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Use of the differential quadrature method for the
buckling analysis of cylindrical shell panels

D. Redekopt and E. Makhoul
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Abstract. Buckling loads are determined for thin isotropic circular cylindrical shell panels subject to
radial pressure using the new differential quadrature method. The Budiansky stability theory serves as the
basis of the analysis. For this problem involving four boundary lines a two-dimensional approach is used,
and a detailed convergence study is carried out to determine the appropriate analysis parameters for the
method. Numerical results are determined for a total of twelve cylindrical shell panel cases for a number
of different boundary support conditions. The results are compared with analytical and finite element
method results. Conclusions are drawn about the technical significance of the results and the solution
process.
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1. Introduction

The stability analysis of shell structures continuous to be a very active area of engineering
research (Vandepitte 1999, Yamaki 1984). Among the geometries of interest are cylindrical shell
panels which exhibit very favorable strength-over-weight ratios in light-weight structures. They are
used in such different applications as space and ground vehicles, marine structures, turbo-machinery
blades, and vaulted sheil roofs. Due to their thinness though, they are susceptible to structural
instability.

The literature on cylindrical shell panels under pressure loading is relatively sparse. Recent studies
includes a buckling analysis based on the Fliigge theory (Makhoul 1999, 2000), a simplified
dynamic buckling analysis (Kounadis and Sophianopoulos 1996), a dynamic response analysis
(Redekop and Azar 1991), and a non-linear buckling analysis (Yamada and Croll 1989). The latter
work is a comprehensive theoretical study of the topic. To date no detailed study has appeared
providing comparison of theoretical results for panel buckling with results from a numerical or
experimental study.

In this paper the new differential quadrature method (DQM) in its two-dimensional form is used
to provide a theoretical solution to the instability problem of an isotropic circular cylindrical shell
panel subject to radial pressure. The linearized thin shell stability theory of Budiansky (1968) serves
as the basis of the analysis. A detailed study is conducted of the convergence properties of the
DQM, and results are presented covering a wide range of shell geometric parameters and practical
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boundary conditions. Results obtained from the DQM are compared with those from a pure
analytical solution and a finite element method (FEM) solution.

2. Geometry and boundary conditions

The panel under consideration has a length of L, and a width in plan of H (Fig. 1). The thickness
is 4 and the maximum rise above the base plane is f. The shell radius R is given by H(8f) +f/2,
and the subtended angle is given by 6,=2arcsin[H/(2R)]. The cylindrical shell axis x is parallel to
the shell length while the geodetic coordinate y follows the shell circumference. Displacements u, v
are in-plane, while w is perpendicular to the shell surface, positive inwards. A uniform inward radial
pressure of p is assumed to act on the mid-surface.

In the DQM analysis three types of support are considered for the panel edges; roller (R), pinned
(S), and clamped (C). The boundary conditions on the x=cnst edges for these three types are given
respectively by

u=0;v=0w=0,M,=0
N,=0;v=0w=0,M,=0
u=0v=0w=0;,mw,=0 (N

Similar conditions can be written for the y = cnst edges.

3. Budiansky shell stability theory
To determine the buckling loads for the panel the Budiansky linearized shell stability theory
(Budiansky 1968) is employed. The governing equations, written in terms of coordinates &= x/R
and 6= y/R, are given by
[LI{U} + AIL U} = (@) )

where

Fig. 1 Geometry
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The vector of displacements {U} represents {u v w}’, while the vector of loads {Q} is given by
{0 0 R*p}". The quantities ne, ng, and ngy represent respectively the axial, circumferential, and in-
plane shear merlnb% ne stress resultants in the shell just prior to buckling. The geometric factor & is
defined as &k = Egl—a » Vis the Poisson’s ratio, and A is the buckling load parameter.

The governing eqiations must be solved subject to the boundary conditions. For each of the four
edges there are four boundary conditions. Resultants appearing in the boundary conditions can be
expressed in terms of the displacements using relations given by Budiansky. The procedure
developed allows for the specification of any of the three support types (R, S, C) on any of the four
edges. The conversion of the governing equations and the boundary conditions into a form suitable
for the DQM is discussed in the following section.

4. Differential quadrature method

The basis of the DQM (Bert and Malik 1996) is the representation in the domain of the
derivatives of a function by a weighted sum of trial function values. Thus for a function of one
variable flx) the derivatives are taken as

d f(x)

N
el ; AL f(x) 5)

xl

while for a function of two variables g(x, y) they are taken as
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a(r+.&‘)g(x y) N, - N, -
ooy rai =D ALY B g (x ) (6)
X 0y Xy k=l I=1

Here theAf-,? are the weighting coefficients of the r-th order derivative at the i-th sampling point in
the x direction, and &, is the number of sampling points in the x direction. Thij(-f) used for the y
direction are similarly defined.

Polynomial trial functions are selected in this study, i.e. A&)=1, & &, ---, ! for the x direction.
For these functions explicit formulas for the weighting coefficients are available (Bert and Malik
1996). For the first order derivative the formulas are

AV=— 20 sl 2, Ny i £
T E-EHmE)y Y e

N,
”(&i):H(gi - éj); [#]) (7N
=1

while for the higher order derivatives the formulas are
oo Ay
Aﬁjf>:r[Af;' >A§j>__l;} i, j=1,2, Npi#j: 2<r<(N~1)

&-§
A(”—A(”——ifx‘”- i=1,2, ... Ny i#zk; 1<r<(N~1) ®)
ij =y = ik s Ay Ly eeey IV, ] == 1
k=1

The Chebyshev-Gauss-Lobatto spacing (Bert and Malik 1996) is used for the positioning of the
sampling points. In this scheme the coordinates are taken as & =oi(L/R) where the o; are given by

o,=0; ,=8; ay _=1-6; ay =1

o= 2’ ; 2<i<(N,-1) )

At each sampling point either the DQM analogue of a governing equation for the domain or a
condition for the boundary support is represented. For each boundary point there are four
conditions, while for each domain point there are only three governing equations. It is necessary to
enforce one of the boundary conditions at an interior point. This point, a ‘d point’, is taken a short
distance (§=10"* or §=10"° on a unit domain) from the boundary point. Corner points of the panel
apparently require special treatment. In the present study these points are simply assigned to the
straight edges.

For the representation of derivatives in the circumferential direction a similar system is used,
namely a polynomial expansion and a Chebyshev-Gauss-Lobatto spacing of sampling points. The
weighting coefficients are now represented by the symbols B,(j’) and the number of sampling points
by N 7

Use in the governing Egs. (2) of the operators (3-4) and the quadrature rules for the derivatives
(5-8) leads to the transformed DQM domain equations. The resulting equations have the form
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where the Uy, etc. are unknown displacements at the sampling points. The expressions involving the
boundary conditions on the edges may similarly be transformed.
The assembly of the domain and boundary equations yields a matrix equation of the form

[KH{AHAIK{A}={q}

The stiffness and geometric matrices [K] and [K,] stem initially from the [L] and (L] operators of
the governing equations, and are of size 3 X N, X N,. Replacement of the domain equations at the
boundary points by the support conditions brings these matrices to their final form. The vector {A}
contains the displacements at all the sampling points while the vector g the applied pressure at the
sampling points.

Eq. (11) may be used to solve the problems of stress and buckling analysis. For the stress analysis
problem the parameter A is zero, while for the buckling analysis problem the vector {g} is zero. For
the buckling problem the smallest eigenvalue, Ay, corresponding to the minimum critical pressure,
may be found using standard eigenvalue extraction routines. The theory presented in the preceding
was programmed in a MATLAB code labelled panbud.m. Results from this program are given in
the following.

5. Finite element method

The commercial FEM program NE/NASTRAN (NE/Nastran 1998) was used to provide a
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comprehensive verification of the DQM theoretical results. A flat four-noded twenty-four degree-of-
freedom shell element is available in this program for the solution of shell stress analysis and
stability problems.

The entire shell panel was modelled in each case, as buckling modes are not necessarily
symmetric. Clamped, simply supported, roller, and free conditions on the boundaries were easily
modelled as required. Results were found for several mesh sizes to indicate the convergence of the
solution. For the final analysis a mesh of 40 x 40 elements was employed.

6. Results

Sample numerical results are presented in this section for steel panels having a Young’s modulus
of 200,000 MPa, and a Poisson’s ratio of 0.3. Results are obtained for twelve panel cases, described
in Table 1. The 8, in this table gives the subtended angle of the panels. Panels 1-4 are short, panels
5-8 are square in plan, and panels 9-12 are long. In each of these three groups the first two panels
are relatively thick (R/t=100), while the last two are thin (R/t=200). Two cases of panel rise are
considered; the first is a low rise (0.1 of the panel width), and the last is a moderate rise (0.2 of the
panel width).

A careful consideration was made in the choice of the mesh grid for the DQM analysis. For
convenience an equal number of sampling points (N;=N;=N,) was taken for the axial and
circumferential directions for all twelve cases (Fig. 2). For this choice the aspect ratio of sampling
point spacing in the two directions for the twelve panel cases varied from about 1:2 to 2:1, which
represents a fairly severe test of the method. For the FEM an equal number of elements was taken
in the two directions, leading to element aspect ratios for the twelve cases which were well within
accepted limits.

Results for panels with RRRR supports on all four edges are given in Table 2. The factorized
critical buckling pressure is given for each of the twelve cases from four different analyses. Results
obtained from the current panbud.m DQM program are given in the second column. Results

Table 1 Description of panel cases

Case IL/H R/t fH 6, (deg)
1 0.5 100 0.1 45.2397
2 0.5 100 0.2 87.2056
3 0.5 200 0.1 45.2397
4 0.5 200 0.2 87.2056
5 1.0 100 0.1 45.2397
6 1.0 100 0.2 87.2056
7 1.0 200 0.1 45.2397
8 1.0 200 0.2 87.2056
9 2.0 100 0.1 45.2397

10 2.0 100 0.2 87.2056
11 2.0 200 0.1 45.2397

12 2.0 200 0.2 87.2056
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Fig. 2 DQM mesh

Table 2 Results for roller supported edges (RRRR)

Critical pressure p/E (X 107%)

Case DQM Makhoul Exact FEM
1 3501 .3502 3530 3315
2 1624 1739 1637 1621
3 .0544 .0548 .0548 0538
4 0271 0273 0299 0274
5 .1438 1428 1618 1410
6 0769 0819 0788 0783
7 .0243 0245 0241 .0242
8 .0124 0127 0126 .0126
9 0714 . .0692 0711 0711

10 0399 .0361 0395 .0413
11 0105 0119 0112 0106
12 0060 .0063 .0060 0061

obtained from a program pann2k.f90 which is based on a development by Makhoul (2000) are
given in the third column. The approach used by Makhoul closely resembled that of the current
study, but a simple membrane state was assumed to preside prior to buckling, and the Fliigge shell
theory was used instead of the Budiansky theory. Closed form (exact) analytical results (Makhoul
and Redekop 1999) obtained from a program flug.m are given in the fourth column, and in Fig. 3.
In this exact solution the trigonometric terms selected for each coordinate direction satisfied exactly
the governing equations and the boundary conditions. Such an exact solution is possible only with
the RRRR support condition. Finally results obtained from the FEM program NE-NASTRAN are
given in the fifth column.
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Fig. 3 Exact mode for Case 9 - RRRR

The results confirm a number of observations that have been made previously about cylindrical
panel buckling. Firstly, the critical pressure decreases as the shell length is increased. This is
according to expectation, as stiffeners serve to increase resistance to buckling as they create shorter
effective shell lengths. Secondly, the critical pressure decreases as the thickness is decreased.
Clearly decreasing the thickness decreases the panel stiffness. Thirdly, the critical pressure decreases
as the panel rise is increased. Panel buckling is due to membrane action, and increase of shell
curvature increases the level of membrane stress.

There is generally good agreement in the results from the various theories and methods for all
twelve cases. The DQM results given in the second column are derived from the Budiansky
buckling equations in which the prebuckling membrane stresses appear directly, having been
determined from a prior analysis in which the appropriate boundary conditions were satisfied. The
results from the third and fourth columns are derived from the Fliigge buckling equations, in which
the surface loading terms appear directly, and no prior analysis for prebuckling membrane stresses
has been made. The Fliigge analytical results may be considered to give the exact solution, and it is
seen that the current DQM and FEM results generally show very close agreement with these for all
twelve cases, with a maximum error of about 5%.

An indication of the convergence characteristics of the current DQM approach is given in Table 3.
The case considered is the first one of Table 1, for which convergence was noted to be slow. The
study covers three types of the supports on the four edges; RRRR, SSSS, and CCCC. Results
corresponding to different choices of the number of sampling points (N, =N, =N,), are given for
two values of the boundary & distance. The terms of the converging series are divided into two
groups, corresponding to even and odd choices for N,. Results from the FEM are also given,
together with the size of the FEM mesh (V,). The largest DQM grid considered was one having 22
sampling points in each direction.

It is seen that for this case convergence is clear only for the RRRR support condition. There is
agreement to three figures in the results for the meshes consisting of 15 and 16 sampling points.
Furthermore the even and odd series clearly converge to the same value. For the other two support
conditions the convergence, although present, is less clear. There is a slight difference in the final
even and odd series results (about 2%), and the convergence although rapid initially does not show
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Table 3 Convergence of DQM for case 1

Critical pressure p/E (x107*)

§=10" 6=107 FEM
Ng odd even odd even (Ne)

RRRR

9,10 430254 381292 431458 380973

11,12 362658 .350487 362845 350436

13,14 352468 349518 352465 .349506

15,16 .350387 350103 350358 .350085 3315(40)
SSSS

9,10 447804 403645 448868 404122

11,12 371272 392881 373174 393019

13,14 .369448 .389792 371612 .390027

15,16 373890 .389386 376384 389705

17,18 376846 389678 379759 390060

19,20 378103 389754 381576 390218

21,22 378792 .389822 .382959 390381 .3722(40)
CCCC

9,10 734101 .680874 735672 682209

11,12 .601935 611352 .603908 612259 .5824(35)
13,14 .580220 .603233 .583955 .603874 .5813(36)
15,16 583725 .604203 587443 .604861 .5801(37)
17,18 .585929 604767 .590436 .605555 .5790(38)
19,20 .587986 .604907 593328 .605891 .5779(39)
21,22 .589155 604829 .595506 .606080 .5768(40)

Table 4 Results for pinned straight edges

Critical pressure p/E (x107™)

SSSS SCSC SESF

Case DQM FEM DQM FEM FEM
1 .3898 3722 5592 5297 0560
2 1917 1952 2162 2178 0152
3 .0630 0629 0757 0753 0071
4 0333 .0345 0358 0367 .0019
5 1991 1952 2162 2112 0570
6 1103 1117 1147 1158 0153
7 0363 .0363 0376 0376 0072
8 .0191 0193 0194 0196 .0019
9 .1427 1429 .1448 1444 0575
10 0675 0691 0683 0695 0154
11 0208 0212 0212 0214 0072
12 .0108 0110 0110 0111 0019
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Table 5 Results for clamped straight edges

Critical pressure p/E (X107

ccce CSCS CFCF

Case DQOM FEM DQM FEM FEM
1 6048 5768 4146 .3982 1182
2 2211 2241 .1958 1997 0326
3 0784 0783 0656 0656 0128
4 .0367 0379 .0341 .0355 0041
5 2660 2605 2507 2464 1197
6 1200 1214 1164 1180 .0328
7 0423 0424 .0405 .0407 .0149
8 0202 0205 .0198 0215 .0041
9 .1800 1793 1761 1768 1204
10 0750 0775 0738 0770 0330
11 0276 0282 0272 0279 0150
12 0121 0124 0119 0123 0041

signs of complete stabilization. Thus in any quotation of results there will be a slight difference
depending whether the reference is to an odd or even series. The results for a choice of §=10"*
differ slightly (about 2%) from those for a choice of §=10"". Use of a custom eigenvalue extractor
that was dedicated to finding the lowest eigenvalue lead to results about 1% different from those
given here which were found using the MATLAB built-in eigenvalue extractor. The differences
referred to however are small, and can be tolerated in an engineering solution. The results given in
Table 2, and subsequently, correspond to a choice of §=107", the use of a maximum of 22 sampling
points, and the use of the MATLAB built-in eigenvalue extractor.

Results for problems involving pinned supports on the straight edges are given in Table 4. DQM
results are given for the case of pinned and clamped support conditions on the curved edges. FEM
results are given for the same types of curved edge support, as well as for ‘free supports’. Similar

Fig. 4 DQM mode for case 9 - CCCC
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Fig. 5 FEM mode for case 9 - CCCC

sets of results for problems involving clamped straight edges are given in Table 5. Theoretical
results for free support conditions are found invariably only with much greater effort than for other
conditions. Thus the determination of DQM results for these cases was not considered within the
scope of the present study. Finally mode shapes found using the DQM and FEM are given in Figs.
4-5.

The trends mentioned in regard to Table 2 are observed also in Tables 4 and 5. It is noted that the
type of boundary support has a significant influence on the critical buckling pressure. In general
changing from a pinned to a clamped support significantly increases the buckling pressure.
Changing from a pinned to a free support has the opposite effect. Comparing the results from the
two methods, it is seen that there is generally very close agreement in critical pressure. Also Figs. 4
and 5 indicate a strong resemblance in the mode shapes. Considering the vast differences in the
details of the idealization, and in the determination of the numerical results for the DQM and FEM,
the agreement is remarkable.

7. Conclusions

A solution to the buckling problem of an isotropic cylindrical shell panel has been presented. A
study of the convergence characteristics of the differential quadrature solution has shown that there
is considerable flexibility in the choice of sampling point spacing. As well there is considerable
versatility with regard to the boundary conditions. Overall the study shows that results for panel
buckling loads obtained from the differential quadrature method agree very closely with results from
the finite element method.
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