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Thick laminated circular plates on elastic foundation
subjected to a concentrated load
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Abstract. In this study, the state equation for axisymmetric bending of laminated transversely isotropic
circular plates on elastic foundation is established on the basis of three-dimensional elasticity. By using
the expansions of Bessel functions, an analytical solution of the problem is presented. As a result, all the
fundamental equations of three-dimensional elasticity can be satisfied exactly and all the independent
elastic constants can be fully taken into account. Furthermore, the continuity conditions at the interfaces
of plies can also be satisfied.
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1. Introduction

As it is well known, the analysis of plates and shells on elastic foundations is becoming
increasingly important in engineering. The majority of published work in this area used either the
thin plate theory (Timoshenko and Woinowsky 1959) or some improved thick plate theories
(Frederick 1956). Svec (1976) investigated thick plates by using FEM. Henwood et al. (1982)
developed a Fourier series solution for rectangular thick plates. Katsikadelis and Armenakas (1984)
presented a Boundary Integral Element Method for thin circular plates. Reddy (1981, 1984)
developed some new approaches to study linear, nonlinear problems of rectangular plates. Celep
(1988) solved an isotropic circular thin plate resting freely on Winkler foundation. The free
vibration problem was investigated by Prathap and Varadan (1976). Nath (1982) discussed large
amplitude response of circular plates on elastic foundations.

In the above studies, the formulas were developed based on some hypotheses, e.g. by assuming
that the mechanical quantities were polynomials of a certain coordinate variable. It can be shown
that the exact solution of the problems cannot be in the form of polynomials. If the form of a
polynomial is adopted, the incompatibility among fundamental equations of elasticity must appear in
the deductive process and only some of the elastic constants can be taken into account. The errors
caused by these hypotheses increased rapidly as plate thickness increased.

With no assumptions regarding to displacement models and stress distributions, Fan and Ye
(1990), Fan (1996), and Sheng and Fan (1997) used the Fourier series as basic solutions and
introduced the theory of state space. The state equations for laminated rectangular plates and
cylindrical shells having arbitrary thickness and general boundary conditions were established. The
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solution obtained satisfies all the fundamental equations of elasticity, as well as the continuity
conditions between plies of the laminates.

In the present study, the state equation for laminated transversely isotropic circular plates on
elastic foundations in the cylindrical coordinate system is established. The concentrated load acting
on the plate surface is expanded into Bessel’s series. Meanwhile, the Bessel functions are used to
form the solution of the problem. Numerical results are obtained and compared with those of BIEM
and FEM.

2. Establishment and solution of the state equation

Consider a circular plate of transversely isotopic materials. The principal elastic directions of the
plate coincide with coordinate axes. The coordinate origin is located at the center of the upper
surface, and the z-axis is directed vertically downward. Let U and W denote displacement along
radius r and z directions, respectively. Hence, strain-stress relations and the equilibrium equation of
the circular plate can be shown as follows

G| |C,, CL Cpy O JU/dr
Go|_|C, C,; Ci3 O Ulr N
0| |Ci3 Ciy Csy 0 IW/9z
T, |0 0 0 C,l|dWdr+dUloz
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Let O(=a/8r, C1=_'C13/C33, C2=C11—C?3/C33, C3=C12_C%3/C33, C4=1/C33, C5=1/C44, R=T,z
and Z=0,, the third row of Eg. (1) gives

%—‘f:cl(m })U+c4z 3)
The expressions of &, and 0, can be obtained from Eqs. (1) and (3) as follows:
{O’,}:[CZOHC}H —Cljl{U} @
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Substituting Eq. (4) into Eq. (2) and considering Eq. (3) and the fourth row of Eq. (1) yield the
following state equation
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Let

U= U, () (E,NHANT), W=D, W, (2)Jo(E,r)

(©)
R= 2 R,()1 (51, 2= Y. Z,()Jo(4ur)

in which U(z) is an unknown function of z and f{r) is a given function of r which satisfies f0)=0.
In §,=K,/b, b is the radius of the circular plate and K,, (m=1, 2, ***) are zeros of Bessel function
of zero order. It can be seen that Eq. (6) satisfies U| _;=0 and W| _, =0 for axisymmetric bending
of simply supported or clamped plates. The unknown function U(z) can be determined from the
remaining boundary conditions; for example, the condition for simply supported circular plate is
o,| =0. Substituting Eq. (6) into Eq.(4) and simplifying it by using Bessel function’s properties,
the Tollowing is obtained.

Cyfh) + Cbf '(b)
¢ U@=0 )

In order to represent the state equation in the form of ordinary differential equations, the
following series expansions are used.

; U ()T, (K,)+

1
10)= 3 Audi(Eur). (041 )= Budo(Ear) ®)
The coefficients A,, and B,, can be determined accordingly, e.g. when f(r)=r/b, one has
4 4
A, =——, B,=——7— 9)
K2J\(K,) bK,J\(K,) (

Introducing Eqs.(6) and (8) into Eq.(5) and using the properties of Bessel functions yield the
following equation for each m

diS(z)=DS(z)+B(z) (10)
Z

Eq. (10) is called a non-homogeneous state equation with constant coefficients, in which

S(2)=[U(z) W.(2) R.(2) Z.()] (11)
0 & Cs O -A,,U’(z)

D- Cé,0 0 C , B(2)= C,B,U(z) (12)
CEL 0 0 —C, 0
0 0-£ O 0

It can be proved from Eq. (10) that no mechanical quantity can be a polynomial of coordinate z.
If W,(z) and R,(z) are assumed to be the polynomials of degree n of variable z, from the first and
fourth rows of Eq. (10), U,(z) and Z,(z) would be the polynomials of degree n+1 of z. As a result,
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from the second and third rows of Eq. (10), W,(z) and R, (z) would have to be the polynomials of
degree n+2 of z, which contradicts what has been assumed. The solution of Eq. (10) is (Fan 1996)

$(2)=G(2)S(0)+C(z) (13)
C(z)=]; " "B(v)dr (14)

Letting A;, A», A3, and A4 be the eigenvalues of matrix D and P the matrix composed of the
corresponding eigenvectors. From the linear algebra one has.

Az
e

G(z)=e"*=P N P (15)

3. Solution of the laminated circular plate on an elastic foundation

Consider a p-piled laminated circular plate composed of transversely isotropic layers. The
thickness of layer j is h;. After dividing the jth layer into K; thin plies, the thickness of the ply is
d=hyK;. If the thin ply is thin enough, it is reasonable to assume that the unknown function U(z)
within the thin ply is linearly distributed in z direction, i.e.

Uji(z)zEj,(1 —§)+Ej,i+ld5‘ ze [0,d],i=1,2, ..., K, (16)
i J

where the E; are end values of the linear function and subscripts ji denote ith thin ply in the jth

layer of the plate. If a layer of the laminated plate is very thin, division is not needed. If some

layers are relatively thick, the number of division depends on the accuracy required. Therefore, the

errors caused by assumption (16) are controllable. According to Eqs. (10) and (16), the state

equation for any thin ply can be written as

25,2)=D;S,(2)+B,,(2 (17)
E.—-FE. . _ r
Bi(2)= A, CiB,U(2) 0 0] (s)

J

From Egs. (14) -(16), the solution of Eq. (17) is
$,(2)=G,(2)S,:(0)+C;(2) (19)

Introducing continuity conditions between thin plies, the mechanical quantities at the bottom surface
of the Kth thin ply and the top surface of the first thin ply are linked by followings

— K —
S_/Kj(d,')=HjKij1 (0)+HjK]:[G_j(dj)] ]Sjl (O)'*'Hjl(/ (20)
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— K-1
HJ'K_,-:[Gj(dj)] ! le(dj)+"'+Gj(dj)c;',Kj-1(dj)+CjK](dj) (21)

Again, according to the continuity condition between the layers, the mechanical quantities at the
bottom surtace of the laminated plate can be finally expressed as

S,,KI,-_—HSH(O)"'TI:HFK,,' “Hy H g S (0)+I1 (22)
I—:IszKp...HZKZI—;IIKﬁH[,Kp...H3K3172K2+--.+HPKPH,,_LKN+F_IPKP (23)

S$1,(0) in Eq. (22) is the mechanical quantity on the top surface of the plate and is called initial
value. From the second row of Eq. (22), one has

W,(d,)=10, U, (0)+ T, W, (0)+ T3 R, (0) + 70, Z,,(0) + 7 (24)

If the plate is loaded by a concentrated force P at centre of the top surface and e denotes the
spring constant of the Winkler elastic foundation, we have R, (0)=R,(d,)=0, Z,(d,)=—eW,(d,) .
Using the third and forth rows in matrix Eq. (22) and considering Eq. (24), one has

1 -
{U’"(O) }z_ TR [z (0){ s H & H 25)
Wm(O) 71'41 + 671'21 n'42 + 6”22 71:44 + 6’7[24 ?[4 + 67_[2

To obtain Z,(0), the concentrated force P must be expanded into Bessel’s series. For this
purpose, we construct an auxiliary function as follows:

0 When r> ¢
ox(r, 0, &)= _'BE When r<e (26)
e
and the true distribution of o, on the top surface is
o,(r, 0)=lim o,r, 0, €) 27
£—0
Expanding o, into Bessel’s series, we obtain
_ PJ(&,€)
G.(r. 0, )= Y, Co(8)Jo(Eur).  Cp(E)=—2—F 22— (28)
g b, e11(K,)
Comparing Eq. (28) with Eq. (6) yields
Z,.(0)=lim Cm(e):—z-%— 29)
€0 b Ji(K,,)

Thus, S;,(0) can be determined from Eqgs. (25) and (29). According to the deductive process of
Eq. (22), it is easy to express the mechanical quantities of the ith thin ply in jth layer of the plate as
follows
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Sji(Z)ZIin(Z)Sll(O)+I_in(Z) (30)

The expressions for matrix I1,(z) and vector ﬁ,;(z) are not difficult to obtain. It should be
explained here that Egs. (25) and (30) contagl unknown coefficients E;(i=1, 2, -, Ki+1, j=1, 2, -,
p). Consider the continuity of displacement U(z), the following relationships are obtained.

Ej+1,1= . Kj+1 (=12, -, p-1) 31

Hence, there are K+K,+ '+ K,+1 coefficients altogether. To solve these coefficients by using
Eq.(7), the coordinate z in Eq. (30) should take the values of K. For example, let z=d,, 2d;, -**, h;,
calculate the corresponding mechanical quantities respectively and substitute [U,(2)}; into Eq. (7).
Let j =1, 2, ..., p and consider the initial value $,,(0) in Eq. (25), we can obtain K+K+ '+ K,+1
algebraic equations which are used to solve the same number of unknowns. Thus the initial value
8$11(0) can be found by Eq. (25) and the problem is solved.

4. Numerical results
4.1. Example 1
In order to examine the effectiveness of the present method, a simply supported isotropic circular

plate on elastic foundation was considered first. The plate is subjected to a concentrated force P at
the top centre surface of the plate. Numerical results are shown in Table 1, where D=ER*/[12(1-

Table 1. Stress and deflections for isotopic circular plate on elastic foundation (A=7)

W (r=0.0) W (r=0.2b) W (r=0.6b) Go (r=b)
B K z Present  Present BEIM Present BIEM  Present  BIEM
(<1073 (x1079 (x107%) (x107% (<107 (x107%)  (x107%)
001 4 0.0 0.2573 0.1175 0.1175 02216 -0.2217 0.8805  0.8748
0.5h  0.2567 0.1175 0.1175 02218  -0.2217 0.0094  0.0000
1.0k 0.2562 0.1175 0.1175 02216  -02217  -0.8611 -0.8748
005 8 0.0 0.4627 0.1172 0.1175 202206 -0.2217 1.0921  0.8748
05h 02812 0.1174 0.1175 02262  -0.2217 0.2398  0.0000
1.0k 0.2694 0.1172 0.1175 02198  -02217  -0.6047 -0.8748
02 12 0.0 13.441 0.1282 0.1175 -0.1836  -0.2217 44581  0.8748
0.5h 04722 0.1331 0.1175 -0.2429  -0.2217 3.8470  0.0000
1.0h  0.2961 0.1158 0.1175 -0.1493  -0.2217 32922 -0.8748
04 16 0.0 106.41 0.4396 0.1175 13950  -02217  13.672 0.8748
05h 1.0201 0.4001 0.1175 0.7975  -02217 15861 0.0000
1.0h  0.1774 0.1022 0.1175 03501  -02217 17.740  -0.8748
06 20 0.0 359.44 1.7630 0.1175 17.801 02217 14.152 0.8748
0.5h  2.1041 1.2551 0.1175 14.162 02217  38.562 0.0000

1.0 0.0922 0.0693 0.1175 1.1651 -0.2217  53.301 -0.8748
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V)], Ge=0yh’/p, W=WDI/(Pb*), A=b Jel/D, e=foundation’s spring constant, E=Young’s modulus,
v=Poisson’s ratio, f=h/b, and K is the number of divided thin plies. The numerical results were
calculated with m=1, 2, ..., 200 and compared with those of BIEM (Katiskadelis and Armenakas
1984).

4.2. Example 2

A three-plied laminated transversely isotropic circular plate is simply supported on a Winkler
elastic foundation. The plate is subjected to a concentrated force P at the center of top surface of
the plate. The materials of the upper and lower layers of the plate are identical. Each layer has the
same ratios of elastic constants: C»/C;=0.246269, C3/C,;=0.0831715, C33/C;;=0.530172, C4s/Cj1=
0.266810, C(lll)/ C(lzl) =5, C(lzl) hle=10, where C(lll) and C(lzl) denote the values of C); corresponding to
the upper and middle layers respectively. The geometric parameters are h=h;=0.1h and 1,=0.8A,
where A is the thickness of the laminated plate. The convergence rate using different K; and series

terms m are illustrated in Tables 2 and 3, in which U=UC(12l)h/p, 6‘,=0',h2/p et al. are

Table 2. Convergence for the present solution with different number of thin plies (m=200, z=0.0, f=0.4)

K, K, K; U (=020 W (r=00) 0, r=04b) Go (r=0.4b)
2 10 2 -0.25796 31.2582 1.35325 -0.42044
3 10 3 -0.25800 31.2586 1.35319 -0.42050
4 10 4 -0.25801 31.2587 1.35317 -0.42053
4 12 4 -0.25801 31.2587 1.35316 -0.42053

Table 3. Convergence for the present solution with different series terms m (K,=K;=4, K,=12, §=0.4)

m U (r=0.2b) W (r=0.0) O, (r=0.4b) Go (r=0.4b)
160 1- -0.25747 26.7453 1.24043 -0.46560
1+ -0.03775 5.60112 -0.32798 -0.58331
3+ 0.13726 1.29908 0.33206 0.91696
180 1- -0.25776 29.5020 1.32982 -0.44245
1+ -0.03773 5.60109 -0.32797 -0.58332
3+ 0.13726 1.29908 0.33206 0.91696
190 - -0.25789 30.8804 1.33895 -0.43184
1+ -0.03773 5.60107 -0.32796 -0.58332
3+ 0.13726 1.29908 0.33206 0.91696
195  1- -0.25798 31.1982 1.34921 -0.42136
1+ 0.03773 5.60107 -0.32796 -0.58332
3+ 0.13726 1.29908 0.33206 0.91696
200 I- -0.25801 31.2587 1.35316 -0.42053
1+ -0.03773 5.60107 -0.32796 -0.58332
3+ 0.13726 1.29908 0.33206 0.91696

«w

Note: j (j =1, 2, 3) denotes jth layer, and “+” denote it’s top and bottom surface, respectively.
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Table 4. Stresses and displacements of laminated circular plate on elastic foundation

B=0.1, K;=K3=2, K»=8 B=02, Ki=K3=3, K,=10 p=04, K\=Ks=4, K,=12

present FEM present FEM present FEM

o, (r=04b) 1- 0.18266 0.09894 0.52823 0.19720 1.35316 0.30484
1+ 0.07459 0.07523 0.09938 0.10371 -0.32796  -0.30829

2- 0.01494 0.01503 0.01974 0.02060  -0.06557  -0.06146

2+ -0.01640 -0.01619  -0.02293  -0.02391 0.07051 0.06848

3- -0.08078 -0.07970  -0.09768  -0.10252 0.39423 0.38676

3+ -0.10191 -0.10181  -0.18519  -0.19442 0.33206 0.31326

oy (r=04b) 1- -0.02461 -0.00281  -0.06722  -0.17661 -0.42053  -0.86391
1+ -0.00345 -0.00330  -0.13506  -0.13386  -0.58332  -0.57811

2- -0.00067 -0.00067  -0.02715  -0.02691 -0.11664  -0.11543

2+ 0.00193 0.00199 0.02873 0.02849 0.11719 0.11624

3- 0.01089 0.01116 0.16509 0.15950 0.62759 0.62505

3+ 0.01106 0.01058 0.20404 0.19805 0.91696 0.90412

7. (=02b) 1- 0.00000 0.00505 0.00000 0.09305 0.00000 0.41695
) 1+ -0.01837 -0.00537  -0.07764 0.04350  -0.34524  -0.05594
2- -0.01837 -0.01647  -0.07764  -0.05484  -0.34524  -0.35334

2+ -0.02297 -0.02007  -0.11986  -0.13039  -0.19333  -0.19509

3- -0.02297 -0.01190  -0.11986  -0.15160  -0.19333  -0.23370

3+ 0.00000 0.00467 0.00000  -0.03492 0.00000  -0.04608

U (=02p) - -0.09537 -0.09547  -0.15209  -0.15176  -0.25801  -0.26027
1+ -0.06836 -0.06865  -0.08353  -0.08458  -0.03773  -0.03884

2- -0.06836 -0.06865  -0.08353  -0.08458  -0.03773  -0.03884

2+ 0.07932 0.07959 0.08985 0.08943 0.07209 0.07262

3- 0.07932 0.07959 0.08985 0.08943 0.07209 0.07262

3+ 0.10571 0.10492 0.14746 0.14774 0.13726 0.13688

W (r=0.0) 1-- 10.5522 10.6342 17.4304 16.5513 31.2587 27.5207
1+ 5.54556 5.19949 5.57250 5.28355 5.60107 5.34148

2- 5.54556 5.19949 5.57250 5.28355 5.60107 5.34148

2+ 1.27956 1.26967 1.28662 1.22441 1.31283 1.25531

3- 1.27956 1.26967 1.28662 1.22441 1.31283 1.25531

3+ 1.26685 1.25578 1.27388 1.30921 1.29908 1.35832

dimensionless displacements and stresses, K;, K, K3 are the thin-ply number of the three layers,
respectively. Numerical results are given and compared with those of FEM in Table 4. The mesh of
FEM is 4 (in z-direction)x 10 (in r-direction). Because of axial symmetry, 40 rectangular
isoparametric ring elements with 8 nodes are employed in the calculations.

5. Conclusions

From the above analyses and numerical examples, we can draw the following conclusions:
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(1) It can be seen from Table 1 that the numerical results of thin plate theory (#/6=0.01) and the
present paper are almost identical. As B increases, the differences of the two solutions increase
rapidly. Also, there exists a local central area where larger deformation occurs, and the local area
expands outward in r-direction and downward in z-direction as f3 increases.

(2) It can be seen from Table 2 that the convergence of calculation against K; is fast. Hence, the
assumption (16) is reasonable and the present method is efficient. In Table 3, the convergence of the
mechanical quantities against m is fast at the bottom surface and in the interior, but it is slower at
the upper surface which is subjected to the concentrated load.

(3) It can be seen from Table 4 that the displacements and stresses in the interior of the plate
calculated by present method and FEM are almost identical. However, some differences exist in the
area close to the upper surface of the plate. The differences are small for displacements and
significant for stresses. This is because the FEM calculates stresses by using interpolation. In
addition, the stresses at the interface calculated by FEM do not satisfy the continuity conditions of
the laminates.

(4) All the mechanical quantities appearing in the state equation are the compatible quantities at
the interfaces, thus, the present study is extremely useful for solving laminate problems.

(5) The present method can be used to check the accuracy of approximate theories.
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