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Abstract. Random loading identification has long been a difficult problem for Multi-Input-Multi-Output
(MIMO) structure. In this paper, the Pseudo Excitation Method (PEM), which is an exact and efficient
method for computing the structural random response, is extended inversely to identify the excitation
power spectral densities (PSD). This identified method, named the Inverse Pseudo Excitation Method
(IPEM), resembles the general dynamic loading identification in the frequency domain, and can be uscd
to identify the definitc or random excitations of complex structures in a similar way. Numerical
simulations are used to reveal the the difficulties in such problems, and the results of some numerical
analysis are discussed, which may be very useful in the sctting up and processing of experimental data so
as to obtain reasonable predictions of the input loading from the selected structural responses.
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1. Introduction

For linear structures subjected to multiple stationary random excitations, which may be partially
coherent, the direct problem, i.e., thc computation of the PSDs of the various responses from the
given excitation PSD, has been sloved (Nigam 1983, Bendat and Piersol 1980, Zhang and Wang
1988), in particular, by using the exact and efficient Pseudo Excitation Method (PEM), which also
can be called a fast CQC algorithm of PSD matrix (Lin 1992, Zhong 1996, Lin et al. 1994). There
are two types of inverse problems (also called back anlysis problems) corresponding to this direct
problem. The first is the structure identification problem, for which the loading and response PSD
functions are all known and are used to identify the properties of the structure. Many publications
cover such problems and their success in engineering, see Zhang and Wang (1988). The second is
the loading identification problem, for which the response, the information, and structural properties
are known and are used to identify the information about the loading. For the second type of
inverse problem, if there is only one exciation acting on the structure, the problem is quite
straightforward and will not be discussed in this paper. For MIMO problems, however its solution is
not easy and there was relatively no research reported in this area, which demonstrates its difficulty.
To the authors’ knowledge, some such work has been done at high expense (Dobson and Rider
1990), but had nevertheless yielded identification results that are unacceptable because of their very
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poor precision. However, such inverse problems are of great importance in practical engineering
because the direct measurement of the responses may at times be relatively easy.

For any direct problem for which the excitation PSD matrix has been given, the PSD matrix of
any response can be computed quickly and preciscly by means of the PEM (Lin 1992, Zhong 1996,
Lin et al 1994). In this paper, the PEM is inverscly modified to generate an inverse Pseudo
Excitation Method (IPEM), which deals with this identification method as the general dynamic
loading identification in the frequency domain, so that the excitation PSD matrix can be obtained
from a set of known response PSD function. In addition, the IPEM is suited to the identification of
arbitrarily coherent and stationary multiple random excitations of proportionally or non-proportionally
damped, linecar systems. Computer simulations show that this approach is not only simple and
efficient, but also has good noise-resistance properties. The investigation also shows that it is very
important to optimize the selection of measured quantities in order to achieve identification precision.

2. Pseudo excitation method (PEM) for solving the stationary random response of
structures

The conventional formula for solving the stationary random response of linear structures in the
frequency domain is

[S,,1=[HT'[S,,1[H] (0

in which [S,.] is the known excitaion PSD matrix, [/] is the transfer function matrix, [S,,] is the
response PSD matrix to be computed, and the superscripts * and T represent complex conjugate and
transposition, respectively.

For the case in which all excitations are fully coherent or partially coherent, it is assumed that
[Sw] 1s a pxp matrix with rank » ( = p). Since [S,,] must be a Hermitic matrix (Zhang and Wang
1988, Lin 1992), it can be decomposed into

S1= 2, {a{al) )
j=
Introducing the pseudo excitation (Lin 1992, Zhong 1996, Lin et al. 1994)

{x}~{a}; " (=1,2, 0 7) ?3)
leads to the harmonic response {y}; given by (Zhong 1996)
{yh=lHNx}, 4
Substituting Eq. (3) into Eq.(4), yields
{y}={63, - (5)
where

{b}=[H{a}, (6)
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Using Egs. (1), (2), and (6), the response PSD matrix is given in terms of the {b}; as follows:

(S, =L H'1S M H] = H] 2 {a} {a}/IHI=Y {6} (b} 7

J—1

3. The inverse pseudo excitation method (IPEM) for structural random loading
identification

Let Eq. (1) be written in the form (Bendat and Piersol 1980)
(S )=[H17TS,, 011 (8)

in which the superscript + represents generalized inversion (performed as described below, at the
end of section 4) since [H] is generally not a square matrix. Provided that the responses of the
struture are causcd entirely by the random loading to be identified, then Eq. (8) gives the algorithm
for computing [S,,] from the known PSD matrix [S,,]. Clearly, Eq. (8) is the backwards extension of
the PEM described above. Therefore, it is called the inverse Pseudo Excitation Method (IPEM). For
complicated engineering problems, dircct use of Eq. (8) is quite inefficient, so it should be dealt wih
analogously to the last sections, as follows.

For the casc in which all excitations are fully coherent or partially coherent, by using Eq. (7), [S,,]
can be dccomposed into 2 {b} {b} The pseudo response {y},={b},

I(Uf

then follows from

Eq. (5) and applying Eq. (6) inversely gives the pseudo excitaion {x}; of Eq. (3) as

{x}=fa},-¢"=[H]'{b}, " &)

Hence, Egs. (7), (8) and (9) enablc the excitation PSD matrix [S,,] to be given in terms of the {a};
as follows:

[Su=1HIIS, LH] = H] Z{b}{b} =¥ {a}{a) (10)

j=1

For large systems, the dircct use of Eq. (10) is still computationally very expensive. Therefore, the
following cquation reduction scheme should be used, which is based on the mode-superposition
method.

4. Excitation power spectral density identification for large complex systems

The equation of motion of a large system can be expressed as
MUTYHICH VK Y} ={F} (1)

in which [M], [C], and [K] are, respectively, the mass, damping, and stiffness matrix, dots denote
differentiation with respect to time, and {Y} and {F7} are, respectively, the displacement and applied
forcc vectors. Even though the order n of {¥} and {F} is very high, the number, /, of non-zero
excitations in {/7} and the number, m, of measured responses in {¥} are both <<n. Therefore, lct
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U =1E 1T (12)
WH=IE N Y (13)

where {f} is the / dimensional vector consisting of the non-zcro elements in {F}, {y} is the m
dimensional vector consisting of the m mcasured quantities in {Y}, and [£/] and [E,] are matrices
which contain only zero and unity. Assuming that the mxm matrix [S,,(w)] is known, usually being
specified in the form of a series of values at discrete frequency points, the requirement is to find the
IxI excitation PSD matrix [S;(@)] by back analysis.

The mode-superposition scheme is now used. Firstly, the lowest ¢ modes, denoted by the nxg
matrix [@], and the corresponding diagonal gxg cigenvalue matrix [£2*] must be found by solving

[KI[PHM][P][£F] (14)
subject to
[@I'IMI[@I=[/]  (g%q unit matrix) (15)
Reducing Eq. (11) by mcans of the modal matrix [®P] gives
{=[PHU} (16)
and
{UHICI U QU U= EA{f} (17)
in which
[CI’=l@)[Cl[ @] (18)

For proportionally damping and non-proportionally damping systems, the following derivation is
applied in which partial coherency is assumed for gencrality.
Substituting Eq. (16) into Eq. (13) gives

{yi=lEN[@H U} (19)

Then, decomposing [S,,] by using Eq. (7) and forming the pscudo responses according to Eq. (5)
gives {y}={b};" ¢’ which from Eq. (19) can be regarded as being produced by the psecudo
“cxcitation”

{Uy={e}, e (20)
This {U}; can be considered to be generated by the pseudo excitation {f}={a},- e, so that
Eq. (17) gives
LUL=IH @ TEA S, @1
in which
[HI=C&' 1N ol C1') (22)

where i=./-1. Substituting Eq. (21) into Eq. (19) produces
{yH=IRIUY, (23)
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in which
[RI=[E [ @IHIP'E,] (24)
Therefore,

{3 =IR1 v}, (25)

From Eq. (25), we can find that the IPEM resembles the definite dynamic loading identification in
the frequency domain (Zhang and Wang 1988), and this method can be used to identify the definite or
random excitaions of complex structures in a similar way. Finally, using the IPEM gives (see Eq. 10)

(S, 0=TR1" IS, 1IRI""= Y 4y 1Y) (26)
i1

When the number of excitations / exceeds the numbers of mcasured responses m, the mx/
generalized inverse matrix of [R], i.e.,

[RI"=(IR]'TR1"Y ' [R] 27)

does not exist. Therefore, [Sy] cannot be found from [S,,].

When /<m, the inversion procedure is used to solve for / unknowns from the m equations by
means of the least squarc method, so that only approximate solutions can be expected.

Clearly, when /=m, the equation set can be solved exactly in theory. Therefore, in general, the
inverse problem is solvable under the conditions / < m and / = gq. Howcver, even though these
conditions arc met, there is no guarantce that a satisfactory cxcitation PSD matrix will be obtained.
Practical situations are rather complex, as discussed via the following simulation example.

5. Computer simulation and discussion

The stiffness and mass distributions of structure with ninc degrees of freedom are shown in Fig. 1.
For simplicity, dimensionless quantitics (m=1 and k=1) are assumed. The complete set of natural
angular frequencies is

1.00000, 1.03736, 1.13705, 1.27174, 1.41421, 1.54359, 1.64533, 1.70994, and 1.73205,

and the damping ratios are all equal to a value of 0.03. Two horizontal forces are applicd at nodes 3
and 6, and the corresponding PSD matrix is

IS/_./]:F.O 2.0} {0.0 1.0} y o
2040 |-1.0 00

Vi Y2 Y3 Va4 ¥Ys Ya & ML Yo

mk2mk2mk2mk 2mk2mk2mk2mkm

Fig. I Nine DOF structure
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within the significant frequency region @ & [0.8, 1.8]. This region is dispersed with an interval of
Aw=0.01. Only 2 or 3 digits of the response PSD results generated from the direct random vibation
analysis (Lin 1992) were taken as the “mcasured values” for the computer simulation. Some
intercsting observations are reported in the following six subsections. All results presented were
obtained by the IPEM and are curves of the auto-PSD of the excitations f; and fq, i.c. S and Spp,
and their cross-PSD Sp4, which has real and imaginary parts S, 34 and S; 5 respectively.

5.1. The effect of the precision of measurement of the response PSD matrix on the
precision with wihich the excitation PSD matrix is identified

Because noise always exists in the measurements, only a limited number of digits of the measured
response values are reliable for use in the loading identification. When only the two effective digits
of all measured values were used, the results obtained for all damping ratios=0.03 are plotted in
Fig. 2(a). It can be seen that the identification values of the PSD functions fluctuate around their
exact values, see Eq. (28), of 3.0, 4.0, 2.0, and 1.0. The maximum error (taken directly from the
computed results) is 6.5% for S, 5,=1.869 when @=1.00. In contrast, if the measurement precision is
so high that the first three effective digits of all the measured quantities are reliable, Fig. 2(b)
replaces Fig. 2(a) and obviously the four curves obtained are very close to their theoretical (i.c.
exact) values.

5.2. The effect of structual damping on the identification precision

When the damping ratios were all changed from 0.03 to 0.01, Figs. 2(a) and (b) became Figs. 2(c)
and (d). Hence, it can be seen that higher identification precision is achieved for heavier damping.
This is because lightly damped structures can experience serious ill conditioning in the vicinity of
their natural frequencies. This problem might be overcome when the displacement PSDs were
assumed to have an accuracy of three effective digits. Unfortunately, in normal circumstances it
would be virtually impossible to measure PSDs to such high accuracy. Therefore, it is practically
impossible to avoid the abnormal fluctuation (or “jumping”) shown in Figs. 2(a) and (c) under
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Fig. 2 Loading PSD functions of points 3 and 6 identified from the displacement PSD functions of points 2,
5, and 7 with all nine modes participating in the back analysis (The two numbers beneath each figure
are the values of all damping ratios and the number of digits accuracy of the displacement PSD values)
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normal experimental conditions, as is now discussed further.

5.3. Further analysis on the abnormal jumping of identification results in the vicinity of
natural frequencies

For the present example, [H] is a diagonal matrix with given damping ratios, so that Eq. (24) can
be converted into

q . q
[R]z[Ey][ > Higy oY j[EfJ— > HIE){¢}{0}/[E] (29)
j=1

j=1
where
H(0)=(0 -0 28 0,0) (30)

It is known that [R] will be singular if its rank is less than ¢ (Wilkinson and Reinsch 1971). If ¢° of
the g terms summed in Eq. (29) is zero, [R] must be singular and of rank g¢-g’. Furthermore,
Eq. (30) shows that H(w) = (2 é}w,a))" when w= ®,, so that if the j-th damping ratio {; is very
small, H,(@) will be very large, particularly when ®; is small. Hence, one (or more) of the terms
summed in Eq. (29) becomes almost negligible, which causes the pathological jumping of the
identified curves, i.e., it causes the high sensitivity of the identification results to the measured
values.

This phenomenon can be elucidated further through examing intermediate computation data. For
example, when @=1.00, abnormal jumping occurrs in the curves of Fig. 2(c). The displacement
responses PSD matrix of the points 2, 5, and 7, which was used to identify the excitation PSD
matrix, was (taking only the first two effective digits)

12 1.1 1.1 0.0 2.8 -3.2
2 .
[S,,]=]1.1 1.1 1.0 X107+ 2.8 0.0 -5.7| - ¢ 3
1.1 1.0 0.99 3257 0.0

The identified excitation PSD values for nodes 3 and 6 were
{S,-},_%, S,;’,»ﬁ, S,J})/-ﬁ, S,\,i,é}:{2.187, 3.210, 2.795, 0932} (32)

where the first four digits of the IPEM results are given for possible reference, although two digits
would normally be trusted. The exact theorectical values, see Eq. (28), were {3.004, 4.000, 2.000,
1.000}. Now suppose that a measurement error in the third digit results at the value 1.20 of the
(1.1) element of [S,,] being replaced by 1.25, then the IPEM back analysis would give

{8 Stsr Srpgr Sigy, 17{2.911, 3.860, 2.135, 1,120} (33)

Hence, an error of 4.2% in only one of the measured values results in differences in the loading
identification of {24.9%, 16.8%, —30.9%, 11.4%}. This demonstrates the high sensitivity of the
loading identification to the response measurement accuracy.

Because this problem is highly pathological, the corresponding ill-conditioned Eq. (25) was sloved
by four methods to ensure that the results are correct. These were the Singular Value Decomposition
(SVD) and Cholesky triangularizartion decomposition methods, plus two other methods for solving
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pathological cquations (Dobson and Rider 1990, Wilkinson and Reinsch 1971). All four methods
gave practically identical results, i.e., at least the first five effective digits agreed on an IBM/586 PC
computer. It is certain, then, that Eq. (25) was solved correctly. Therefore, the poor identification
accuracy was mainly due to the poor measurement precision and not the inaccurate solution of
pathological equations.

Since it is very difficult to measure to a precision of three reliable digits, jumping is inevitable in
the back analysis. However, this does not mean that such abnormal results must be aceepted. If such
jumping happens only ncar the natural frequencies, it can be smoothed out by using adjacent points
on the curves, for example, in Fig. 2(c).

5.4. Selection of measured points by computer simulation

Improper selection of measurement points is another possible cause of unfavorable results. When
the measurement points of the above example were changed from 2, 5, and 7 to 2, 4, and 7, with
only the first two digits of the displacement response PSD values used for loading identification,
Fig. 2(a) was replaced by Fig. 3(a), in which considerable jumping is observed near the natural
frequency w=1.53. Even if this point was modified by taking the average of two measured values
on either side of it, the remainder of the identification curves are still inadequate, see Fig. 3(b).
Clearly, such unfavorable combinations of measurement points should be avoided. But the problem
is that most engineers would find it very difficult to judge which is the best combination of
measurement points to use, i.c., to choosc 2, 4, and 7 or 2, 5, and 7. Thercfore, sclection of
measurement points by means of computer simulation, as above, must be a good suggestion since,
in current engincering practice, such selection is usually based on engineers experience or intuitive
feelings, which may be an important reason why relativey little successful identification of structural
random loading has so far been reported.
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Fig. 3 Loading PSD function of points 3 and 6 identified from the displacement PSD functions of points 2,
4, and 7 with all nine modes participating in the back analysis (All damping ratios were 0.03 and two
digits of accuracy were retained for the displacement PSD values. The two cases are for when
maximum jumping point was unaltered or was revised.)
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5.5. Influence of the accuracy of structural parameters on the identification precision

Inaccurate evaluation of structual stiffness and mass parameters can exert a remarkable effect on
loading identification precision. For example, changing the stiffness of the middle (i.e., 5th) element
of the structure of Fig. | from 2k to 2.044 altered the structural natural frequencies to

1.00122, 1.03736, 1.13924, 1.27174, 1.41598, 1.54359, 1.64685, 1.70994, 1.73279

and replaced the identification results of Fig. 2(a) by those of Fig. 4(a), for which each curve
deviates from the theoretical onc more considerably, with a maximum of 12.6% for S, 3, (=2.252)
at w=0.98. As a second example, when the middle (i.c., Sth) mass of the structure of Fig. 1 was
changed from 2m to 2.04m, the structural natural frequencies became

0.99937, 1.03736, 1.13563, 1.27174, 1.41245, 1.54359, 1.64329, 1.70994, 1.73101

and the identification results of Fig. 2(a) were replaced by thosc of Fig. 4(b), for which the
maximum deviation of each curve from the theoretical value is 9.7% for S, ,,,, (=4.386) at w=1.16.
As a third cxample, the changes of the first two examples were made simultaneously. Then Fig. 2(a)
was replaced by Fig. 4(c), for which every curve deviated from its theoretical value by much
smaller amounts than for the first two examples, the maximum crror being 6.4% for S, (=2.807)
at w=0.98. The amounts are smaller becausc the structual natual frequencies were

1.00062, 1.03736, 1.13783, 1.27174, 1.41421, 1.53459, 1.64479, 1.70994, 1.73170

which are, as a whole, closer to the natural frequencies of the original structure than those of the
first two examples, In fact, 2nd, 4th, 6th, and 8th natural frequencics arc identical, while the
difference of the other five frequencies is small.

The results of Figs. 4(a-c) show that even if the structural stiffness and mass parameters are not
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Fig. 4 Loading PSD function of points 3 and 6 identified from the displacement PSD functions of points 2,
5, and 7 with all nine modes participating in the back analysis (All damping ratios were 0.03 and two
digits of accuracy were retained for the displacement PSD values.)
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Fig. 5 Loading PSD function of points 3 and 6 identified from the displacement PSD functions of points 2,
5, and 7 with the first seven modes participating in the back analysis, All damping ratios were retained
for the displacement PSD valucs. The two alternative frequency regions were shown.)

evaluated very precisely, so long as the frequency spectrum of the structure can be measured fairly
precisely, the identification can be acceptably accurate.

5.6. The influence of the number of participant modes on the identification precision

In all the above discussions, all nine modes of the structure were used in the direct analyses, i.c.,
when computing the response PSD from the excitaiton PSD, as well as in the back analysis, and
when computing the excitation PSD from the response PSD by the mode-superposition method.
Now suppose that all nine modes are still used for the direct analyses to obtain the simulated
“measured values”. But that rest modes are used for the back analyses. For instance, taking ¢=7
(modes) and using the first two digits in all the measured values gave the identified excitation PSD
curves of Fig. 5(a), which deviate considerably from the curves of Fig. 2(a) (¢=9), articularly in the
high frequency region (w>1.4) in which the differece can be hundredths of a percent. Even within
the region @ € [0.8, 1.4], the maximum deviation of the identified values from the theorctical ones
is about 30%, see Fig. 5(b). It should be noted that all the natural frequencies of this structures are
closely spaced, the ratio of the highest to the lowest being only 1.732. This is why neglecting only
the two highest modes caused considerable influence over the whole frequency region. However,
many computer simulations performed by the authors for structures with widely spaced natural
frequency regions show that neglecting higher modes affects the identification precision relatively
little in the lower frequency region.

6. Conclusions

A random loading identification approach has becn presented. Based on the Inverse Pseudo
Excitation Method (IPEM), see Eq. (25), this problem can be disposed of in a similar fashion to
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gencral dynamic loading identification in a the frequency domain. Previously, such a problem has
not been solved well. From the primary investigation in this paper, some important phenomena have
been found which may contribute to solving the problem. It shows that the computer simulation
combined with the IPEM is an efficient mcthod for selecting measured responses points and a
promising approach to identifying the random loading.

The [PEM applies to the identification of arbitrarily coherent and stationary multiple random
excitations of proportionally or non-proportionally damping, linear systems. In fact, it can use not
only displaccment but also velocity, acceleration, stress, or their mixed responses to identify the
excitation PSD matrix. This mecthod has been used to identify the random ice-forces of a marine
platform in the Bohai sea in Northern China, from the measured acceleration responses. This will be
introduced in another paper.
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