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Analytical solutions using a higher order refined theory
for the stability analysis of laminated composite
and sandwich plates
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Abstract. Analytical formulations and solutions for the first time, to the stability analysis of a simply
supported composite and sandwich plates based on a higher order refined theory, developed by the first
author and already reported in the literature are presented. The theorectical model presented herein
incorporates laminate deformations which account for the effects of transverse shear dcformation,
transverse normal strain/stress and a nonlinear variation of inplane displacements with respect to the
thickness coordinate - thus modelling the warping of transverse cross sections more accurately and
eliminating the need for shear correction coefficients. The equations of equilibrium are obtained using the
Principle of Minimum Potential Energy (PMPE). The comparison of the results using this higher order
refined theory with the available elasticity solutions and the results computed independently using the first
order and the other higher order theories devcloped by other investigators and available in the literature
shows that this refined theory predicts the critical buckling load more accurately than all other theories
considered in this paper. New results for sandwich laminates are also presented which may serve as a
benchmark for future investigations.

Key words: higher order theory, analytical solutions; buckling; shear deformation; sandwich plates;
laminated plates; Navier solutions.

1. Introduction

The high values of specific moduli and strength of fibre reinforced composite materials make
them attractive for aerospace structural components such as plates and shells. Use of these thin
sheet materials in airplane and aerospace structures may prove unstable under the action of forces in
their own planes and fail by buckling. Hence the modern use of above structural elements made of
fibre reinforced composite material in engineering structures has made elastic instability a problem
of great importance. In addition to more accurate and improved methods of analysis to predict the
critical buckling load there is also a need to develop consistent refined shear deformation theories
for the analysis of these structural elements. The Classical Laminate Plate Theory (Reissner and
Stavsky 1961) which is an extension of Classical Plate Theory (Timoshenko and Woinowsky-
Krieger 1959, Szilard 1974) ncglects the cffect of out-of-plane strains. In a composite laminate the
in-plane modulus of elasticity is many times larger than that of the matrix material while the
transverse shear modulus is largely that of the matrix material. Hence for a given in-plane modulus,
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the plate or shell is very weak in transverse shear resistance and the transverse shear deformation is
significant and cannot be neglected. Thus the Classical Laminate Plate Theory (CLPT) which
ignores the effect of transverse shear deformation become inadequate for the analysis of multilayer
composites. In general the CLPT often underpredicts deflections and overpredicts buckling loads.
The first order theories (FSDT) based on Reissner (1945) and Mindlin (1951) assume linear
displacement and/or stress variations through the laminate thickness. Since the FSDT accounts for
layerwise constant states of transverse shear stress, shear correction coefficients are needed to rectify
the unrealistic variation of the shear strain/stress through the thickness.

In order to overcome the limitations of FSDT, higher order shear deformation theories (HSDT)
that involve higher order tcrms in the Taylor’s cxpansions of the displacements in the thickness
coordinate were developed. The sccond and third-order theories involve additional terms in the
expression for the in-plane displacements which are parabolic and cubic respectively in thickness
direction coordinate. Hildcbrand et al. (1949) were the first who introduced this approach to derive
improved theories of plates and shells. Nelson and Lorch (1974), Librescu (1975) presented higher
order displacement based shear deformation theorics for the analysis of laminated plates. Lo ef al
(1977a, 1977b) have presented a closed form solution for a laminated plate with higher order
displacement model which also considers the effect of transverse normal deformation. Levinson
(1980) and Murthy (1981) presented third order theories neglecting the extension/compression of
transverse normal but used the equilibrium equations of the first order theory used by Whitney and
Pagano (1970) in the analysis which are variationally inconsistent. Kant (1982) was the first to
derive the complete set of variationally consistent governing equations for the flexure of a plate
incorporating both distortion of transverse normals and effects of transverse normal stress/strain by
utilizing the complete three-dimensional generalized Hookes law. Reddy (1984) derived a set of
variationally consistent cquilibrium equations for the kinematic models originally proposed by
Levinson and Murthy. Using the theory of Reddy, Senthilnathan et al. (1987) presented a simplified
higher order theory by introducing a further reduction of the functional degrees of freedom by
splitting up the transverse displacement into bending and shear contributions. Kant et al. (1982) are
the first to present a finite element formulation of a higher order flexure theory. This theory
considers three-dimensional Hooke’s law, incorporates the effect of transverse normal strain in
addition to transverse shear deformations. Pandya and Kant (1987, 1988a, 1988b, 1988c, 1988d),
Kant and Manjunatha (1988, 1994) and Manjunatha and Kant (1992) have extended this theory for
symmetric and unsymmetric laminated composite and sandwich plates and presented only finite
clement solutions for the various composite and sandwich plates/shells problems using C° finite
clement formulation. Later Kant and Patil (1991) have obtained the buckling loads of a three
layered simply supported symmetric sandwich column in closed form and demonstrated the
accuracy of the higher order theory in predicting the realistic buckling loads of the conventional
sandwich structures. Noor (1975) presented exact elasticity solutions for the stability analysis of
symmetric and skew-symmetric multilayered laminated composite plates with large number of
layers which serve as a benchmark solution for comparison. Later Noor and Burton (1989)
presented a complete list of references of FSDT and HSDT for the static, free vibration and
buckling analysis of laminated composites. Eventhough a large number of publications exist on the
stability analysis of symmetric and unsymmetric laminated composite plates, Qatu and Leissa
(1993) in their paper concluded that the true buckling (i.e., bifurcation) cannot occur in most of the
cases of antisymmetric cross-ply and angle-ply laminates reported in the literature. Taking that fact
into consideration in this paper analytical formulations and solutions to the buckling analysis of
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laminated composite and sandwich plates hitherto not reported in the literature are presented using
the refined higher order theory developed and already reported in the literature by the first author.
Laminated and sandwich plates with stacking sequence that arc symmetric with respect to their
middle plane are only considercd. The parameters considered are varying number of layers, degree
of anisotropy, side-to-thickness ratios, thickness of the core to thickncss of the flange and aspect
ratio of the plate. Numerical results of simply supported composite and sandwich plates are
presented and compared with 3D elasticity solutions and with the results computed independently
using shear deformation theories already developed by other investigators and reported in the
literature to show the improvement in accuracy in predicting the critical buckling loads.

2. Theoretical formulations
2.1. Kinematics

In order to reduce the three-dimensional elasticity problem to a two-dimensional plate problem,
the displacement components u(x, v, z), v(x, y, z) and w(x, y, z) at any point in the plate space are
expanded in a Taylor’s series in terms of the thickness coordinate. The elasticity solution indicates
that the transverse shear stress vary parabolically through the plate thickness. This requires the use
of a displacement field in which the inplane displacements are expanded as cubic functions of the
thickness coordinate. In addition, the transverse normal strain may vary non-linearly through the
plate thickness. The displacement field which satisfies the above criteria may be assumed in the
form (Kant and Manjunatha 1988)

u(x, 3,2) = w,(x, ¥) +20,(x, y) + 2 1 (x, y) + 2 01(x, )
V(x, 7, 2) = V(% 0) +26,(x, y) + 2V (x, ») + 2 65(x, )
w(x, 7,2) = wy(x, ») +20.(x, ) + 2 Wi(x, ») + 2 67(x, ) (1

The parameters u,, v, are the inplanc displacements and w, is the transverse displacement of a point
(x, ¥) on the middle plane. The functions 6, 6, are rotations of the normal to the middle planc about
v and x axes, respectively. The parameters u), v,, w,, 6, 6;, 8- and 6. are the higher-order terms in
the Taylor’s series expansion and they represent higher-order transverse cross sectional deformation
modes. The gecometry of a two-dimensional laminated composite plate with positive sct of
coordinate axes and the physical middle plane displacement terms are shown in Fig. 1. By
substitution of these displacement relations into the strain-displacement equations of the classical
theory of clasticity, the following relations are obtained. ’
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2.2. Constitutive equations

Each lamina in the laminate is assumed to be in a three-dimensional stress state so that the
constitutive relation for a typical lamina L with reference to the fibre-matrix coordinate axes (1-2-3)
can be written as

L L L
O C,,C,Cs 0 0 0 &
02 C,CprCy 0 0 0 &
O3 _ ] CCuCy 50 0 0 & @
Ti2 0 0 0 Cy 0 O N2
T3 0 0 0 0 Csx O Y23
Ti3 00 0 0 0 C "3

where (0, 0y, O3, T)3, Tp3, T;3) are the stresses and (g, &, &, %2, Y23, Vi3 ) are the linear strain
components referred to the lamina coordinates (1-2-3) and the C;’s are the elastic constants or the
elements of stiffness matrix of the Lth lamina with reference to the fibre axes (1-2-3). In the
laminate coordinates (x, y, z) the stress strain relations for the Lth lamina can be written as:

O ' On On O s 0 0 " € '

o, On On 0 0 0 g,

G| _ 0; 303, 0 0 & ()
Ty Ou 0 0 Yy

T, symmetric  Oss Oso| |-

Tz Oes | | Y=

where (0, 0,, 0, T,,, T,,, T,,) are the stresses and (&, €,, £, %.)» ¥ %) are the strains with respect
to the laminate axes. Q;’s are the transformed elastic constants or stiffness matrix with respect to
the laminate axes x, y, z. The elements of matrices [C] and [(] are defined in Appendices A and B.

2.3. Governing equations of equilibrium

The equations of equilibrium can be obtained using the Principle of Minimum Potential Energy
(PMPE). In analytical form it can be written as (Reddy 1984b, 1996);

[ (8U-6w)dV + [ (0! ¢! + 0] 8] + 1.} 8,/ )dV = 0 (6)

vol vol
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where U is the total strain cnergy duc to deformation, W is the work done by external loads, the
second term in the above cquation is the potential energy due to applied in-plane compressive and
shear loads (ie, o/,0/.7.,). €’¢/, ¥, are the midplane strain caused by transverse

displacement and & dcnotes the variational symbol. Substituting the appropriate energy expression in
the above equation, the final expression can thus be written as

h .
[ J3], (08¢, + 0,8¢,+ 0.8e.+ 1,8, + 1,87, + 7.6y, )dAdz - | p. 5w'dA}

h
+-‘.§/l"./1 (08¢ + 0, 8¢, + 1,/ 8y, )dAdz =

2

(7)

where w' = w, +(h/2)0.+ (h /Ayw + (h /8)8. is the transverse displacement of any point on
the top surface of the plate and is the transverse load applied at the top surface of the plate. Using
Egs. (1), (2) and (3) in Eq. (7) and integrating the resulting expression by parts, and collecting the

cocfficients of -du,, év,, ow,, 86,, 66,, 6., du;, év,, Ow,, 66;, 66, 66, the following equations of
cquilibrium arc obtained :
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(8)
and the boundary conditions are of the form
On the edge x = constant
u, = it,or N, = N, 6, = 6, or M, = M,
v, = V,0or N, = N,, 0, = 6, or My, = M,,
W() - Wr) or Qx = QX 0 = é; or Sx = S‘
u, =a,orN. = Ny 6 =6;0r M: =M,
v, = v,or Ny, = NT} 9; = é? or M’:_1 = M,
w,=w,or Q. =0 6 =6 oS =35 (9
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where the stress resultants are defined by
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The resultants in Egs. (11) to (14) can be related to the total strains in Eq. (2) by the following

equations;
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(16)

(amn

where the matrices [4], [4'], [B], [B], [D], [D'], [E], [E'] are the matrices of plate stiffnesses whose
clements are defined in Appendix C.

3. Exact solutions for simply supported rectangular plates

Here the exact solution of Egs. (8)-(17) for cross-ply rectangular plates are considered. Assuming
that the plate is simply supported in such a manner that normal displacement is admissible, but the
tangential displacement is not, the following boundary conditions are appropriate:

Atedgesx=0and x = a:

Atedges y=0and y = b:

Following Navier’s solution

ve =0 w,=0; 6,=0; 6,=0; M =0;

ve =00 wy=0: 6=0; 60y M= 0;
NXZO; N::O

u, = 0; w,=0; 6,=0; 6.=0; M,=0;

u,=0;, w,=0;, 6:=0, 6=0, M =0;
N, = 0; N,=0.

procedure (Timoshenko and Woinowsky-Krieger 1959,

(18)

(19)

Szilard 1974,
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Reddy 1996) the solution to the displacement variables satisfying the above boundary conditions
can be expressed in the following forms:

u, = 3y > u, cosox sinfly
m=1n—1

v, = Z Z v, —sinax cosfy
m=1n-1

oo

w, = i Y w,,, sinox sinfy

min
m=1ln—1

6,= Y 36, cosax sinfy
6,= 3 ¥ 6, sinox cosfy
6.~ 3 306, sinax sinfy
uy = Y Y u, cosox sinfy
= 3 S v sinow cosfy
sinax sinfy
o - i ie; cosax sinfBy
6~ 3 S 6, sinax cospy

6, = 2 z 6. sinox sinfy

P.=0 (20)

mi nrw
where o0 = —, = —<
a

b
Substituting Egs. (18), (19) and (20) into Eq. (8) and collecting the coefficients one obtains
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(UXTax 12— MGl 23 o = {0} where A=buckling load factor

> @ =
E I A

~=

0 Q1)

NOR

12x1

for any fixed values of m and n. The matix [G] refers to the stiffness matrix due to inplane forces.
The elements of coefficient matrix [X] and [G] are given in Appendix D. The above equation can
be solved and the lowest eigenvalue (4,;, = 4.,) is the critical buckling load factor and the critical
uniaxial buckling load is given by

[(Neler = Ao, [NA] (22)

4. Numerical results and discussions

The various shear deformation theories considered for comparison is given in Table 1. Threc, four
and ten layer symmetric cross-ply laminated plates are considered for the present study. The
orthotropic material properties of individual layers in all the above laminate considered are E\/E,
open, Er=F;, G2=G3=0.6F;, G»3=0.5E,, 0»=0;3=0,3=0.25. The numerical results of three, five
and ten layer laminates are shown in Table 2 and are compared with the three-dimensional elasticity
solution given by Noor (1975). For all the laminate types considered F£|/E,, at lower range of ratios
that is 3 and 10, Kant-Manjunatha theory gives better accurate results of critical buckling load

Table 1 Displacement models (Shear deformation theories) compared

Mo Yeraer) Dl e
Kant-Manjunatha HSDT 1988 12 Considered
Pandya-Kant HSDT 1988(d) 9 Not considered
Reddy HSDT 1984(a) 5 Not considered
Senthilnathan et al. HSDT 1987 4 Not considered
Whitney-Pagano FSDT 1970 5 Not considered
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Table 2 Nondimensionalized critical buckling coefficients N, =N b"/(E,h’) for simply supported cross-ply
square laminated plates with a/h:10, E2:E3, G12:G13:0.6E2, G23:0.5E2, V122V13:V23:0.25

Lamination EV/E,

and Number Source
of Layers 3 10 20 30 40
(0°/90°), 3D Elasticity 5.3044 9.7621 15.0191 19.3040 22.8807

Kant-Manjunatha
Pandya-Kant
Reddy
Senthilnathan et al.
Whitney-Pagano
3D Elasticity
Kant-Manjunatha
Pandya-Kant
Reddy
Senthilnathan et al.
Whitney-Pagano
3D Elasticity

(0°/90°/0°),

(0°/90°/0°

/90°/0°);
Kant-Manjunatha
Pandya-Kant
Reddy
Senthilnathan et al.
Whitney-Pagano

5.3745 (1.32)'

5.3896 (1.61)
53899 (1.61)
5.4142 (2.07)
5.3961 (1.73)
5.3255
53911 (1.23)
5.4063 (1.52)
5.4066 (1.52)
5.4142 (1.67)
5.4068 (1.53)
5.3352

5.3966 (1.15)
5.4177 (1.55)
5.4120 (1.44)
5.4142 (1.48)
5.4116 (1.43)

9.8066 (0.46)
9.8319 (0.72)
9.8325 (0.72)
10.2133 (4.62)
9.8711 (1.12)
9.9603
10.0552 (0.92)
10.0811 (1.21)
10.0897 (1.30)
10.2133 (2.54)
10.0762 (1.16)
10.0417

10.1451 (1.03)
10.1714 (1.29)
10.1772 (1.35)
10.2133 (1.71)
10.1682 (1.26)

14.8522 (-1.11)
14.8882 (-0.87)
14.8896 (-0.86)
16.2309 (8.07)
14.9846 (-0.23)
15.6527
15.7152 (0.40)
15.7529 (0.64)
15.7879 (0.86)
16.2309 (3.69)
15.7362 (0.53)
15.9153

16.0390 (0.78)
16.0778 (1.02)
16.1007 (1.16)
16.2309 (1.98)
16.0680 (0.96)

18.8313 (-2.45)
18.8750 (-2.22)
18.8776 (-2.21)
21.4288 (11.0)
19.0265 (1.44)
20.4663
20.4584 (-0.04)
20.5047 (0.19)
20.5781 (0.55)
214288 (4.70)
20.4847 (0.09)
20.9614

21.0821 (0.58)
21.1304 (0.81)
21.1779 (1.03)
214288 (2.23)
21.1168 (0.74)

22.0671 (-3.56)
22.1163 (-3.34)
22.1207 (-3.32)
25.9651 (13.48)
22.3151 (-2.47)
24.5929
24.5026 (-0.37)
24.5553 (-0.15)
24.6755 (0.34)
25.9651 (5.58)
24.5465 (-0.19)
25.3436

25.4511 (0.42)
25.5068 (0.64)
25.5840 (0.95)
25.9651 (2.45)
25.4940 (0.59)

"Numbers in the parenteses are the percentage error with respect to 3D elasticity values.

Table 3 Variation of critical buckling coefficients N.=N b/ (E,h") with a/h for for simply supported cross-
ply square laminated plate E1E2:40, E2:E3, G|2:G13:0‘6E2, G23:0.5E2, V12:V13:V23:0.25

Lamination and Source arh
Number of Layers ) 4 10 20 50 100
(0°/90°/0%) Kant-Manjunatha 2.8065 8.0554  22.0671  31.0541 352248 359211
Pandya-Kant 2.9065 8.1381  22.1164  31.0742  35.2287 359211
Reddy 3.0433 81752 22,1207  31.0767 352293 359211
Senthilnathan et al.  3.6802 10.6504 259651 329173 355981 36.0176
Whitney-Pagano 2.8540 8.1631 223151  31.1959 352552 359290
(0°/90°/90°/0°)  Kant-Manjunatha 2.9495 8.8148  23.2527  31.6278 353409 359511
Pandya-Kant 3.0342 8.8901 233026  31.6481  35.3448 35.9521
Reddy 3.1514 8.9822 233400 31.6596 353467 359526
Senthilnathan et al.  3.6802 10.6504  25.9651 329173 355981 36.0176
Whitney-Pagano 3.1099 9.1138 234529  31.7071 353560 35.9550

compared to all other theories. At higher range of £\/E; equal to 20, 30 and 40, the theory of Kant-
Manjunatha predicts the critical buckling load more accurately than all other theories in the case of
five and ten layer laminate whereas the first order theory of Whitney-Pagano gives most accurate
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results in the case of three-layer laminate. The results of critical buckling load with respect various
plate side-to-thickness a/h ratio of a three and four layer symmetric laminate are shown in Table 3.
For a/h equal to 2, the theories of Reddy and Senthilnathan ez a/. differ from Kant-Manjunatha
theory by 8.42% and 31.13% in the case of three-layer laminate and by 6.85% and 24.77% in the
case of four-layer laminate. The percentage difference between all the theories is minimum in the
case very thin laminate which shows that the effect of shear deformation is quite significant on the
buckling parameter for thick and relatively thick laminates only. The results also confirm the fact
that as the number of layers increases the percentage difference between the theories and hence the
effect of shear deformation tend to decrease.

The variation of critical buckling load with respect to plate aspect ratio (a/b), side-to-thickness
ratio («/h) and the ratio of core thickness to face sheet thickness (#./¢) of a five layer symmetric (0°/
90°/core/90°/0°) sandwich plate is shown in Tables 4-6. The following material propertics arc used
for the face sheets and the core.

Face sheets (Graphite-Epoxy T300/934)

E=19x10° psi (131 GPa)  E,=1.5x10° psi (10.34 Gpa) E-=E;

Table 4 Critical buckling coefficients NX=NXb2/ [(£;), 1] ofa symmetric (0°/90°%core/90°/0°) sandwich plate
with a/b=1 and ¢./t=10

alh Kant-Manjunatha  Pandya-Kant Reddy Senthilnathan et al. Whitney-Pagano
2 0.0315 0.0305 0.0583 0.0627 0.5995
4 0.0972 0.0963 0.2115 0.2159 1.8339
10 0.5181 0.5175 1.0909 1.0951 43197
20 1.6220 1.6221 2.7913 2.7946 5.3628
30 2.6932 2.6937 3.9213 3.9235 5.5983
40 3.5256 3.5261 4.5695 45714 5.6899
50 4.1139 4.1144 4.9634 4.9646 5.7495
60 4.5323 4.5327 5.2100 52110 5.7855
70 4.8091 4.8094 5.3553 5.3560 5.7907
80 5.0164 5.0166 5.4610 5.4615 5.8013
90 5.1657 5.1659 5.5328 5.5332 5.8053
100 5.2794 5.2795 5.5862 5.5866 5.8097

Table 5 Critical buckling coefficients ]VXZNXbZ/ [(£2), 1’1 ofa symmetric (0°/90%core/90°/0°) sandwich plate
with a/b=1 and a/h=10

L/t Kant-Manjunatha Pandya-Kant Reddy  Senthilnathan er al.  Whitney-Pagano
4 3.0763 3.0783 4.4039 4.4302 7.5160
10 0.5184 0.5178 1.0915 1.0957 4.3206
20 0.1454 0.1453 0.2815 0.2824 2.5007
30 0.0974 0.0973 0.1455 0.1459 1.7577
40 0.0845 0.0845 0.1057 0.1058 1.3330
50 0.0796 0.0796 0.0976 0.0908 1.1041

100 0.0726 0.0726 0.0734 0.0737 0.5728
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Table 6 Critical buckling coefficients N,=N bl (£,), '] ofa symmetric (0°/90°/core/90°/0°) sandwich plate
with a/h=10 and ¢./t=10

alb Kant-Manjunatha  Pandya-Kant Reddy Senthilnathan et al. Whitney-Pagano
0.5 1.2997 1.2991 2.6361 2.7124 9.11

1.0 0.5181 0.5175 1.0909 1.0951 43197

1.5 0.3803 0.3795 0.8327 0.8328 4.4597

2.0 0.3360 0.3348 0.7485 0.7494 5.1479

2.5 0.3194 0.3177 0.7124 0.7131 5.8048

3.0 0.3144 0.3122 0.6952 0.6955 6.3310

5.0 0.3386 0.3337 0.6892 0.6892 7.459

G1=1x10° psi (6.895 GPa) G,5=0.90x10° psi (6.205 GPa)
Go3=1x10° psi (6.895 GPa)
0,=0.22 v;370.22 1V5;=0.49
Core Properties (Isotropic)
E=E~E;=2G=1000 psi (6.89x107 GPa)

7 T T T T T T 10 T T T T T
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o B ]
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Fig. 2 Nondimensionalized buckling load (N, ) versus ~ [1g- 3 Nondimensionalized buckling load (N ) versus
side-to-thickness ratio (a/h) of a five-layer thickness of core-to-thickness of face sheet
sandwich plate subjected to in-plane com- ratio (z/t) of a five-layer sandwich plate

pressive load along the edges x=0, a subjected to in-plane compressive load along
the edges x=0, a
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Fig. 4 Nondimensionalized buckling load (N, ) versus side-to-thickness ratio (a/b) of a five-layer sandwich
plate subjected to in-plane compressive load along the edges x = 0, a.

G17=G13=G2=500 psi (3.45x107> GPa)
V2= 0137 U350

It can be observed that the results of Kant-Manjunatha and Pandya-Kant are in good agreement
for all the above parameters considered. The theories of Reddy and Senthilnathan er al. over-
predicts the critical buckling load in all the above cases. The results of of various parametric studies
clearly indicate that the first order theory very much overpredicts the critical buckling load
compared to other higher order theories. The variation of critical buckling load with respect to
various parameters, that is a/h, t./t;, a/b are shown in graphical form in Figs. 2-4.

5. Conclusions

A higher order refined shear deformation theory developed by the first author and already
reported in the literature has been used for the stability analysis of laminated composite and
sandwich plates. The displacement field of this theory takes into account both the transverse shear
and normal deformation thus making it more accurate than the first order and other higher order
theories considered in this study. Analytical formulations and solutions using this refined theory are
presented for the first time. The comparison of results shows that for laminated composite plates the
solution of this higher order refined theory are found to be in excellent agreement with the three-
dimensional elasticity solution and the percentage error with respect to 3D elasticity solution is very
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much less compared to other theories. For sandwich plates the results of Kant-Manjunatha and
Pandya-Kant theories are in good agreement whereas the first order theory and the theories of
Reddy and Senthilnathan ef al. overestimates the critical buckling loads for all the parameters
considered.
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Appendix A
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A e A
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g, (o2} (o2}
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e VE, TVE,

Up Uy Uy Uy Un Un

El EZ’ EJ EI, E3 E2

Appexdix B

Coefficients of [(] matrix
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and

where

Appendix C

Q11:C1104+2(C12 + 2C44)~5'2CZ+CZZS4
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Qu=Ci(c*+s)+H(Cy + Cp=4C,)s’c
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Appendix D

Coefficients of matrix [X]
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