns focus on
the size and location of plastic zones and the distributions of thermal stresses and plastic strains
caused by cyclic heating.

3. Theory and material properties
3.1. Thermo-elastoplasticity theory

When a state of stresses at a point in FGM composites reaches at a critical level, yielding starts
from that point. A condition for yielding is expressed by the generalized yield surface

F(s, 1) = f(s)—-K(1) = 0 [

- N 0 ©)
k(1) = k(&p;T) = ko(&) —ko(T) O
wheres and g, denote a deviatoric stress tensoCafichy stressesr (s; =0;—09;, 8=0i«/3), and
the equivalent plastic strain, respectively. Ands the work-hardening parameter.
For our study we assume that FGMs obey isotropic hardening rule and von-Mises vyield criterion:
1.0
f(s) = J, = zsis[]
20 6)
k(1)=0y/./3 E

with oy=0y(&,; T) indicating yield stress in uniaxial tension. Furthermore, we emplaydtl-
Reussequations for increments of plastic strains given by
p _ 4,0F -
de” = dA%, dA Oa scalar multiplier )
whereeP is deviatoric strain tensor of plastic deformation. Assuming no creep, the total increment
of deviatoric strain is sum of elastic and plastic strain increments,

de = de’+de’ (8)

whereegj=¢g;—Ad;/3, A=g. Taking total differentiation to the yield surface function, we have

_ oF. OF.  p, OF —_
dF = o"'s'dS+o~»eP'de +0.,TdT 0 9
_ ik L OF _JF oF
dA = ADO.,S.ds+deTE A= 5 s (10)
Furthermore, we obtain

oF _ 0% _ (11)

ds  ds
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oF _ dkl _dk _  doy
ot = 2GT 2B By T s (12)
in this paperf is assumed to be temperature-interval-wise constant satisfying
(e, AT>0
B = , c~const (13)
Ep, AT<0

Using Egs. (11) and (12), we have

O
= —-(S ds+2B,/3,dT) O
E (14)
p _
de” = sdA 0
Next, we record basic relations:
o= 2’5'5 = ,/3] O
= 558 = /33, E
_ . O
4o = V372298 = |3 mdsp (15)
JSTS 43, O
3 0
odo = Es:ds 0

Substituting Eg. (15) into (14), we have the relation between equivalent stress and equivalent plastic
strain given by

_ 2072_
dg, = SA[ odo + T,BadT} (16)
Fig. 4 depicts the elastoplastic tangent mod&uand the plastic modulud defined by
00 EET
H(&;T) = — = —— 17
@D = T EE (17)

Substituting the relatiom = ﬁ[ko(ép) —k,(T)] obtained from Egs. (5), (7) and (10) into Eq. (17),
we have

g, = Ao = L(do+ 3 (18)

Equating Eq. (16) to Eq. (18) leads to
A= gHa
(19)
dA = —(da+ J3BdT)
2HoO
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Fig. 4 Elastoplastic and plastic moduli for elastic work-hardening materials

de® = =S (do+ ./3BdT) (20)
2HO

From the basic relation afe =ds2G+deP(G~the shear modulus) together with Egs. (15) and (20),
we have

do = 040, 22
s.de = 3G + 30 dA (22)
Substitutiondo in Eq. (19) into the above relation, we arrive at
s:de = SAA-QdT (22)
with
_2 _
20 Bo
S==—=(H+3G), Q="= (23)
9G 3G

Prandtl-Reussequations, together withy=0, imply the incompressible plastic deformatioit’=
A 54=0. Hence, we can use the basic relation
dé = (dA-3adT)K (24)
whereK(=A+2G/3) is the bulk modulus.
Now, we construct the relation for stress increments using the relations established so far,

do = ds+1d6

2G(de—de’) + 1d6

ZG[de— . —%sdTJ +1d0

ZG[de— S sde/S) - %sdTJ +(dA-3adT)1K 5

where 1 denotes {1, 1,1, 0, 0, 0} It is worthy noting that we applydk/ds=s) to the second step.
From the relations of material moduli of linearly elastic materials, we have
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2Gde+ dA1K = D de (26)

with D, defined as a ¢®) elastic material matrix defininGauchystrains.
By defining the plastic material matriX, and the elastoplastic material mafdy, respectively, by
O
D, = 2sd [
S 0 (27)
Dep = (De_Dp)E

we finally obtain the constitutive law for thermo-elastoplastic materials &déts.de):

do = Depds—DeadT—ZG%sdT (28)
where a vectowr is 1a. The second term in the RHS of Eq. (28) represents a change of normal
stresses due to temperature variation while the third term reflects the effect of yield surface
contraction due to the temperature increase. Hegeand the third term vanish before an initial
yielding.

For the two-dimensional plane-stress FGM composites, we can rewrite the above relation into the
following form by splitting in-plane (denoted Imy and transverse (denoted Byparts:
Mo”0 _ [Dep Dep Jde"D [De" DL Jha"O 'O
o=l d it el ol s s LG
(do O Dep Dep Ode O [ De De

Oa' O SO0
where in-plane and transverse stress and strain vectors are arranggdagsaf}’ and {a,, a,
a,} |, respectively, and furthermome"={1,1,0}" and a'={1,0,0}". Then, using the conditiodo'=0
and the static condensation technique, we finally obtain

do” = (D21- DD DIyde" - ze%(s" ~DY's)dT
~{(D{"-DY DY)a"+ (DY Dy DY)a'}dT (30)
3.2. Material properties of the graded layer

As being a dual-phase composite material, thermo-mechanical properties of the graded layer are
influenced by the shape and size and the dispersion structure of constituents as well as the volume
fraction. Numerous investigators have proposed estimation approaches for material properties of
dual-phase composites. The reader may refer to Christensen (1979), Wakashima and Tsukamoto (1991),
Ravichandran (1994), Reiter and Dvorak (1998) and Cho and Ha (2000) for the detailed discussion
on the representative approaches.

For our study, we basically employ the rules of mixtures, and we i€y for the ceramic
layer andNi for the metal layer. Furthermore, we assume that all materials properties except for the
coefficient of thermal expansioa, the vyield stressyy, the ultimate stresgy and straing,, are
temperature independent.

The rules of mixtures are simple estimates expressed in a linear combination of the volume
fractions and material properties of two constituents. Therefore, the complex influences of the
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above-mentioned factors are not taken into consideration. Basically, there are two estimates in the
rules of mixtures, the linear and the modified rule of mixtures.

According to the linear rule of mixtures, any material property at a point dual-phase
materials is computed through

0 (x) = Va(x)O a(x) + Vg(x) D 5(x) (31)

where subscript®\ and B refer to constituent®\ and B. The densityp, the specific heat, the
thermal conductivityk, the thermal expansion coefficiemtand thePoissors ratio v are estimated
by this approach. A use of the linear rule of mixtures for the density is unquestionable and the
justification of it for the thermal expansion coefficient has been made by Schapery (1968).

On the other hand, for théoungs modulusk, the yield stres®y and the elastoplastic tangent
modulusEy, we employ the modified rule of mixtures proposed by Tareti@ (1976) which has
been subsequently adopted by many other investigators. The modified rule of mixtures treats each
sublayer in the graded layer as an isotropic one, for which uniaxial stresgl straine are
expressed in terms of the average stresses and strains of two constituents and the volume fractions

together with the stress to strain transfer ratjaefined by

q = (0a—0g)/(Ea—&5), 0<g<+00 (33)

Substituting the relation (33) into Eq. (32), we have the expression fybthmg'smodulus :
E = [v EmD—D+ 1-V,, EJ [vmuq—m 1—va 34
g0t (Vo gDt (Vo (34)

From the experiment with dual-phase steels by Sweesth. (1995), it has been reported thypbf

4.5 Gpa is suitable for arbitrary two-phase materials for a wide range of volume fractions. A
schematic representation of the expression (34) is shown in Fig. 5. Reminding the fact of linear
elastic behavior of\l,O; layer and using Eq. (32), the yield stress of the graded layer is determined by

E.rfl+ By
Oy = Vi Oyt (l_vm)ac = O-Ymé\/m'l' (1_Vm)E_|:b + ECE (35)
Along the similar procedure, we have the elastoplastic tangent modulus given by
na+E na+E
Er = | VErn 3 (L= Va)Ec)/| Vo 3 (1-Va)| (36)
g+ Erp U L+ Erp U

According to the temperature-dependenceoef oy and &, Er, and Er also vary with the
temperature, anB,of the rigid-plastic materials is determinedEjf, o, gy andg, are given.

4. Finite element approximations

The thermo-elastoplastic behavior of heat-resisting FGMs is governed by two sets of field
equations, the heat diffusion equation and the static equilibrium equations. Under the assumption of
infinitesimal deformation, two field equations are weakly coupled.

As is well known, the heat diffusion equation is expressed by the following initial-boundary-value
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Fig. 5 Schematic representation of the Young's modulus and the elastoplastic tangent modulus according to
the modified rule of mixtures

problem, within the spatial domakilQ during the time intervall(0, t*], such that

OOkOT) +q = pet, in(0,t¥] xQ E
T=T, att=0 0

’ 0 (37)
T=T, onz=+d(0<t<t*) O

T=1(t), onz=-d(0<t<t*)F

Here, q denotes an internal heat source §gdis a cyclic heating of the peridgl imposed on the
upper surface, as shown in Fig. 6.

For the temporal discretization, we makeuniform time partitions such that=t* /N, t<!=t*+At
(k=0, 1,...,N-1), and we employ th€rank-Nicolsorschemeor T“*2and T%*2 On the other hand,
we define the two scalar-function spacé€) and V Q) for test and trial temperature fields,
respectively

V(Q) = {Q:QT HY(Q)|%Q = 0} ]

- (38)
V(Q) = V(Q) +{w,} O
where y:HY(Q) - HY(9 Q) denotes a trace operator while.] are extended® functions satisfying
Wiz = -4 =To andwp|=q =f(t,).
Then, we have the following semi-discrete variational formulation for the temperature field by
assuming no internal heat source: For a givénOV,4(Q), find ATXX)OV(Q)+{Awg} such that
(k=1,...,N)

IQELOCATKQ+%KD(ATK) D]QEdQ = —AIIQKDTk_lD]QdQ, 0Q O V(Q) (39)

Now, we partitionQ into a finite number of elemen¢ with boundariesdQ, , and we define
finite element aﬁproximation spacad(Q) and m}" with the element-wise continuous basis
functions{ ¢;(x)},=; such that
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Fig. 6 A cyclic temperature functidit) of the period

N N
VI(Q) DQ"= 5 /i, {wid" Dwi= 3 fi(6) i) (40)
Substituting the finite element approximations into the variational form (39), we arrive at the well-

known Crank-Nicolson-Galerkirscheme for the successive simultaneous linear equations:

2

Two matrices (time-invariant for FGMs with temperature-independent material properties) are
defined by, respectively

[C+gKJATk=—At[K]TH, k=1,...,N (41)

[Cij]:J-Q pce;9;,dQ, [Kij]:J-Q k[¢; ¢, dQ (42)

For the stability and convergence analysis of this scheme, the reader may refer to Johnson (1990)
and Carey and Oden (1984).

Neglecting body force of FGMs, the thermal-induced elastoplastic deformation is governed by the
following equilibrium equations

0;;(u),;=0, InQ E
u=0, on 4Q, O (43)
t;=0, on 9dQ, E
and the displacement-strain relations and the constitutive law
2g;=(u; ;+u; ) (44)
do:Depds—DeadT—ZG%sdT (45)

In Eq. (43),t; 0 Lz(dQN) andy, denote components of applied external traction and outward unit
normal, respectively. We define a vector-valued function sp4€ of admissible displacement
fields as

V(Q)={¥(x) O [HY(Q)]’|yov=0} (46)
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For the iterative numerical analysis, we express the constitutive law as follows:

0=Dg,e+0, OJ=—DeaT—ZG%sT (47)

Then, we have a nonlinear variational formulation of the boundary value problem (43): Find
u 0 V(Q) such thatdv O V(Q)
A s(v):[Deps(u)]dQ=—IQ g(v):0'(u)dQ (48)

Along the similar procedure for the heat diffusion problem, we construct finite element
approximations/ of v such that

O
N [l
V(Q Dvh, vih= Y/ X
(Q) g k@i(X) E (49)
— 3 u
Vi(@=v(@N [C(@] 7
Employing matrix form expression fm? , we have
e(V")=D (®v)=Bv (50)

where @ andv indicate the matrix containing finite element basis functions and the nodal vector
of V", respectively. Then, we obtain the nonlinear simultaneous equations:
Kept=f (51)

with
Kep=[, B'DepBdQ, f=—[_ B'o'dQ (52)

For the iterative finite element analysis, let us introduce a residual force ¥éctor  defined by
O=Kepu—f (53)

In accordance with th@rank-Nicolson-Galerkischeme for successive increments of temperature field
AT, we employ the linearized incremental procedure for the increrderits

AO'=0: K 'Au“=af (54)

Since we assume that FGMs are linearly isotropic work-hardening materials, \Ebé,;ﬁ,s@ k1 gkt
and s computed at the previous st&gé for the current-stage computation. With the computed
incrementAu® |, we calculatds®, Ad’®  and update thermo-elastoplastic stress according to

-1
Ad“=Dg, Ae+A0"Y, Ao”k’=—DeaATk—ZG%s§ AT" (55)

o'=d"+Ad" (56)
And we computeﬂ?,f and upda}':gk
Afpk:Hik(Aak +.334TY (57)
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ESE) +AE, (58)
Finally, we computeDgp, Qk, S ans for the next-stage computation.
A schematic flowchart for the incremental scheme for the thermo-elastoplastic analysis for FGMs
is presented in Fig. 7, Whe;ﬂ\aoJ§emp indicafég)lAek

5. Numerical experiments

For the numerical simulation we take a simply supported symmetric plane-stress FGM beam
shown in Fig. 8. Its lower surface is kept toTyebe 290K while its upper surface is subjected to a
cyclic temperature functioift) depicted in Fig. 6 witfi, of 3.0 sec and the peak temperaiyref 1190 K.

The thermo-mechanical properties of two constituents are listed in Table 1, and the temperature-
interval-wise variations of four material properties are contained in Table 2. We note here that linear
interpolation is applied to the temperature-dependent properties for obtaining continuous temperature
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Fig. 7 Flowchart for the incremental thermo-elastoplastic analysis
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variations. Sixteen FGM casebl f 0.5, 1.0, 5.0 and 50 for eaghof 0.2, 0.5, 0.7 and 1.0)
together with a CLC are taken for the comparative analysis.

From the symmetry of thermo-elastoplasticity problem with respect teakis, we take a half of
the beam for the FEM model. We make 150 uniform partitions along-divection, while three
layer-wise uniform mesh partitions through the thickness, such that total 13,500 elements are quasi-
uniformly constructed, regardless of the choice of two paramgteand N. According to the
theoretical results, we prepared a test FEM program in which two-dimensional isoparamteric 8-node
guadrilateral elements are employed. By comparing with the numerical solutions given in the paper
by Surestet al (1995), we confirmed its validity.

In accordance with the purpose of this study, we focus on the vertical distributions of
thermoelastoplastic behavior through the thickness, which implies that we exclude the edge effect
(Williamson et al. 1993) that occurs near=+L/2 owing to the finite length. To realize such a
situation, we impose no temperature gradient on both surfagesfatL/2 and take the numerical
results along the-axis.

Parametric investigation on the thermoelastic characteristics is well presented in the work by
Reddyet al (1999), Cho and Oden (2000). In latter a discussion on the choice of suitable time-step
size preventing the inherent oscillation in &nk-Nicolson-Galerkirscheme is also described.

In the CLC case, plastic yielding shown in Fig. 9(a) starts form the bottom surfaceNpldker
and it advances toward the mid-plane (approximately upafo—-3.0 mm). According to the cyclic
heating, successive plastic accumulation is observed in the vicinity of the bottom surface.
Corresponding thermal stress distributions are shown in Fig. 9(b), where we see the effect
associated with the plastic yielding near the bottom surface df#ager. Despite of the existence
of successive plastic yielding near the bottom surface, time-variation in thermal stress distribution is
not noticeable. This is because the plastic tangent moditusn the Ni-layer is significantly
smaller compared tB,, andE,, as listed in Tables 1 and 2.

Fig. 10 shows the results of tiygFGM family with N of 0.5. Regardless of the relative thickness
ratio x, the plastic yielding occurs in the upper region of graded layer just below the graded-Al
interface. It is worth to note that the FGM withof 0.2 has the plastic zone near the bottom
surface too, and furthermore the plastic response of the FGMxvatt0.7 as well as one (for of
0.2) near the bottom surface is not affected by heating cycle iAsreases, the peak equivalent
plastic strain strictly decreases, except for the -FGM which has exceptionally high value. Next
Figs. 11 and 12 show thermal stress distributions at A, C, E and B, D, respectively. For the f-FGM,

Table 1 Material data of AD; and Ni

) Constituents
Properties -

Ni Al 205
Density (kg/n) 8900.0 3970.0
Young’s modulus (Gpa) 199.5 393.0
Poisson’s ratio 0.3 0.25
Specific heat (J/kg°K) 444.0 775.0
Thermal conductivity (W/m°K) 90.7 30.1
Thermal expansion coefficierfi{t x 10°°) 7.44 (293K) 3.00 (293K)

9.89 (1116K) 5.22 (1116K)
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Fig. 8 A plane-stress FGM beam and

Table 2 Time-variations in material properies

wrmloan

its finite element model

Temperature®K) oy (MPa) oy (MPa) & (%) Erm (GPa)
293 148 462 47 0.669
400 153 459 46 0.666
500 140 459 44 0.826
600 138 462 46 0.705
700 115 328 64 0.333
800 100 245 68 0.213
900 69 176 72 0.149
1000 59 121 82 0.076
1100 45 83 95 0.040

considerable time-variation in thermal stress is observed, owing to the existence of large successive
plastic yielding. Even though the f-FGM possesses smoother and smaller thermal stress distribution,
it has excessive plastic accumulation near the top surface. Hence, in this family, thexcds@ isf
more attractive from the thermo-elastoplastic point of view.

Numerical result for the FGMs witN of 1.0 are presented in Figs. 13-15. Compared to the case
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Fig. 9 Thermo-elastoplastic response of CLC
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with N of 0.5, the plastic-affected region becomes wider, particularly for the FGMsyvath0.5

and 0.7, and the magnitude for the f-FGM becomes significantly smaller, which is caused by the
relaxation of the metal volume fraction near the grade@®-Ainterface. The occurrence of plastic
zone near the bottom surface up xoof 0.7 is also remarkable. According to the extension of
plastic zone showing successive plastic yielding along heating cyche,0fod.5, 0.7 and 1.0, time-
variations of thermal stress in such regions become considerable.

Distributions of the equivalent plastic strain for FGMs witlof 5.0 and 50 are shown in Figs. 16
(when y is 0.2) and 17 (whep is 1.0). We first consider the case withof 5.0. Compared to the
previous cases with of 0.5 and 1.0, we observe that the plastic zone in the graded layer moves
down to theNi-graded interface with a trend of becoming wider and smaller in its magnitude. In
addition, the successive plastic accumulation becomes significantly smaller to a negligible extent.
This tendency in the graded layer becomes more severe with the incregagenothe other hand,
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the plastic zone near the bottom surface becomes wider with the increase in its magnitude.
Furthermore, we see more active and sharp increase in successive plastic accumulation, but it does
not show a remarkable variation aloggSince the plastic distribution shows a sequential variation

with respect tgy, we exclude the results for the cases withf 0.5 and 0.7.

Next, we examine the case with N of 50. From Fig. 16, we see a very small plastic zone
extremely moved to theé\i-graded interface, even this tiny plastic zone in the graded layer
disappears completely whegn= 0.5. According to the increase gf the plastic behavior near the
bottom surface shows the same trend as the caseNvath0.5, except for the shrinkage of plastic
zones.

Corresponding thermal stress distributions Noof 5.0 and 50 are presented in Figs. 18 and 19,
respectively. Even though all FGMs with N of 5.0 and 50 experience significant successive plastic
yielding near the bottom surface, the f-FGM withof 50 shows only a noticeable time-variation in
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thermal stress distributions. This is because thgAlolume fraction for this case becomes
extremely dominated near the bottom surface, as depicted in Fig. 2, which significantly arguments
the small plastic tangent modulusNifin such a region.

By comparing the whole figures of stress distributions presented so far, we first observe that CLC
exhibits the steepest stress jump at layer interface, while the other FGMs exhibit flexible variations
according to the choice of two parameters. WHNeis relatively small I < 1.0), except for the f-
FGM, considerable stress jumps occur at the gradgdzAdterface, and which reflects the behavior
of m-CLCs. Along the increase bf thermal stress distributions seem to become smoother but they
show again noticeable stress jumps atNRgraded interface wheN reaches 50, which reflects the
behavior of c-CLCs. On the other hand, the f-FGM displays a remarkable stress change near the
bottom surface only wheN is 50.

Figs. 20(a) and (b) comparatively show total widths of plastic zone in the graded layer and in the
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Ni-layer, respectively. In the graded layer, the total width becomes larger, as a whole, together with
the increase of. In addition, for a givery it reaches the peak whéhis 5.0. On the other hand,

in the Ni-layer it shows an increase trend as the power illéxcreases, while it, for relatively

high power indices, saturates yaicreases. This figure implies that the plastic region in the graded
layer becomes wider ad approaches 5.0 ox increases, while it, in th&li-layer, does adN
increases.

The plastic zone for each FGM is plotted in Fig. 21(a), where layer interfaces are not indicated
because the reader can infer their locations from the valye Dhe plastic zone fox of 0.2 is
splitted into two regions for all values of. Along the increase oN, one restricted within the
region just below the graded-@); interface moves toward thdi-graded interface, while the other
in theNi-layer just extends toward tNg-graded interface from the bottom. This tendency dfltfemily
MONZ is because the positive peak thermal stress occurred at the gra@edmérface moves
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toward theNi-graded interface and the thermal stress magnitude near the bottom surface increases
monotonously, as is well described in our previous work (Cho and (@€)). 2

For the N-familiesM)'(“zol5 , the trend of plastic zone with respect to the power kdkes not
show relatively significant difference, except for becoming wider and its complete disappearance
whenN is 50. On the other hand, plastic zones inNiayer, forN of 5.0 and 50, do not show
any noticeable change compared to thosg wfith 0.2, but those foN<1.0 shrink to zero ag
increases.

Variations in the location of peak equivalent plastic strains, in the graded layer, are shown in Fig. 21(b),
where (m) indicates its movement along the heating cyeleA - E). For each relative thickness
ratio x, the peak position moves from the point just below the gradgokAmterface to theNi-
graded interface adl increases. It is worth to note that the FGMs withof 1.0 experience
considerable successive changes in the peak position along the heating cycle.
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By examining Figs. (20) and (21), we realize that the equivalent plastic strain distributions in the
graded layer becomes more sharp as N approaches zero, regargdesinahe other hand, from
Figs. (10), (13) and (16)-(17), the variation of its sharpness, iNitfeyer at timeA, with respect
to the power indeX is not considerable.

Variations of the peak plastic strain in the graded layer anilitteyer are shown in Figs. 22(a)
and (b), respectively, where the lower one of two curves for gashat timeA. We first consider
Fig. 22(a) for the graded layer. For eveMy the peak plastic strain decreases to some extent in
proportion of the increase ¢f, but it increases wheg approaches unity. On the other hand, the
distance between two graphs for egghwhich indicates the magnitude of successive plastic strain
accumulation, becomes lagerMgslecreases.
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In the Ni-Layer, FGMs withN = 5.0 have higher peak values than those of CLC. In addition, for
every x the initial peak plastic strain and the successive plastic accumulation uniformly increase in
proportion to the increase of. In other words, th&li-layer exhibits higher plastic strain as FGMs
approach the c-CLC.

6. Conclusion

In this paper we addressed the parametric investigation on thermo-elastoplastic characteristics of
heat-proof functionally graded composites together with the theoretical formulation and the finite
element approximations. For the comparative numerical analysis, we selected the volume fraction
and the relative thickness ratio of the graded layer as considering parameters. Through the
numerical experiments with plane-stress heat-resisting FGM subjected to the heating cycle, we
examined the distributions of equivalent plastic strain and thermal stress, and we analyzed the
variations associated with the plastic zone, the peak equivalent plastic strain and the successive
yielding. According to the investigations through numerical results, the following main observations
are drawn.

1. In the graded layer, plastic yielding occurs in the region near the gragedusterface when
N is 0.5, but it moves toward thdi-graded interface with the trend becoming wider and smoother
in proportion to the increase bf In addition, the total plastic zone width is maximum wheis
5.0 and it shows the increase tendency, according to the extension of the graded layer, but the peak
equivalent strain and the distribution sharpness show higher values at lower poweNigd&xX)
Furthermore, the successive yielding due to heating cycle prevajsofat.0 or smallelN.

2. In the Ni-layer, plastic yielding occurs in the bottom region and the plastic zone advances
toward theNi-graded interface, while showing the saturation behavidy @xreases. In all cases,
the peak equivalent plastic strain occurs at the bottom surface, and it shows uniform increase in its
magnitude and sharpness in proportion to the increddeaimd heating cycle.

3. We also observed that the thermal stress exhibits considerable jumps at the gf@ged-Al
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interface wherN is relatively small, except for the f-FGM, and at Miegraded interface wheN is
50. However, the stress concentration at Migyraded interface is not severe compared to one
occurred at the graded-&); interface.

From the numerical results, we observed that a wide range of thermo-elastoplastic characteristics
is obtained by varying the combination of two parameters. Thus, this study leads one to the further
study on the optimal design of most suitable heat-resisting FGMs for a given purpose, for which
one should be able to determine the optimal combination of the volume fraction and the relative
thickness ratio.
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