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Abstract. Linear stress analysis without body force can be easily solved by means of the boundary
element method. Some cases of linear stress analysis with body force can also be solved without a
domain integral. However, domain integrals are generally necessary to solve the linear stress problem with
arbitrary body forces. This paper shows that the linear stress problem with arbitrary body forces can be
solved approximately without a domain integral by the triple-reciprocity boundary element method. In this
method, the distribution of arbitrary body forces can be interpolated by the integral equation. A new
computer program is developed and applied to several problems.
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1. Introduction

The domain integral becomes necessary in the boundary element method under the presence of
body forces. However, the domain integrals for the cases of uniform gravitational force and
centrifugal force can be easily transformed into the boundary integrals by means of the Galerkin
tensors (Danson 1983).

The case of non-uniform body force, in which the density is a variable, has not yet been clarified.
On the other hand, Neves, Nowak and Brebbia (1989, 1991, 1993, and 1994) have proposed the
conventional multiple-reciprocity method, which uses a boundary-only formulation. In the
conventional multiple-reciprocity method, the body force must be given analytically, and infinite
numbers of fundamental solutions are necessary to make the solution converge in the case of
complicated body force. Ochiai, Sekiya and Ishida (1994, 1996) have proposed a method using the
boundary-type cells for coarse approximation.

In this paper, the distribution of body force is interpolated by using the integral equation. Using
these interpolated values, the linear elasticity problem with arbitrary body force can be solved
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without internal cells by the triple-reciprocity boundary element method. The conventional boundary
element method needs internal cells for the domain integral. The internal cells decrease the merit of
the boundary element method, in which the arrangement of data is simple. In the presented method,
the fundamental solution of lower order is used. This paper deals with the extension of the
improved multiple-reciprocity boundary element method, which has been applied for heat
conduction analysis and thermal stress analysis (Ochiai and Sekiya 1994, 1995, 1996).

2. Theory
2.1. Fundamental equation

In order to carry out the stress analyses for the case in which the body force b; is present, the
following boundary integral equation must be solved (Danson 1983, Brebbia ef al. 1984):

(1] (1] [
Cyl; = jr{“ yPj—p g ydl+ .[Q“ yb,d82, (D

where ¢; is the free coefficient, #; and p; are the j-th component of the displacement and the surface
traction, and the notations I" and €2 denote the boundary and the domain, respectively. As shown in
Eq. (1), when there exits an arbitrary body force, the domain integral becomes necessary. Using 7 to
denote the distance between the observation point and the loading point, Kelvin’s solutions u!'l; and
p[”l-j are given by

W'l = m[@ _4v) 5i,ln(%) + r,l-r,_/], @)
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where, the shearing modulus G and Poisson’s ratio v are assumed to be constant. Moreover, let us
denote v/ = v/(1+ v)in the case of plane stress, r; = dr/dx;. In the case of arbitrary body
force, it is generally difficult to transform the domain integral of Eq. (1) into the boundary integral.

2.2. Interpolation of body force

The distribution of body force b; is interpolated by using the integral equation in order to
transform the domain integral into the boundary one. The interpolation must be considered
separately for the individual directions of body force b; (j=x, y). Deformation of a thin plate is
utilized in order to interpolate the distribution of body force 51", where superscript S indicates a
surface distribution. The following equations can be used for interpolation:

VijS[” — _b.S{Z] (4)

J

VijSD] — _va[B] (5)

7

where b/ is a Dirac-type function, which has a value only at a point. The term bjsm of Eq. (4)
corresponds to the sum of curvatures azb_,“”/axz and sz]- S /9y . From Egs. (4) and (5), the
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following equation can be obtained:

4, S[1] _ P[3]
Vi =, ©)

The equation is the same type of equation as that for deformation w*, of a thin plate with point
load P as

i

S[1)
Vit = o
D

(7
where Poisson’s ratio v=0 and the flexural rigidity D=1. The natural spline comes from a
deformation of a thin beam in order to interpolate the one-dimensional distribution, as shown in
Fig. 1(a). In the paper, deformation of a thin plate is utilized in order to interpolate the two-
dimensional distribution bjs[”. The deformation w™!! is given, and the force of point load P is
unknown. The force of point load P is obtained inversely from the deformation of the fictitious thin
plate, as shown in Fig. 1(b). The term w’* corresponds to the moment of the beam. The moment
w'™! on the boundary is assumed to be 0, the same as in the case of the natural spline. Thin means
that the thin plate is simply supported. In this method, the distribution of body force is assumed as a
free-form surface (Ochiai 1995, 1996, Micchelli 1986, Nira 1987). Egs. (4) and (5) are similar to
the equation which is used to generate the free-form surface using an integral equation.

2.3. Representation of body force by integral equation

Distribution of body force is represented by an integral equation. The harmonic function 7; and
biharmonic function 7, are used for interpolation.

(a) Thin beam with unknown point load

(b) Fictitious thin plate with unknown paint load

Fig. 1 Interpolation using fictitious thin plate
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1
T, 27rln(rj 8)
T, = i[ln(l)+ 1} ©)
7 87 r
The harmonic function T and biharmonic function 75 have the next relation:
VT, = T, (10)

The body force 5" is given by Green's theorem and Egs. (4)~(10) as

dr- ZTz 5,7 (1)

m=1

’ : b, AT, (P,
ct;(P) = —2<—1>’Jr{TAP, 0P D), (Q)}

=1

where on the smooth boundary ¢=0.5 and in the domain ¢=1. Moreover, ?! in Eq. (11) is
similarly given by

M
ar+ Yy 1,6, (12)

m=1

e b,""(Q) _IT\(P.Q), sin
(P)—IF{T;(P,Q) P A ()

Integral Egs. (11) and (12) are used in order to interpolate the distribution. The thin plate spline
F(p,q), which is used to make a free-form surface, is defined as

F(p,q) = In(r) (13)
Egs. (9) and (13) denote the same type of function.

2.4. Improved multiple-reciprocity boundary element method

Function u!?); is assumed to be

Vil =Wl (14)

i i

Generally, function 1) is defined as

i i

Let the number of the point body force 5/ be M and the shape of the line body force b be I;.
Using Egs. (4), (5), (10) and Green’s theorem Eq. (1) becomes

o, il e ob, " du T s < 13, Pl
+ 4 B E
eyt = [ Au ypy—p kT ] 2( 1){ 5 on “b; }dF PN T
= m=1
(16)
Next, the function u/; is obtained and Kelvin’s solution !; is obtained as
- 5..A'”, .
= L gty St (17)

“u T 30-wet G
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where 4'" is the biharmonic function, which is given as

A = é—%[ln(%)+QJ, (18)
0= 5545 S

Conventional Kelvin’s solutions u; given by Eqgs. (2) and (3) can be obtained.
Next, the function A" which satisfies

A7 EAREW LN (20)

is considered. In the two-dimensional case, function 47 can be obtained by
n _ 1 [f-1]
A" = [2([ra" Varyr. @1)

Function A/ is generally given by (Ochiai and Nisitani 1996)

- {m(l) +Q+ /21 1}, (22)
2n{AUY\r €
w[flllere 2NHN=21(2/~2)...2 (Abramowitz, et al. .1970). Accordingly, Egs. (16), (18), and (22) yield
U=y
u, = 2———(1__1‘/)G '”,,-j+§’"AGL‘—" (23)
Substituting Eq. (22) into Eq. (23), the next functions u[z]i,- and um;,- and their normal derivatives,
which are used in this paper, arc obtained as follows:
2

iz _ _ 11 _ _
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4
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+r, (= 12In(r) + 5+ 1201 )), (26)
o 3
gn/ - 4608(1F_V)G”<< 8,ramil 1211 = 12){ In(r) - Q} =31 + 36V]
+2rrr = 12In(r) = 1+ 1201+ (nr; + nr ) [= 12In(r) + 5 + 120] » 27

The i-th component of a unit normal vector is denoted by n;.
Next, the internal stress is obtained. The relation between stress and displacement is given by
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0, = AGyupy+ u(u;; +u;.,)
where Lame’s constants A and u are defined by
_2vG
C(1=2vy
u=aG.
From Egs. (16) and (28), internal stress is given by
2 oy 00T 9dt !
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where functions Dy, and Sy are given by
1
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Functions 64 and its normal derivatives are given by
r
= G e § G+ 843 -4 {in(r) - 0}
+(7-8V)] = 0,741 =W {in(r) - O} = (1 =8v)] = 4r.r 7 )y,
AT (S, + 8un)[4(3 — 4V){In(r) - 0} + (7~ 8V)]
n - 128(1 —wym (0w O i
+4(3=4v)(Syr, + Sy ), + Sym[—4(1 = 4v){In(r) - O} -1 +8V]
—-4(1-4v) 5ijrkr,mn,m + 81 Py — ATV g+ YT ¥+ GEF ) )Y
3
31 —r e T - _ _ -
o * = 330401 — V)% (Eril-12(1-6v){In(r) -0} + (5 - 18V)] + 12(5 - 6V)
{In(r) - Q}—(13 = 18V)1(S,1; + Gyr.;) + 2 r ril—12In(r) = 1 + 120])),
& 3]"'k —7"2
L1 L - _ — —_
Jn " 23040 n (20,7 4F i =12(1 = 6V){In(r) - O}

+ (=1 +18v) +2r,,n,(87; + 8,r)[12(5 - 6v){In(r) - O}

(28)

(29)

(30)

31

(32)

(33)

34

(35)

(36)



Stress analysis with arbitrary body force by triple-reciprocity BEM 399

+17-18v]) =24r.rryr,m., + 6;m[12(1 - 6v){In(r)- O}
H(5 - 18V) ]+ (Oun; + Sun)[12(5-6v){In(r) - Q} — (13- 18V)]
T2(npgrg tarrg nerr ) [=12In(r) - 1+ 1207 )) . (37)
Function Dy in Eq. (32), 0[2',-]-,( and ol have the following relationship:

Vi, = Vo, = Dy (38)
2.5. Numerical procedure for integral equation

In practice, the values of 5" are given, but ab,s“]/an, bjsm, 81)_/5[2]/811, bjpm/ in Eq. (16)
are not given. In the conventional multiple-reciprocity method, the fundamental solution of higher
order is used in some problems, but when the higher order (infinite order) fundamental solution and
the higher order analytical derivations are used, the merit of the BEM is lost. Therefore, a method
interpolating the distribution of body force by the fundamental solution of lower order will be
shown. The interpolation using contour lines has already been shown. In this paper, the interpolation
using the internal points is used. For an easy understanding, constant elements are used for the
boundary. Superscript P denotes 5. Replacing bV and 95,°1/3n by vectors W, and ¥,
respectively, and discretizing Eq. (11), we obtain

H W, = GV, +H,W,-G,V,- G,W,, (39)

where H,, G|, H,, G>, and G*, are the matrices with the following element for a given boundary
point ‘/’:

1 a7*1(P9 Q)
fy = §5tj+fr, on 4l (40)
Gy = [, TP, Q)dT, B
dT,(P, Q)
= [ =gl (42)
Goy = [, To(P, Q)dT, (43)
Gy = To(P.q"). (44)
As the case F=2 is considered, b,”! is obtained using Eq. (12) as follows:
HW,=GV,+G" W, (45)

where G”| is a matrix with the following elements:

GPli/' = T,(P, ‘]P)‘ (46)
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Moreover, using the value b{(p”) at internal points, we obtain
W'y = —~H,W,+ GV, + H,W,- G V,~ G, W', (47)

where Hy, Gy, Hy, G4, and G5 are the matrices with the following elements:

T, (p,
P
Gy = | Tv(p", Q)T (49)
T, (p",
Hy = |, —-—“(gn Dar, (50)
P
G,y = Jr/ T,(p , Q)dI, &2))
Gy = T g (52)

Assuming W,=0, the following equation is obtained using Egs. (39), (45), and (47):

G, -G, —-G',|[V, TrH,W,
0 -G, -G" IlV> |0 (53)
G, -G, ~G/)3 WP} H W, + W(P")

From Eq. (53), we obtain V|, V,, and W';. If the boundary is divided into N, constant elements, and
N, internal points are used, the simultaneous linear algcbraic equations with (2ZNy+N|) unknowns
must be solved.

The solution procedure is as follows. First, in order to interpolate the distribution of body force,
the boundary is divided into elements, and the values of body force on the boundary and at the
internal points are given. Using Eq. (53), the unknown values ¥, ¥, and W"; are obtained in order
to interpolate the distribution of body force. Using these values and Eq. (16), the displacement and
the surface traction on the boundary are obtained.

3. Numerical examples

In order to ensure the accuracy of the present method, the stresses in a square domain are
obtained for the case in which the gravitational force —g acts in the y-direction. It is assumed that
the length of a side of the squarc domain is Im and that no other external force is acting, as shown
in Fig. 2. Denoting the standard vertical length as L, the density is considered as a function of
vertical coordinate y, i.c.,
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Fig. 2 Square domain with variable density
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Fig. 3 Interpolation of body force distribution
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(54)

The problem is treated as the plane stress problem, where Young’s modulus is £=210 GPa and
Poisson's ratio is 0.3. Denoting the density as p, we assume that p=1x10° N-m~. Fig. 3 shows the
comparison between the value given by Eq. (54) and the value interpolated by Eq. (53) using
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internal points as shown in Fig. 2. In Figs. 4 and 5, the displacements and stresses are shown for
x=0.5 m and x=0.9 m. The solid lines in these figures are the accurate solutions considered as a
one-dimensional problem given by

8P 2 oAl
Dis = T[Ly_%+?81n(ﬂ)] (55)

— | 1 ‘ -15

Fig. 7 Interpolation of body force distribution Fig. 8 Distribution of stress in the case of variable
(gpx10° N'm™) density (o, kPa)
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o(y) = — L—-y+— - 56

) gpo[ y+ COS(2L):| (56)

As an example of a case in which it is difficult to obtain an accurate solution, the stress
distribution was obtained for the domain with variable density, the width of which is 100mm, as
shown in Fig. 6. Denoting the acceleration due to gravity as g, gp=0.25x10° N-m™ on the
boundary is assumed. The distribution of body force is given by points (gp=1, 2, 3x10° N'm™) as
shown in Fig. 6. Let Young’s modulus be 210 GPa, and Poisson's ratio be 0.3. The calculation is
carried out for a plane stress problem. The distribution of the given specific weight and its
approximation obtained by Eq. (53) are compared to each other in Fig. 7. The distribution of stress
is shown in Fig. 8. For this example, many hours are required to prepare the distributed data for
conventional BEM.

4. Conclusions

By improving the conventional multiple-reciprocity boundary element method, it was shown that
it is possible to interpolate the arbitrary distribution of body force only by using the fundamental
solution of lower order. It was shown that stress analysis with an arbitrary body force can be carried
out without internal cells solely by adding the data for the values of body force on the boundary
and at internal points. The fundamental solutions for this analysis were shown.
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