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Derivation of formulas for perturbation analysis
with modes of close eigenvalues
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Abstract. The formulas for the perturbation analysis with modes of close eigenvalues are derived in
this paper. Emphasis is made on the consistency of the straightforward perturbation process, given the
complete terms of perturbations in the zeroth-order, which is a form of Rayleigh quotient, and in the
higher-orders. By dividing the perturbation of eigenvector into two parts, the first-order perturbation with
respect to the modes of close eigenvalues is moved into the zeroth-order perturbation. The normality
condition is employed to compute the higher-order perturbations of eigenvector. The algorithm can be
condensed to a single mode with a distinct eigenvalue, and this can accelerate the convergence of the
perturbation analysis. The example confirms that the perturbation approximation obtained from the
suggested procedure is in a good accuracy on the eigenvalues, eigenvectors, and normality.
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1. Introduction

Deriving the formulas for the perturbation analysis with the modes of close eigenvalues is
demanded in two reasons. One is that the conventional method for the perturbation with a distinct
eigenvalue may not give a valid result. Another reason is that the sudden change, namely the mode
localization and the loci veering, on the modes of close eigenvalues from a perturbation in a
dynamic system needs to be well quantitatively measured.

Perturbation analysis with repeated eigenvalues, as a special case of close eigenvalues, has been
studied intensively (Courant and Hilbert 1945, Nayfeh 1973, Mills-Curran 1988, Dailey 1989, Hou
and Kenny 1992, Lee et al. 1996). From the numerical point of view, real numbers are hardly equal
and the repeated eigenvalues are the truncated values from close eigenvalues. Therefore, the study is
a theoretical guideline for the rarely seen cases of repeated eigenvalues. The analysis with close
eigenvalues is indeed much practical in a computational process.

There have been some references devoted to the subject. Hu (1987) applied the zeroth-order
eigensolution to Rayleigh quotient to compute the perturbed modes. The quotient is a good
approximation to respective modes of close eigenvalues for it is in a second-order error. This
procedure can be considered as the technique of subspace, spanning on the modes with close
eigenvalues. Chen and Ginsberg (1992) used the approach to examine the eigenvalue loci and the
sensitivity of eigenvectors. However, this is not sufficient, as the perturbation terms from the modes
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of distinct eigenvalues need to be added.

Chen er al. (1993) presented a perturbation scheme, which employs the formulas of the
perturbation analysis for repeated eigenvalues. By transforming the perturbation for close
eigenvalues to a problem with zeroth-order repeated eigenvalues, the solution from the perturbation
analysis is for the case of repeated eigenvalues. Nevertheless, this is an indirect way of perturbation
analysis, requiring setting up a problem with repeated eigenvalues.

Based on Hu’s work, Chen er al. (1995) added the perturbation terms with the modes of distinct
eigenvalues and developed higher-order perturbations. Liu (1995, 1999) used a similar procedure on
the reduction of eigenvalue analysis for close eigenvalues.

It is found that the previous works by Chen et al. (1995) and Liu (1995, 1999) lack the
consistency on using Rayleigh quotient in the perturbation process. In other words, no connection of
the quotient with the perturbation analysis is given, and there are jumps on deriving the algorithm.
Moreover, the normality condition is not used.

The perturbation procedure given in this paper includes the complete items on the perturbation
sequences. Both the eigenvalue equation and the normality condition are employed to derive the
formulas. The straightforward process results in the zeroth-order perturbation, in a form of Rayleigh
quotient as suggested by Hu (1987}, as well as higher-order perturbations. Correction on the higher-
order perturbations and more terms are given.

2. Perturbation formulas

Considered in the real state, an eigenvalue equation of a dynamic system is defined as
(K(O) _ A(O)M(O))x(O)ZO (1)

where K@ and M9 are the matrices of N dimensions, which can be the stiffness and masses in a
structural dynamics. The orthonormal relationships for the eigensolution, i.e. n eigenpairs A" and
X© are given as

X O Oy 0_ 4© )

O OOy 3)

where I is the unit mafrix.
Taking Eq. (1) as a zeroth-order problem, a small change on the dynamic system may result in a
perturbation for the matrices, so that

K=KV +ek" (4)
M=M""+eM" (5

where the parameter ¢ is small and positive, i.e. 0 <e<< 1, and K" and MV are the first-order
perturbation matrices.
The eigenvalue equation of the perturbed system is then in the form of

(K- 2AM)x=0 (6)

The eigenvectors X from Eq. (6) are normalized as
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xX"Mx=1 (7

As a usual perturbation technique, the solution of Eq. (6) is assumed to be an asymptotic
sequence of the small parameter € by letting

=242+ 2P+ 20+ (8)

3.3
x=x VeV @ ey )]

It is supposed that there is at least one group of close eigenvalues in the zeroth-order
eigensolution, that is p close eigenvalues A( )—dla {/1(0), AV, . (0)} and their eigenvectors

0) ={x, © (0) . (0) }. A(O) nd X(O) are the rest of eigensolution. A(O) is the eigenvalues, which
are dlstlnct from A( " in magnitude, but may contain other groups of close eigenvalues.

Because the zeroth-order modes are divided into two parts, the perturbations of the eigenvector in
Eq. (9) can then become into two. As the reason, the perturbed eigenvector for one of modes with
close eigenvalues is expressed into

(0) H (H (2) (2) 3 (3)

+e(x,  +x, )+E (x. " +xy4 )+E (X, +x5 )+ (10
where the subscripts ¢ and d denote the perturbations with the modes of close eigenvalues and with
the modes of distinct eigenvalues.

By introducing

pu=A"4e" . (11)
o=x"+ex') (12)
Egs. (8) and (10) can be rewritten to
A=p+e AP+ 2P+ (13)
xX= (p+£xf,”+£ (x(z) +x§,2))+£ (xm +xf,”)+~-- (14)

¢ and u are considered as the perturbed zeroth-order result, for they are in the zeroth-order. Bear in
mind that the perturbed eigenpair A and x is referred to one of modes with close eigenvalues. The
subscript i, where i=1, 2, ..., p, omitted in Eqs. (13) and (14) for sake of a simpler expression, will
be added in appropriate formulas. The perturbations of eigenvector are assumed to be expanded
with the respective eigenvectors, that is

o=x."B (15)
x'=0p” (16)
("‘) ﬁm (17)

where @ is the collection of ¢. 8, B, and [3 “ are the coefficient vectors, which form the matrices

B B - B 1B, B, . BY, {7, B, ..., BV} for all p modes. Egs. (15), (16),
and (17) can be detalled for ith mode, z—l, 2, .oy Py @S
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q’i:i jixj('()) (18)
=
@) _¥ q@ ; 19
Xe, —2 Bi'o (19)
=1
3 o)
xci :z )i (pj (20)
j=1

. 1 2
The expansion of x,(, ) x,(, ', and x

order eigenvectors of distinct eigenvalues

3) . . . . .
f,) is given in two cases. For the expansion with the zeroth-

xg=X"7"" @1
x =Xy 7" 22)
xO=xPy? (23)

With the modes of other groups of close eigenvalues, though distinct from the considered close
eigenvalues, they have their perturbed zeroth-order eigenvectors @,, so that the expansion is

xy = 0,5" (24)
x;'=@,8" (25)
xy =@ 8" (26)

Note that Egs. (21) through (26) can be detailed into a form as Egs. (18), (19), and (20).
The orthonormality relationships in Eqgs. (2) and (3) can be extended to

o' K"x=0 27)
"M% V=0 (28)
o' K¥x{=0 (29)
o' MVx"=0 (30)
0K =0 31)
oM 9 =0 (32)

@ is also orthogonal to the second or third-order perturbation of x,.
2.1. Zeroth-order perturbation and perturbation of eigenvalue
Substituting Egs. (13) and (14) into Eq. (6) and expanding the equation, then inserting Eqs. (4)

and (5), collecting the terms with like power of & and premultiplying the equation by ¢, the
equation becomes to
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¢ (K- uM)g
+e@" (KO - uM)x{)
+&' @ [(K" = uM)xg +(K - uM)x P +(K - uM@)x -2 M o]
+ ¢ [(KY ~ uM )+ (K — uM)x "+ (K ~ uM )y
—1(2)M(0)x,(,1)~/1(3)M<p]
420 (33)

As the equation is an identity of the parameter & each coefficient of € vanishes independently.
After applying the normality relationships to Eq. (33) and equating the coefficients of g, the
equation splits to

@' (K- M) g =0 (34)
@ (K" = uMV)x$)+(K - uM)xP -1 M 91=0 (35)
¢ 1KY — M )x+(K — uM)x V-1 M 9] =0 (36)

Inserting Eq. (15) for ¢ into Eq. (34) yields the eigenvalue

_Bx”kx"B

- G7)
B'x” Mx"B

This is clearly Rayleigh quotient with respect to B, a vector to be determined. It is known that the
uotient is a minimum if it is minimized on the vector (Courant and Hilbert 1945). The
q
equivalence is du/dff =0, which yields an eigenvalue equation
(X KX~ pX” MX”)B =0 (38)
The solution of the equation is p pairs of g and B. The normality of the vector B is
B'xY Mx\"p =1 (39)
For simplicity on computation, Egs. (38) and (39) can be rewritten to
(A +ex” KX —p + ex” MVX7)1B =0 (40)
Ba+x” M xp =1 @1)

The orthonormality is observed as

(piTK(pj::uiaij (42)
o Mo=3, 43)

i

where i, j=1, 2, ..., p and ;=0 if i, §;=1 if i=j.
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By inserting Eq. (16) for x\’ and Eq. (17) for x'” into Egs. (35) and (36) and applying the
orthonormality in Egs. (42) and (43), the second and third-order perturbations of eigenvalue are
obtained as

A=l (K" - g )x) (44)
),(3):¢-T(K(” M“))x(z) (45)
fori=1,2,...,p

2.2. Perturbation with zeroth-order eigenvector of distinct eigenvalue

The perturbation of eigenvector has been assumed to be the expansion of the known eigenvectors.

In this section and the following one, the formulas to compute coefficients y and & for the

. 1 2 3 . .
perturbations x,(, ), xf, ', and x( ’ will be given.

Substituting Egs. (4), (5), (13), and (14) into Eq. (6), collecting the terms with the like power of
the parameter €, and premultiplying xf,o , yields
(0) (K(O) uM(O))(p
(K(l) /JM“))(/)+(K(O) ,LLM(O))x(l)
& <0) (K" - /,tM“))x“)+(K(O) ‘UM(O))(X(Z) +x(2)) /l(Z)M(O)(p]
& (0> [k - /,LM(I))(x(z)+x,(,2))+(K<O)—uM(O))(xm+xf:)
—l‘z)M(l)(p—}th(O)xf,])—A(B)M(O)(p]
+o=0 (46)

which leads to

(0) [(K(l) ,LLM(I))x(I)+(K(O) —[JM(O))xfiz)]ZO (48)
xSIO)T[(K(l) B uM“))(x“)+x,(12))+(K(O) . #M(O))x‘(;)_)‘(?-)M(l)(P_/*L(Z)M(l)x‘({l)]:0 (49)

Inserting Eqgs. (21), (22), and (23) for the expansion of x,(,l), x,f,z), and x(

applying the orthonormality, yields the coefticients

" into the equations and

oy X (K — uM g,

Vi = (50)
f] L~ )L;O)
(0)’ (" (1)y (1)
(2) j (K —.uiM )xd,- (51)
%l ,_lj(‘O)
o ,(0) [(K‘” u))( @, 0)) /I(Z)M“%p /1(2>M<0> <1)]
/i o (52)
“i—)%f
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where i=1, 2, . . ., p and j is for any mode with a distinct eigenvalue.
2.3. Perturbation with multi groups of close eigenvalues

If there are multi groups of close eigenvalues, a likely case with two or more groups of close
eigenvalues, a different perturbation needs to be considered. As the same procedure is also used, A,
and @,, the perturbed zeroth-order eigenpairs for the modes of those groups, are obtained.
Substituting Eqgs. (4), (5), (13), and (14) into Eq. (6) and premultiplying the equation with (pg,
yields

0i(K” - pM g
+egy (K" — uM) o+ (K - uM)xy’
+E @il (K~ pM P )x 7+ (K~ uM)x, - 27M " ]
+€ gLk - M D +(K - M OO +(K - )
2OMD g 2P MOx D20 MO g
+--=0 (53)

Equating the coefficients of € leads to

@il (K — uM) @ + (K - uM)x'1=0 (54)
0a(K — uM)x =0 (55)
Pl (K — uM )P + (K ~ uM)x -2 M 91=0 (56)

. 1 2 3 . . .
Inserting xf,,,) , x,(,._), and x;l_), which are the expansion of @4, on the respective group of close

eigenvalues in Egs. (24), (25), and (26), into the equations, applying the othornormal relationship,
yields the coefficients

o, P (K" - M),

(h_ 57)
! Hi— H; (
(2)
=0 (58)
T (1) () () (2) 4 (D)
QLK —uM x.—A"M " ¢,]
g;.”: i (59)

Hi— K
where i=1, 2, ..., p and j is for any of other groups of close eigenvalues.

(3)

<

2.4. Perturbation for x\* and x

Note that xiz) and xf) have not been determined in the perturbation process, based on the

eigenvalue Eq. (6). They can be computed from the orthonormal relationship, a condition for which
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an eigenvector must be met. The orthonormality for ith and jth eigenvectors in Eq. (7) becomes
x{Mx;=5; (60)

Inserting Eqgs. (14) and (5) into the equation, the normality is then

T
o, Mo,
T (0 (1), (1732 (0)
+e(oM Xy +Xg, M)
(1 T
+£ ((p, M )x( )+x“) M(”(pj+x(” M(O) “)+(p, Mx(2)+x(2) M(p])

1 2 2 1 1 1 1 (1 0 2 2 0)_(1 3 3
+£ ((PiM( )xf,l)+x,(,_) M( )(pj+xf,_) M( )x‘(,‘)+xd_) M( )x,(, )+x,(,) M( ¢ )+(Dl Mx( )+x( )M(Pj)
i t J 7

+o = 611 (61)
Applying the orthonormality and equating the terms with like power of g, yields

(PiT Mo= 6[,’ (62)

- M(l)x(”+x“)M(”(pj+(p, Mx(z) 1) MOy (1)+ (2) Y Mg,=0 (63)

T (1) (2 2 1 1 (1 1 0)_(2 2)" 4 2(0) (1 3 3
o'M' )xf, )+xf,)M( )(p,+x( ‘<i>+ ( )M( )xfz,)+x§t,.)M( )xfz 4x! )M<pj+(0 Mx( =0 (64)

Eq. (62) is the normality in Eq. (44). Inserting the expansion of x?) and x?) from Eqgs. (18) and
(19) into Egs. (63) and (64), the coefficients from the equations are

(2) (2)_ Mo (1) () 5 (0 (1)
ﬁu + jio (Pz M xd _xd (01 xd M xd/ (65)
3 3 T (1) (2 2 1 DT (1 I 0)_(2 2 0)_.(1
()+()—(p,-M()()x()M()(0, ()M()xfij) ()M()() ()M()() (66)

It is found that the right hand of the equations is symmetrical, and Eq. (60) is also symmetrical to
the ith and jth vectors. As the reason, the matrices ﬁm and ﬁ“) are taken to be symmetrical, so
that the coefticients are obtained as

(2) _ p(2) _ (D (1> (l) (1) (1) 4(0) )

=P = (golM  +Xg, M Qitxg M Xq ©7)
(3)_ (%) (D (2) (2> (1) 1) (1), () g0 () () 3 4(0) (1)
=B = (qo,M X, M o+x; M Xq +Xg, M Xg +Xg M xdj) (68)

The perturbations up to the third-order are completed. The first, second, and third-order
approximations can be obtained by inserting appropriate perturbations into Eqs. (13) and (14).

3. Discussion

The suggested perturbation procedure has two features, which are different from the conventional
perturbation:

(a) The division of eigenvector perturbation into two parts, that is x, for close eigenvalues and x4
for distinct eigenvalues;
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(b) The zeroth-order perturbation, that is ¢ and ¢.

The zeroth-order perturbation is derived by inserting the first-order perturbation of eigenvalue and
some of first-order perturbation of eigenvector into the zeroth-order solution as given in Egs. (11)
and (12). This leads to an eigenvalue equation (38), which is in the form of Rayleigh quotient. The
algorithm is based on the eigenvalue equation and the normality condition of the perturbed system,
two conditions in the eigenvalue analysis.

3.1. Condensation of perturbation to a single mode

As suggested by Chen et al. (1995), the analysis for close eigenvalues is applicable to any mode
with a distinct eigenvalue. A single mode can act as one of “a close eigenvalue” and this is the
condensation of the algorithm. Taking p=1, Eqgs. (38) and (39) of the zeroth-order perturbation can
be reduced to

0 0
0 0

N (70)

0)” 0
A/x(, )Mx(l )

In this case, there are multi groups of close eigenvalues and the equations for the perturbation of
eigenvector in Section 2.3 should be used. Due to the improved zeroth-order solution, the
convergence of the perturbation can be accelerated.

(69)

Hy

3.2. Comparison to other algorithms

The early algorithms used by Chen et al. (1995) and Liu (1995, 1999) are unable to give the
derivation of the zeroth-order perturbation, as Eq. (38), but the result ¢ and ¢ from the equation are
directly used in the formulas of the late perturbation.

Some differences are found in the algorithm by Chen ez al. (1995), in which the second and third-
order perturbations of eigenvalue are given as

o @ (K" M Pyxy)

| amn
BB,
3) ‘PiT[(K(I)-M-M“))x.(z,z.)—/lf-z)M(])ﬁoi]
i BB (72)
with the vector B at the denominators. By the comparison to Eqs. (44) and (45), the differences are
p

found on the term A> @ M'" @, in Eq. (72) for the third-order perturbation, which appears in Eq. (44)
¢: in Eq pp

for the second-order perturbation.
In the perturbation of eigenvector with a distinct eigenvalue, the algorithm by Chen er al is
different at the third-order perturbation of eigenvector, given as
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& xj(p) [(K(l) . .uiM(l))xt(if)_}“EZ)M(l)(Pi_ﬂfEZ)M(O)x((l:)]
lji = o (73)
u—A

which is as same as Eq. (52) except without xf).
: 2 &)

These algorithms lack the perturbation terms x,° and x.°, which are computed from the
normality condition with mass matrices M and M), so that the analysis would affect the
eigenvectors from the neglect of them and it would be even more if MV is not null. The error will
be reflected on the normality, since it is not met, and on the eigenvectors as well.

No formulation is given for the perturbation with multi groups of close eigenvalues in these
algorithms.

4. Example

To examine the suggested formulas, a simple problem with four unknowns is chosen as the
example. The numerical results from the perturbation computations by the suggested formulas, the
condensation of the formulas on all modes, and Chen et al. (1995) will be compared.

The zeroth-order matrices are given by

3-2-1 0
-222 0 0
-1 0 3 2
0 0 222

KO

M= diag {1, 1, 1, 1}

The matrices are assumed to take the perturbation

02 0-02 0
eK V= 0 0 0 0
-02 0 02 O

0 00 10

eM'"= diag {0.02, 0.02, —0.05, —-0.05}

The zeroth-order eigensolution and the perturbed eigensolution (referred as the exact one) are
given in Table 1. The mode shapes are illustrated in Fig. 1. The third and forth eigenvalues in the
zeroth-order eigensolution are close eigenvalues, that is 22.19804 and 22.21954 respectively. In Fig. 1,
their modal shapes are noted to be far from the perturbed ones. The conventional method for a
distinct eigenvalue would be unsuccessful to develop the perturbations of eigenvectors due to the
big changes.

Three computations are considered.

Perturbation I: The conventional method for a distinct eigenvalue is used in the first and second
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modes, while the suggested perturbation is applied to last two modes. The approximations up to the
third-order are listed in Table 1. The convergence with the perturbation order is observed. The
modal shapes from the perturbation analysis, shown in Fig. 1, are approaching to the exact ones.
However, the convergence in first and second modes is not as good as that in last two modes.
Perturbation II: The condensation is considered in first and second modes, so that there are three
groups with close eigenvalues. Formulas in Section 2.3 are used in the perturbations of eigenvector.
Perturbation IlI: The third computation uses the algorithm from Chen et al. (1995). The

condensation is applied to first and second modes.

To examine the overall errors for all modes, special norms for eigenvalues, eigenvectors as well

as normality are defined as

172
E(M={Z [(l,»—&,,.)/&,f}

i

Table 1 Comparison of eigenvalues and normality in Perturbation 1

(74)

Mode Exact Zeroth First Second Third
Eigenvalue 1.83205 1.80196 1.83385 1.83174 1.83212

1 Error (%) ~1.6425 0.0978 -0.0173 0.0038
Normality 0.9850 1.0035 0.9992 0.9993
Eigenvalue 4.25526 3.78046 4.23835 4.25464 4.25517

2 Error (%) —11.1581 -0.3974 -0.0148 -0.0021
Normality 0.98500 0.99970 0.99956 0.99962
Eigenvalue 21.77572  22.19804 21.77564 21.77572 21.77572

3 Error (%) 1.93940 —0.00037 -0.00002 0.00000
Normality 0.9850000 1.0000029 1.0000002 1.0000000
Eigenvalue 2442179  22.21954 24.42145 2442177 24.42179

4 Error (%) -9.01756 —0.00142 -0.00009 —0.00001
Normality 0.9850000 1.0000143 1.0000011 1.0000001

— - Exact

—— Zeroth-order

Mode 2

- First-order

Mode 3

Fig. 1 Comparison of modal shapes in Perturbation I

- - % - -Second-order
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E(x):[E (x,-’x,-—xixei)z}l/z 75)

il

En=| S IMx-)’]” 76)

where A; and x; are the ith eigensolution from a respective perturbation order and the subscript e
denotes the exact solution. Obviously, norms in Eq. (74) and Eq. (76) are relative errors.

Norms from three computations, denoted as Perturbation I, Perturbation II, and Perturbation Iil,
are illustrated in Fig. 2, Fig. 3, and Fig. 4. Now, the examination of the convergence can be clearly

0.40927 O Perturbation |

0.26457 M Perturbation 11
bl @ Perturbation 11

0.02276  0.02603 900435  0.00487
<  ammemanse | Stacaml
0.26457 0.00096 0.00096

First-order Second-order Third-order

i

Fig. 2 Norm of perturbed eigenvalues (%)

0.0636 Ll Perturbation I
B Perturbation Ii
@ Perturbation 111
0.0582 0.0090 0.0071
First-order Second-order Third-order
Fig. 3 Norm of perturbed eigenvectors

0.3469  0.3860 O Perturbation 1
‘ 0.3004

B Perturbation 11

i Perturbation [1I
0.0757
0.2974 0.0067 0.0014
First-order Second-order Third-order

Fig. 4 Norm of normality (%)
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made.

Perturbation I is convergent on all three examined norms.

With the help of the condensation in Perturbation II, the convergence is much improved, with the
norms at 0.00096%, 0.0071, and 0.0014% for the third-order.

The worst approximation is found in Perturbation III. Though the first-order eigenvalues are the
same as Perturbation II, the norm from third-order eigenvalues is 0.00487, which cannot be
compared to 0.00096 from the second-order in Perturbation II. The eigenvectors and normality are
not convergent and are far from the excellent agreement as in Perturbation II. In other words, the
second-order and third-order perturbations of eigenvectors are hardly improved from the algorithm
by Chen et al. (1995). This demonstrates that the ignoring of the perturbation terms, solved from
the normality condition, has a big effect on the higher-order perturbations.

5. Conclusions

The algorithm for the perturbation analysis with modes of close eigenvalues has been presented in
the paper. All perturbation terms of the eigensolution are obtained from the straightforward process.
The zeroth-order perturbation contributed from the first-order perturbation leads to an eigenvalue
equation in a form of Rayleigh quotient. The corrected terms on higher-order perturbations and the
use of normality can help the convergence of perturbation approximation, which is shown in the
example.

The condensation of the analysis to a mode of distinct eigenvalue also forces the perturbation at
the zeroth-order and it is an advantage on generating a better approximation over the conventional
perturbation. It suggests the potential use of the procedure to all modes.

The perturbation analysis can be a numerical tool on the quantitative computation of the mode
localization and the loci veering, since the prediction of the dramatic change resulted from close
eigenvalues is demanded.
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