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A computer program for the analysis of reinforced
concrete frames with cracked beam elements
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Abstract. An iterative procedure for the analysis of reinforced concrete frames with beams in cracked
state is presented. ACI and CEB model equations are used for the effective moment of inertia of the
cracked members. In the analysis, shear deformations are taken into account and reduced shear stiffness is
considered by using effective shear modulus models available in the literature. Based on the
aforementioned procedure, a computer program has been developed. The results of the computer program
have been compared with the experimental resuits available in the literature and found to be in good
agreement. Finally, a parametric study is carried out on a two story reinforced concrete frame.
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1. Introduction

In practice, the analysis of reinforced concrete frames is usually carried out by using a linear
elastic model, which consists of uncracked beam elements. In fact, if cracking occurs in some
members due to excessive load, aforementioned analysis will not be valid. Because, the flexural
rigidity of these members will decrease resulting in additional deflections and a redistribution of the
internal forces. In reinforced concrete construction, a designer must satisfy not only the strength
requirements, but also serviceability requirements, and therefore the control of the deformations
becomes more important. On the other hand, the comparison between theoretical and experimental
results of the member deflections can represent a valuable verification of theoretical model studies.
Hence, for accurate determination of the member deflections, the prediction of flexural and shear
rigidities of reinforced concrete members after cracking becomes important. The concrete in the
tensile regions of the members, even after cracking, has residual flexural and shear resistances due
to the bond action between steel and concrete which contribute to flexural and shear rigidities of the
members. However, it is difficult to accurately estimate their contribution due to compiexities in the
actual behaviour of reinforced concrete members.

Cracked state in reinforced concrete elements can be considered by several methods, which are
available in the literature (Ngo and Scordelis 1967, Nilson 1968, Channakeshava and Sundara
1988). These methods consider the constitutive relationships of both steel and concrete together
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with the bond-slip relationship. Due to the complexities of the actual behaviour of the reinforced
concrete frame; cumbersome computations are necessarily carried out. Hence, these methods can
not be easily adopted by the design engineers.

A simplified method for the finite element analysis of reinforced concrete beam elements in
cracked state was introduced by Cosenza (1990). In Cosenza’s study, the contribution of tensile
resistance of concrete to flexural rigidities were considered by moment-curvature relationship
models, such as constant tension stiffening, linear tension stiffening, ACI (ACI, Committee 435
1966) and CEB (1985) models. In the evaluation of the flexibility influence coefficients, simply
supported beam element with uniformly distributed load was used. In fact, the structures are usually
subjected to point span loads as well as uniformly distributed loads. In addition, beams are usually
tested under combinations of point loads in the laboratory. Also, the shear deformations were not
considered in the formulation. Whereas, after the development of cracks, shear deformation can be
large and should be included in the analysis. Therefore, reduction of shear rigidity due to cracking
should also be considered for improving the results of the analysis.

In practice, it is always possible to come across reinforced concrete framed buildings with some
regions in a cracked state. Therefore, it may be important to analyze an existing structure of this
type. On the other hand, for the ductile behavior of frames some cracking is desired at the beams
rather than columns under excessive gravity and lateral loads. The ductile behavior of frames can be
achieved if it is designed so that the sum of the ultimate resistance moment of columns framing into
the beam-column joint is at least twenty percent more than the sum of the ultimate moment
resistance of the beams framing into the same joint. This condition complies with the ACI-318-89
“Strong Column-Weak Beam” requirement for frames. Therefore, in the present study cracking is
considered only for beam elements. Hence, the linear elastic stiffness equation is used for columns.
The cracked member stiffness equation for the beams is evaluated, including a point span load as
well as uniformly distributed one, taking shear deformation effect into consideration. In obtaining
the flexibility influence coefficients a cantilever beam is used which greatly simplifies the integral
equations for the case of point load.

In the present study, a computer program is developed for the analysis of reinforced concrete
frames with craked beam elements. In the program, the variation of the shear rigidity due to
cracking is considered by reduced shear stiffness models (Al-Mahaidi 1978, Cedolin and dei Poli
1977, Yuzugullu and Schnobrich 1973), and the effective flexural rigidity is evaluated by ACI and
CEB model equations. The results of the program are verified with the experimental results
available in the literature. Finally, a parametric study is carried out on a two-story reinforced
concrete frame.

2. Models for the effective flexural rigidity of the member in cracked state

The effective moment of inertia which includes the effect of cracking and the participation of
tensile concrete between cracks is given by ACI and CEB in the following forms:

ACI Model

M.\ M. \"
Ieff:( M ) Ig+!:l_( I, j }I(»,, forM>M,, (1a)
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Ly=1, for M<M.,, (1b)

where m=3. This equation was first presented by Branson (1963) with m=4 when I, is required for
the calculation of curvature in an individual section.

CEB Model

IW{[}, ﬁz(%’)zb(l—ﬁl ﬁz(%—f)z)lir, for M>M., (2a)

r

Ly =, for M<M,, (2b)

in which, B;=1 for high bond reinforcement and 0.5 for plain bars; B,=1 for the first loading and 0.5
for the loads applied in a sustained manner or in a large number of load cycles (Ghali and Favre
1986).

In Egs. (1) and (2), M., is the moment corresponding to flexural cracking, M is the bending
moment considered, /, and I, are the moments of inertia of the gross section and the cracked
transformed section, respectively.

In the literature (Cosenza 1990, Sakai and Kakuta 1980, Al-Shaikh and Al-Zaid 1993), many
authors have shown that, for the estimation of the instantaneous deflection, the effective moment of
inertia procedure given by ACI and CEB is the best among the commonly accepted simplified
methods. Hence, these models are used in the present study.

3. Models for reduced shear stiffness of concrete

Effective shear modulus of concrete due to cracking is given by several models in the literature.
Al-Mabhaidi (1978) suggested the following hyperbolic expression for the reduced shear stiffness

G. to be employed in the constitutive relation of cracked concrete

G _946G. for £,>¢ 3a)
('_gl/g(lrv or I = “cr ( a
G.=G, for g<Ee,., (3b)

in which, G, is the elastic shear modulus of uncracked concrete, € is the principal tensile strain
normal to the crack and & is the cracking tensile strain.

Cedolin and dei Poli (1977) observed that a value of G, linearly decreasing with the fictitious
strain normal to the crack would give better predictions for beams failing in shear, and
recommended the following equation

G.=0.24 G, (1-250 €)). 4)

Yuzugullu and Schnobrich (1973) used a constant value for reduced shear modulus

Qc =0.25 G, for deep beams
G.=0.125 G, for shear wall and shear wall-frame systems. 5)
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In the computer program developed in the present study, aforementioned models are used for the
effective shear modulus of cracked concrete.

4. Formulation of the problem

In this section, the flexibility influence coefficients of a beam element will first be evaluated, then
using compatibility conditions and equilibrium equations, stiffness matrix and the load vector of a
beam element with some regions in cracked state will be obtained.

A typical member subjected to a point and a uniformly distributed loads, and positive end forces
with corresponding displacements are shown in Fig. 1. For computing the relations between nodal
actions and basic deformation parameters of a general planar element, a cantilever model is used
(Fig. 2). The basic deformation parameters of a general planar element may be established by
applying unit loads in turn in the direction of 1-3. Then, the compatibility conditions give the
following equations

SuPi=4d, (6a)

Pi,d

Ps,d;

Fig. 1 A typical beam element

L
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Fig. 2 Model for computing the relations between the basic nodal actions and the basic deformation parameters
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P+ fnPi=d, (6b)
fo Pyt fiz Py=ds (6¢)

or in matrix form

d, fu 60 P,
A 1= 0 fr fn|| P )
d3l | 0 fi fis)LPs

where f; is the displacement in i-th direction due to the application of unit loads in j-th direction,
and can be obtained by using the principal of virtual work as follows

L MM,

< '[OEI//

dx+[; ———1sdx 8)
GA
In Eq. (8), (M;, V)) and (M}, V) are the bending moments and shear forces due to the application of
unit loads in i-th and j-th directions, respectively, E, denotes the modulus of elasticity of concrete, A
and s are the cross sectional area and the shape factor, respectively.
Inverting the flexibility matrix in Eq. (7) gives the following stiffness influence coefficients

K =1/fi|=E. A/L (9a)
Ky = 3/ fo2 3= 2 o) (9b)
K= K3 = ~f53/(f2 f53— f32. f23) 9¢)
Kss= fol (f22 33— f32 f23) (9d)
Ki=Ki3=Ky=K5=0. (%e)
Using equilibrium conditions, the following mixed terms are obtained
Ksy= —Kss= —Kn (10a)
Ks3=—Kn (10b)
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Fig. 3 Fixed end forces of the member subject to a point and a uniformly distributed loads
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Koy=—Kes=Kpn L — Ky (10¢)
K66 = K33 + K22 L2— 2 K32 L. (]Od)

The member fixed-end forces for the case of a point and a uniformly distributed loads can be
obtained by means of compatibility and equilibrium conditions as follows (Fig. 3).

Pig=Pyp=0 (11a)

Py =—(f33f20 — fo3 50)/ (f2f33 — fo3 fo2) (11b)
Pyo=—(fafr0 = f23 o) (fa2f33 = fo3 f32) (11c)
Pso=—(q L + P + Py) (11d)
Peo=—[—q L*/2—P (L-a) — Py L +P5] (1le)

in which fj (i=2, 3) is the displacement in i-th direction due to the application of span loads which
can be evaluated by means of the principal of virtual work in the following form

. MM, L ViV
- dre LYo g (12)
f() "‘O Ecleff 0 GCA

where M, and V; are the bending moment and shear force due to the span loads. Finally, the
member stiffness equation can be obtained as

k d+Py=P (13)

where k (6x6) is the stiffness matrix, d (6x1) is the displacement vector, P, (6x1) is the fixed end
force vector and P (6Xx1) is the total end force vector of the member. Eq. (13) is given in the
member coordinate system (x, y). Therefore, it should be transformed to the structure coordinate
system (X, Y).

The flexibility influence coefficients can now be obtained by using Eqgs. (8) and (12) with the
following procedure.

The bending moments and shear forces as seen in Egs. (8) and (12) are given in terms of the x
coordinate as follows

Myx)=x;  Vax)=1 (14a)
Mx)=-1;  V3(0)=0 (14b)
x2
92—, 0<x<a
My(x)= 5 (14¢)
%+P(x—a), a<x<L
qx, 0<x<a
Vo(x)= (14d)
gx+P, a<x<L

Using Egs. (8), (12) and (14) the flexibility influence coefficients can be obtained as
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1o X ke 1
fo=g I Z—ﬁdx? I adx (15a)
1 x
f23‘afo I—e—ﬂdx (15b)
1o 1
=gl 7 (15¢)
3
_qpx, gkpx  Puox(x—a), ku(gx+P)
f 2ECIO Ieffdx+ n I C‘rdﬂ 5 [ » dx+ L ﬁ—(_;c dx (15d)
2
__qgpx . Pnx-a)
fo==3 ch<> Ieffdx E(,-[a » dx _(15e)

It should be noted that, since the member has cracked and uncracked regions, integral operations
in Eq. (15) will be carried out at each region individually. In general, the member has three cracked
regions and two uncracked regions as seen in Fig. 4.

In the cracked regions where M>M,,, I and G. vary with M along the region. Therefore the
integral values in these regions should be determined by a numerical integration technique. The

AP

@ @ @ cracked regions
@ @ uncracked regions

Fig. 4 Cracked and uncracked regions of the member
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variation of effective moment of inertia and effective shear modulus of concrete in the cracked
regions necessitate the redistribution of the moments in the structure. Hence, iterative procedure
should be applied to obtain the final deflections and internal forces of the structure.

5. Computer program

In this section, a general purpose computer program, called ‘CRACK’, developed for the analysis
of reinforced concrete frames with beam elements in the cracked state, is introduced.
The program is coded in FORTRAN 77 language for MS-DOS operating system. The flow chart

Input structure and
material properties

Input external loads

y

Perform linear elastic
analysis of the structure

>
Y

y

Determine cracked and uncracked regions of the
members of the structure using the member end
forces

Determine member stiffness and load vector using
Ier and G, and assemble the system stiffnes

matrix

Y

Determine displacements of
joints and member end forces

Compute the mean value
of the end forces of all
the previous iterations

Store/output
results

Fig. 5 Solution procedure of the program
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of the solution procedure of the program is given in Fig. 5. In the solution procedure, the member
end forces used at each iteration step are taken as the mean value of the end forces of all previous
iterations. This procedure accelerates the convergence of the algorithm. In the program,

p-p!
P}

il

<e (16)

is used as the convergence criterion. Here, € is the convergence factor, » is the iteration number and
P! (i=1-6) is the end forces of each member of the structure for the n-th iteration.

The input data file has five data blocks, which are named ‘General Information’, ‘Coordinates’,
‘Member Properties’, ‘Restraints’, and ‘Loads’. The description of a data file will be illustrated in
the next section.

Due to space limitation, the listing of the computer program is not given in the paper. A PC version
and the manual of the program can be obtained free of charge from the authors upon request.

6. Verification of theoretical results and a frame example

In this section, three examples are presented. The first two examples are taken from the literature
to verify the results of the computer program. The third example introduces the parametric study of
a two story single bay reinforced concrete frame.

6.1. Example 1

In this example, the test results given by Al-Shaikh and Al-Zaid (1993) for a simple beam with a
mid-span load (Fig. 6) are compared with the results of the program ‘CRACK’. The test beam is
modeled by two beam elements in order to compute mid-span deflection. In the analysis, ACI and
Al-Mahaidi (1978) models are used for the effective moment of inertia and shear modulus of
concrete in cracked region, respectively.

The comparison between the test and theoretical results for the mid-span deflection is given in
Table 1. As seen in Table 1, the theoretical results are in good agreement with the test results.

© ) l/\ © . |
0
@ A 188 | 240

, 1250 e 1250 3418
) 2500 X X
A-A

Fig. 6 Simply supported beam with midspan load Al-Shaikh and Al-Zaid (1993)(dimensions in mm)
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Table | Measured and predicted mid-span deflection of simply supported beam

Midspan deflection (mm)

Total load

P . Test results qf Present study Rato
(KN) Al-Shaikh and Al-Zaid (1993) B (B/A)
(A) (B)

16.43 0.96 0.86 0.90
19.62 1.25 1.22 0.98
23.81 1.70 1.76 1.04
29.18 235 2.49 1.06
36.06 3.27 343 1.05
40.55 3.85 4.04 1.05
44.70 431 4.60 1.07
50.68 5.04 5.39 1.07
55.74 5.68 6.06 1.07
60.60 6.32 6.70 1.06
mean ratio 1.04

6.2. Example 2

In this example, the two span continuous beam tested by Washa and Fluck (1956) are considered.
The continuous beam is modelled by six beam elements as shown in Fig. 7. The cross-sections of
the beams, the uniform loads and the spans are also shown in the figure. In the analysis, Iz is
predicted using ACI and CEB models and G. is evaluated using Al-Mahaidi’s model. The input
data file for (X1, X4) beam is presented in Table 2. In computing tensile strength and modulus of
elasticity of concrete, the following equations (TS500 1984) are used.

£..=0.35./f. (N/mm?) (17a)
E,=3250,/f.+14000 (N/mm?) (17b)

where f. and f, are the design characteristic compressive and tensile strengths of concrete,
respectively. The cracking moment, M,, is calculated by the program using the following equations

where f, is the flexural tensile strength of concrete which is taken as two times of the design
characteristic tensile strength of the concrete (TS500 1984), y, is the distance from centroid of gross
section to the extreme fiber in tension. _

The comparison between the experimental and the theoretical deflections at joint 2 obtained by
the program ‘CRACK’ and Cosenza (1990) are given in Table 3. It is seen that, the deflections
calculated by ‘CRACK’ using ACI method (Eq. la with m=4) and CEB method (Eq. 2a with
B13,=0.8) are in good agreement with the experimental results.
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(a) two-spans continuous beam model
q L b h Positive Moment Negative Moment
Beam (mm) (mm) (mm) Region Region
(kN/m)
A, A, A, A,
(mm) | () | (uw’) | (mm)
X1,X4 271 12192.0 152.4 203.2 400 400 684 600
X2,X5 2.77 - 12192.0 152.4 203.2 400 200 684 600
X3,X6 2.77 121920 152.4 203.2 400 - 684 600
Y1,Y4 2.13 126797 | 3048 | 1270 | 516 516 1000 1000
Y2,Y5 2.13 12679.7 3048 127.0 516 258 1000 1000
Y3,Y6 2.13 12679.7 304.8 127.0 516 - 1000 1000
71,24 099 | 106680 | 3048 | 762 | 284 284 516 645
72,725 0.99 10668.0 304.8 76.2 284 142 516 645
23,26 0.99 10668.0 304.8 76.2 284 - 516 645

(b) beam cross-sections

Fig. 7 Two span continuous beams of Washa and Fluck

6.3. Example 3

In this example, the two-story reinforced concrete frame shown in Fig. 8 is analysed by the
program ‘CRACK’. The frame is subjected to two lateral point loads at the floor levels, and
uniformly distributed and point span loads on the two beams. The intensity of the uniform load is
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Table 2. Description of input data

ACI STRUCTURAL JOURNAL, JANUARY 1956 (WASHA & FLUCK): Title
GENERAL INFORMATION: Block name

Number of joints, number of elements, cracking parameter (1: considered, 0: not considered),
shear deformation parameter (1: considered, 0: not considered), Young’s modulus of steel.

7611 20E2
Model and its parameters for effective moment of inertia

‘ACT 4.0 0.0
Model for effective shear modulus
‘ALM?

COORDINATES: Block name
Joint number, X coordinate and Y coordinate

1 0.0 0.0
2 2560.3 0.0
3 4572.0 0.0
4 6096.0 0.0
5 7620.0 0.0
6 9144.0 0.0
7 12192.0 0.0

MEMBER PROPERTIES: Block name
Element number, topology (I and J), cross-sectional dimensions (b, h), concrete cover, the modulus of elastic-
ity and design characteristic tensil strength of concrete, areas of tension and conpression steel
1 2 1524 2032 50.0 29964 17.19E-4 400.00 400.00
1524 2032 50.0 29.964 17.19E-4 400.00 400.00
1524 2032 500 29964 17.19E-4 684.00 600.00
1524 2032 500 29.964 17.19E-4 684.00 600.00
1524 203.2 50.0 29.964 17.19E-4 400.00 400.00
6 6 7 1524 203.2 50.0 29964 17.19E-4 400.00 400.00
RESTRAINTS: Block name
Joint number, restraint conditions for translational and rotational displacements (1: inactive, 0: active)

N B W -
7/ "N S
S W AW

1 1 1 0
2 1 0 0
3 1 0 0
4 1 1 0
5 1 0 0
6 1 0 0
7 1 1 0

LOADS: Block name
Number of loaded element, number of joints subjected to direct loads

6 0

Element number, uniform load (force/length), point load intensity and its distance from end I
1 -2.77E-3 0.0 0.0

2 277E-3 0.0 0.0

3 -2.77E-3 0.0 0.0

4 2.77E-3 0.0 0.0

5 -2.77E-3 0.0 0.0

6 -277E-3 0.0 0.0

Joint number, joint loads in X, ¥ and rotational directions
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Table 3 Comparison of experimental (Washa and Fluck 1956) and predicted deflections at joint 2

Deflection at joint 2 (mm) Ratio
Eq. (1a) Eq. 2a)
Beam ) m=4 B B=0.8
No Expez'l :)1 ental Present Cosenza Present Cosenza B/A C/A D/A E/A
study (1990) study (1990)
(B) © D) (E)
X1,X4 14.2 14.2 16.5 14.1 16.0 1.00 1.16 099 1.13
X2,X5 14.4 14.2 16.8 14.1 16.3 0.98 1.16 098 1.12
X3,X6 13.2 14.3 17.1 14.2 16.6 1.08 1.09 1.08 1.05
Y1,Y4 22.6 22.5 25.7 22.1 25.1 1.00 1.14 098 1.11
Y2,Y5 23.6 22.7 26.2 222 25.7 0.96 I.11 094 1.09
Y3,Y6 254 22.8 26.7 224 26.2 0.90 1.05 088 1.03
71,74 26.4 28.0 33.0 28.0 32.3 1.06 1.25 1.06 1.22
72,75 28.7 28.1 334 28.1 32.6 0.98 1.16 098 1.13
73,76 30.5 282 338 28.3 33.0 0.92 1.11 093 1.08
[ Mean ratio 0.98 1.14 098 1.11
7.5kN
075q I

300 cm

ol
g

30/50

300 cm 300 cm

400 cm

600 cm

'y

N
|

Fig. 8 Two story reinforced concrete frame



476 A. Kamil Tanrikulu, Cengiz Dundar and Ismail H. Cagatay

1
™
= 0.85
S 09
°e
%\E/ 0.85
e 0.8
©
S 075,
— b

0.7 T T T T T
0 10 20 30 40 50

Uniform load, q (kN/m)

—A— cracking not considered —&— cracking considered

Fig. 9 The variation of the lateral displacement of joint 3 with uniform load
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Fig. 10 The variation of the vertical displacement of Joint 4 with uniform load

varied from 0 to 50 kN/m while others remain constant. The variation of the lateral displacement of
joint 3 and the vertical displacement of joint 4 with the uniform load, when cracking is considered
and not considered for beams, are shown in Figs. 9 and 10. As seen from the figures, the
differences, in the lateral displacement of joint 3 and the vertical displacement of joint 4 between
the two cases increase with the increase in the loads. The difference becomes significant at higher
loads, such as, 34% for the lateral displacement and 102% for the vertical displacement for g=50
kN/m.

7. Conclusions

An iterative procedure has been developed to analyze reinforced concrete frames with elements in
a cracked state. In the procedure, cracking is considered only for beam elements, hence, for
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columns, the linear elastic stiffness equation is used. This assumption is compatible with the “Strong
Column-Weak Beam” frame requirement. Therefore, the proposed procedure should not be used for
the reinforced concrete frames in which the aforementioned requirement is not satisfied.

The variation of shear rigidity in the craked regions of beams has been considered by employing
various reduced shear stiffness models and the variation of the flexural rigidity of a cracked beam
element has been evaluated by using ACI and CEB model equations. )

The capability and the reliability of the procedure have been tested by means of comparisons with
the theoretical and experimental results available in the literature. The theoretical results of the
procedure have been found to be in good agreement with the experimental results. This procedure
can be used to predict the deflections of statically determinate and indeterminate beams. The
procedure can also be used to analyze reinforced concrete frames with some beams in a craked state
for the purpose of repair and strengthening.

The proposed procedure is efficient from the viewpoints of computational effort and convergence
rate. Since the procedure is an iterative one, a computer program has been developed for rapid
application. Although the procedure and the computer program are evaluated for two-dimentional
frames, they can be extended easily to cover three-dimensional structures.

In the present study, the time dependent effects in concrete have not been considered. However,
these effects can be included in the analysis by employing any of the available methods, such as
effective modulus method (Faber 1927) and age adjusted effective modulus method (Bazant 1972).
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