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Inelastic behavior of standard and retrofitted
rectangular hollow sectioned struts.
I: Analytical model

Medhat K. Boutrost

The University of Western Australia, Nedlands 6907, Australia

Abstract. This paper is a presentation of a physical model for the elastic-partly plastic behavior of
rectangular hollow section pinned struts subjected to static cyclic axial loading and the evaluation of the
compressive strength of retrofitted damaged struts. Retrofitting is achieved by welding stiffening plates
along the webs of damaged struts. The shape of the elastic and permanent deformations of the strut axis
satisfy the conditions at the ends and midspan. Continuous functions of the geometric variables of stress
distributions in the yielded zone are evaluated by interpolation between three points along each partly
plastic zone. Permanent deformations of the partly plastic region are computed and used to update the
shape of the unloaded strut. The necessity of considering geometric nonlinearity is discussed. The
sensitivity of the results to the location of interpolation points, the shape of the permanent deformation
and material hysteretic properties is investigated.

Key words: bracing; compressive strength; cyclic loads; geometric nonlinearity; hysteresis; partial plas-
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1. Introduction

The hysteretic behavior of struts under cyclic loading is an efficient means of energy dissipation
in events of excessive dynamic action. Empirical models of their behavior (Jain et al. 1978) were
developed by piecewise linearisation of experimental observations. In semi-empirical models
(Gugerli et al. 1982), a plastic hinge was introduced at mid-span and the plastic deformations of the
hinge were determined. Analytical solutions using line elements with a perfectly plastic hinge at
midspan for pinned struts (Boutros 1991) and at clamped ends (Papadrakakis and Loukakis 1989)
exhibited a sudden transition from the elastic condition to the plastic stage due to the instantaneous
formation of the plastic hinge that triggered large deflections. They predicted larger compression
peaks and midspan deflections than tests (Boutros 1991).

A Finite Strip nonlinear model with a plastic hinge at mid-span (Boutros and Goel 1985) showed
the same discrepancies as line element models. It also showed for L sections that the deformation of
the cross-section was not large enough to require accounting for distortion of the cross-section and
local buckling.

A solution of struts subjected to monotonic loading and including partial plasticity with strain
hardening and large deflections (Murray 1991) using numerical integration along the axis of the
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strut showed a good agreement with test results.

While the assumption of full plasticity at midspan may be appropriate for cases of large plastic
strains where axial deformations are larger than five times the yield deformations, practical cases of
struts in braced frame structures undergo milder axial deformations (about 2 to 3 times the yield
deformations). Therefore, the partly plastic transition stage, where significant portions of the cross-
sections about mid-span remain elastic, governs their response. An analytical model where
continuous functions of the deformation parameters of the partly plastic zone were derived and
explicitly integrated showed a good agreement with test results for circular hollow sections (Boutros
1994). '

In this paper, the last model is extended to rectangular hollow sections (RHS). Material hysteretic
properties are defined on the basis of test observations (Boutros et al. 2000).

The effect of large deflection in the expression of elastic curvature was neglected in most previous
analytical studies (Papadrakakis and Loukakis 1989, Boutros 1991). This resulted in errors at large
compression deformations when the midspan deflection exceeded 3% of the span as demonstrated
below. The axial displacements discussed in this paper and the corresponding tests (Boutros 2000)
are generally less than twice the yield axial displacement. These axial displacements correspond to
maximum mid-span deflections about 5% of the span length for grade 350 (MPa) steel; which
requires accounting for geometric nonlinearity. This model is appropriate for the prediction of the
response of bracing members in skeletal structures and of the residual strength of damaged struts. It
may also be used to evaluate the shakedown limits of struts for a given loading history.

Following an adverse dynamic loading event on a braced structure, braces may be damaged.
Often the extent of damage and/or the difficulty of replacing the braces may justify retrofitting. The
model is extended to determine the residual compressive strength of mildly damaged struts after
strengthening them with stiffeners, or patches, welded onto their webs.

In the following two sections, the elastic and inelastic relations are presented for both prismatic
and retrofitted struts. Then, variations of the model’s parameters and assumptions are discussed.
Finally, general conclusions are summarised.

2. Elastic deformation of the axis
The shape of the elastic curve is shown in Fig. 1. In both the loaded and load-free states, the

curvature of the strut is zero at the end pins and the slope is zero at mid-span. The deviation, v,
from the load axis is defined in terms of straight reference axis x, through the ends of the strut, by:

loaded

load-free

Dy
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Fig. 1 Deformed shape of the strut axis
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where D, and D, are the imperfection and the elastic deflection, respectively, at mid-span and a is
the half span of the strut. The permanent imperfection represented by the first term in Eq. (1) varies
such that the curvature is quadratic in x. The order of the curvature function reflects the extent of
the plastic deformations that is mainly dependant on the shape of the cross-section. A solid
rectangular cross-section (for which the fully plastic pure bending moment is 50% higher than the
yield bending moment) would exhibit a gradual decrease in stiffness along the span from first yield
to full plasticity. On the other hand, the stiffness of hollow rectangular sections (for which the
difference in magnitudes of the fully plastic and yield bending moments is significantly smaller)
will drop steeply once one of its flanges yields. In this case, the plastic deformations would be
concentrated in a small midspan yielded zone. In the cases of equal angle cross-sections, a linear
variation of the plastic curvature is more adequate (Boutros 1997). The effect of considering a linear
curvature is discussed in sub-section 4.2 below.

Axial force P and end displacement u are in the x direction (tension positive) and are shown in
Fig. 1 for a positive D,. The relative displacement of the end pins u, due to bending only was
evaluated by equating the lengths of the strut axis in the load-free (D,=0) and loaded (D,#0)
configurations:

uh:Za(g* 1) )

where (for small variations of a):

] ’2 (] 2
D= J1+ v p,odx and  y=[" J14+v0, oo odx (2a)

The total relative displacement of the end pins u is determined by adding the elastic and inelastic

axial deflections to the bending one:
u=2[a(£—i + g) - all 3)

where g, is the initial half span of the strut, a is its current value.
The equilibrium condition due to bending was derived from the stationary of the total energy 11

El »
n=$ = 0edx - Pu, 4
where ¢, is the elastic curvature. The curvature was expressed considering the slope of the beam
(Timoshenko 1965). The effect of neglecting the slope is discussed in sub-section 4.1 below.
3. Inelastic actions and deformations

After initiation of yield, the stress distribution on a cross-section may assume any of three
configurations (Fig. 2). First, yield develops in the extreme fibre on the concave face of the strut
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Fig. 2 Inelastic stress distributions on the cross-sections

(bottom fibre in Fig. 2a). In a compression stroke, the yield region spreads inwards while tension
stresses increase on the convex face until it yields (top fibre in Fig. 2b). During a tension stroke, the
axis of the strut straightens. The stress on the convex face progresses from compression to tension.
The yield zone spreads from the concave face to the convex face until the section is fully yielded
(Fig. 2¢). In Fig. 2, y, is the position of the neutral axis from mid-height, A, (real elastic height) is
the height of the elastic region of the cross-section and H, (virtual elastic height) is the height
between two points stressed at the nominal yield stress of the material 0';.

Three key hysteretic stress values are used to describe the plastic history of a cross-section. These
are the stress at the extreme fibre on the concave face o, the stress at the extreme fibre on the
convex face o0, and the extreme stress in the elastic portion O'f,. The first two are determined from
the plastic strain history. The third is considered to remain constant throughout the analysis.

In the yielded region of any cross-section, the stress distribution is nonlinear. It varies from & to
o, on the concave side and from 0'; to o, on the convex side. The stresses at different fibres follow
different histories. Hence, it is difficult to account for the actual stress distribution without
complicating the solution significantly. During cyclic loading, the current yield stress at the limits of
the elastic zone of the cross-section is different from o if they have previously yielded. However,
it is closer to the nominal value than the yield stress of the extreme fibres because they undergo
smaller plastic deformations. At the inner edge of the yielded zone (Fig. 3a), the stress distribution
is tangential to that in the elastic zone resulting in a smooth transition between the current
(hysteretic) yield stress 0'; to nominal yield stress O'f.. Then, the error due to assuming this stress to
be o is small.

For simplicity, the stress distribution in each of the concave and convex regions (Fig. 3a) was
linearised. Because the only parameters registering the plasticity history are the stress magnitudes at
the extreme fibres, it is reasonable to assume that the shape of the equivalent trapezoidal stress
block is strongly dependant on the difference between ¢° and o, on the concave plastic side (and
that between of, and o, on the convex side) and on the difference between the current yield and
ultimate stresses. The latter effect results from the fact that the transition from yield to ultimate
stresses is associated with a larger strain variation the larger the difference between these stresses



Inelastic behavior of standard and retrofitted RHS struts. I: Analytical model 495

o
Ox (o3 yv

oy
"
Oy
(a) Stress distribution on the cross-section (b) Linearised stresses on the concave side

Fig. 3 Linearisation of the stress distribution in the yielded region

(Boutros et al. 2000). On the concave side, the values of oﬁ' and o,” (Fig. 3b) were taken as:

c
o,— 0O
O';)V,=O';),+ Vo ¢ (Gv - O-;)) (5)
2(0,~-0,)
0 0
o, -0
and ov’=0'v+—ﬂv—v—6—-1 (6)

where O'z, nominal ultimate stress, is defined as the end of the initial curvilinear inelastic stress-
strain relation and the beginning of a straight one. Similar relations were used for o‘y’x’ and 0" on
the convex side.

In each of the original and patched zones a partly plastic zone may form. Along each partly
plastic zone, the stress configuration was determined at three points and the values of the y, and H,
were determined (Fig. 4, where subscripts ws and s designate the unstiffened and stiffened regions
respectively). This was achieved at each point by equating the stress resultants, axial force and
bending moment, to the eccentric load P acting at v from the cross-sections midheight. Then, a
quadratic function was defined for the variations of y, and H,.

For a partly plastic segment AB (Fig. 5), the permanent rotation 66, offset DD and axial
deformation &, are determined by:

black shading denotes
yielded areas

® e interpolation
points

Fig. 4 Interpolation points in the partly plastic zones
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Fig. 5 Deformations of a partly plastic zone

86=1" (¢ ¢,)dx (7
where ¢ and ¢, are the total and elastic (recoverable upon unloading) curvatures respectively:

2¢ P

=— and =] (7a)
H, ¢ Eli

spD=|" [' (¢~ 0,)dx ds (8)
_ o B Yn |_[)l B

a=2¢, [ 79 [} dx )

The midspan offset DD due to the permanent deformation of the standard and stiffened regions
and the corresponding D, (Fig. 6) are determined from geometry:

DD=DD_+8DD, +Ltan(66,,)+06DD sec(56,,)= (10)

deformed axis

s Y
unstiffened stiffened
partly plastic partly plastic
zone zone

Fig. 6 Permanent deformation of the axis



Inelastic behavior of standard and retrofitted RHS struts. I: Analytical model 497

where DD, is the original offset and L, is the half stiffened length of the strut.

In the elastic stage, the analysis was controlled by incrementing the elastic displacement D,. After
the onset of yield, it was controlled by decreasing A, at the most stressed cross-section in the
unstiffened zone. When this cross-section was fully yielded, it was controlled by increasing the
strain on the convex face.

At the end of each loading stroke of an unstiffened strut, the yield stresses at the concave face for
the subsequent stroke were evaluated at the interpolation points of the last step of the stroke and at
the pin. A cubic function was derived to fit these four values. This function was used to determine
the yield stress on the concave face at any point in the following stroke. On the convex face,
isotropic hardening was assumed for simplicity because the inelastic strains on this face are
significantly smaller than those on the concave face. Therefore, the hysteretic variations of the yield
stress at this fibre are neglected.

In the analysis, a continuous function of the permanent deflection was considered. Plastic
deformations of stiffened struts occurred in both their unstiffened and stiffened regions. It usually
initiated in the unstiffened regions. Therefore, the expression of the variation of the permanent
deformation used in the analysis of unstiffened struts (Eq. 1) was modified to reflect this more
uniform spread of permanent curvature along the span by using a lower order (linear) variation of
the curvature:

3x X

. Tx
vm:Dl(Z—a—;)+Dzsmic—l for 0<x<a (1)

Eq. 10 and Fig. 6 were modified accordingly.

4. Effects of variations in the model’s parameters

Few simplifications were introduced in this model namely: the order of the expression of the
permanent (plastic) curvature, the locations of interpolation points for the evaluation of plastic
deformations and the material hardening path. On the other hand, the commonly assumed small
deflection approximation was found inadequate for the practical range of application of this
analysis. In this section, these assumptions are discussed and the effects of their variations on the
results of the analysis are assessed.

4.1. Large versus small deflection elastic curvature

The expression of the elastic curvature ¢, in Eq. (6) was derived accounting for the slope of the
axis (Timoshenko 1965), i.e.,
an,:o,nz,x)
o="—""" 3 (12)

e 2 3n
(I +vp p,.0)

For small deflections, the denominator approaches unity. The analyses of an elastic compression
stroke of a 3.5 m long RHS 65x35%3 strut (slenderness ratio of 248) with an initial imperfection D,
of 50 mm considering the slope in Eq. (12) and neglecting it is shown in Fig. 7. The transverse
deflection in the small deflection analysis exhibits stiffening at large deflections due to the
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Fig. 7 Comparison of large and small deflection formulations for a long elastic RHS 65x35x3

shortening of the span which was considered in both analyses. Large deflection formulation is
necessary for cases of midspan deflections larger than 3% of the span which is the case for the last
quarters of the compression strokes in the cases presented in the experimental study (Boutros et al.
2000). :

Although the large deflection formulation in Fig. 7 is more accurate than the small deflection one,
it is not exact because the sine function of the deflection shape does not satisfy the differential
equation for compression forces (negative P):

El————~Pv=0 13)

It is understood that for tension forces the sine function satisfies only the boundary conditions.
Equilibrium (Eq. 13) is not satisfied along the span. The error in both tension and compression is
however minimised by determining the configuration of stationary total energy (Eq. 4).

4.2. Expression of the permanent deflection

In the analyses above, the expression of the permanent deflection, first term in Eq. (1),
corresponded to a quadratic function for the permanent curvature. This choice was substantiated by
the shape of the cross-section. For RHS struts, the stiffness of the cross-section is governed by that
of its flanges. For an elastic-perfectly plastic material, the fully plastic bending moment and the
yield moment of the RHS cross-section are almost equal, whereas the plastic moment of a solid
rectangular section is 50% higher than the yield moment. This means that the partly plastic zone
would be shorter in the case of RHS than that of the solid cross-section.

Fig. 8 shows the analytical results for an RHS 65x35x3 (test 2 in Boutros et al. 2000) with
quadratic (Eq. 4) and linear (Eq. 11) expressions for the permanent curvature compared to the
experimental results for two cycles of loading. For the same midspan value of D,, the quadratic
curvature is associated with smaller load eccentricities away from midspan than the linear case. This
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Fig. 8 Comparison of analyses using different distributions of plastic deformations and test (Boutros et al.
2000) for RHS 65x35x3

results in larger plastic deformations being required in the case of quadratic curvature to reach the
limit axial deformations of the strokes (Fig. 8b). At the end of the tension strokes when D; is small,
especially the first one, the two analyses seem to converge. In general, the analysis with quadratic
permanent deformation correlates better with test Observations. In the analysis of stiffened struts, it
is more adequate to assume a linear permanent curvature because yielding initiates at the ends of
the unsti*fened zones rather than at midspan.

4.3. Location of interpolation points

In each partly plastic zone (Fig. 4), H, and y, were evaluated at three points: the most stressed
point and two others within the zone. Then, quadratic functions were fitted to these values. The
locations of the two intermediate points should be chosen to produce a good global representation
of the progress of plastic deformations. In compression where bending plastic deformations are
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Fig. 9 Comparison of analysis varying the locations of interpolation points along the partly plastic zone and
test (Boutros et al. 2000) for RHS 65x35x3

more prominent than axial deformations, these points are better located closer to midspan in order
to reflect its prominence for plastic bending deformations. On the other hand, in tension where axial
plastic deformations are more important specially after straightening of the strut axis, it is
appropriate to spread these points away from midspan. In the cyclic analysis of the unstiffened
struts, the intermediate interpolation points were taken at the third points in compression and at the
quarter points in tension.

Fig. 9 shows for the second cyclic test the results of two analyses the first using third points for
both compression and tension strokes and the other using sixth points (measured from both ends of
the half partly plastic zone). In general, the sixth point analysis produces higher load values and
smaller permanent deflections than the third point one specially in compression. Also, after the
initial friction peak, test and third point analysis converge. However, by varying the locations of the
intermediate points between tension and compression, a better agreement with test results is
achieved (Boutros er al. 2000).

The fact that there are differences in results using third and sixth points means that the assumption
of quadratic variations of H, and y, is not correct. However, it is convenient in order to simplify the
evaluation of plastic deformations in Egs. (7), (8) and (9). A drawback of this simplification is that
the analysis may become unstable if non-positive values of the interpolation function for H, exist
within the partly plastic zone. This instability may be overcome by moving one intermediate point
closer to midspan.

A more accurate analysis may be achieved by finite difference integration of the elastic and
plastic deformations as presented by Murray (1991) which does not require assuming functions the
shape of the axis and the variations of H, and y,. However, it may be impractical for analysis under
cyclic loading. Alternatively, plastic deformations may be evaluated for finite subdivisions of the
partly plastic zone. This solution showed to be stable. However, it did not alter the results
significantly enough to justify using it in this analysis as the solution process became slower
because it required evaluating the stress conditions at 9 or 17 points (for 8 and 16 subdivisions
respectively) instead of 3 points in this analysis.
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4.4. Isotropic versus quasi-kinematic hardening

Axial tests on full RHS sections (Boutros et al. 2000) showed that the hysteretic stress variations
were such that the yield stress o} was affected by cyclic loading whereas the ultimate stress o,
remained unchanged as shown in the “quasi-kinematic” hardening curve in Fig. 10. Also, the lower
the yield stress 0'; the larger the strain increment between yield and ultimate stresses.

Fig. 11 shows the response considering quasi-kinematic hardening as discussed above and
isotropic hardening. It shows that, after the common first stroke, isotropic hardening overestimates
stresses up till the end of the strokes. In general, the response using quasi-kinematic hardening is in
closer agreement with experiment results in later cycles. Hence, it is important to consider the
hardening history of the material. In most cases of stiffened struts, yield initiates at the span end of
the unstiffened zone. During the damage event prior to stiffening, this cross-section would incur
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Fig. 10 Hardening paths
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Fig. 11 Comparison of responses using quasi-kinematic and isotropic hardening and tests (Boutros et al.
2000) for RHS 65x35x3
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smaller plastic deformations than midspan. Hence, its o, is closer to o,. In some cases,
compressive strength may depend on yielding of the stiffeners which were not stressed prior to
stiffening. At midspan, the yield stress of extreme fibre of the RHS is generally smaller than that of
the stiffener. Yet, the stiffener would yield first because of its depth being larger than the RHS.
Therefore, the loading history of the original strut may be neglected without significantly reducing
the reliability of the analysis.

5. Conclusions

A physical model for the elastic-partly plastic behavior of rectangular hollow steel struts subjected
to static cyclic axial loading was developed. It was extended to analyse non-prismatic struts for the
evaluation of the compressive strength of retrofitted crooked struts. Retrofitting was achieved by
welding stiffening plates along the webs of damaged struts. The shape of the elastic and permanent
deformations of the axis of the strut satisfied the boundary conditions. The variation of parameters
of partial plastic deformations were determined by interpolation between three points along each
partly plastic zone. Variations of the analytical model showed that these quadratic functions were an
adequate simplification; and that the results were sensitive to the material hysteresis properties. The
permanent deformations of the partly plastic region were computed and used to update the shape of
the unloaded strut. The shape of the permanent deflections was assumed on the basis of the
properties of the cross-section to have a quadratic curvature for the prismatic struts and a linear
curvature for the stiffened struts. It was also shown that a large deflection analysis was necessary
for struts undergoing midspan deflections larger than 3% of the span.
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Notation

A area of the cross-section of the tube

a half span of the strut

DD offset at mid-span from the tangent at the end of the load-free strut
D, crookedness at mid-span

D, elastic deflection at mid-span

E modulus of elasticity

h. height of the elastic region of the section

H, height of a virtual region of the section between two lines stressed by o
I second moment of area of the cross-section of the tube
L half length of the stiffened region measured along the axis of the deflected strut
P axial force (positive for tension)

u half the relative (axial) displacement of the pins

v deviation of the axis of the strut from the load line

x coordinate axis along the straight load line

Vn location of the neutral axis measured from the centre of the tube
é variation

£ strain

&, reference strain

£ initial (nominal) yield strain

£ incremental yield strain of the current stroke

6 slope of the strut axis

0l curvature of the strut axis

Q. elastic curvature of the strut axis

o) stress

o, initial (nominal) yield stress

o, nominal ultimate stress

o, yield stress at the start of the current yield stage

o, stress on the concave face

o’ linearised stress at the concave face

o, linearised yield stress on the concave side

O, stress on the convex face

o’ linearised stress at the convex face

o, linearised yield stress on the convex side
Superscripts

0 initial (nominal) value

c current value

Subscripts

b bending

e elastic

n neutral axis

r reference

s stiffened region

u ultimate
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us

unstiffened region
concave face
convex face

yield
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