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Abstract. The response of an embedded body to dynamic loads is greatly influenced by the reactions
of the soil to the motion of the body. The propertics of the soil surrounding embedded bodies (e.g., piles)
may be different than those of the far-field for a variety of reasons. 1t may be weakened or strengthened
according to the method of installation of piles, or altered due to applying one of the soil strengthening
technique (e.g., electrokinetic treatment of soil, El Naggar er al. 1998). In all these cases, the shcar
strength of the soils and its shear modulus vary gradually in the radial direction, resulting in a radially
inhomogeneous soil layer. This paper describes an analysis to compute vertical and torsional dynamic soil
reactions of a radially inhomogeneous soil layer with a circular hole. These soil reactions could then be
used to model the soil resistance in the analysis of the pile vibration under dynamic loads. The soil layer
is considered to have a piecewise, radial variation for the complex shear modulus. The model is
developed for soil layers improved using the electrokinetic technique but can be used for other situations
where the soil properties vary gradually in the radial direction (strengthened or weakened). The soil
reactions (impedance functions) are evaluated over a wide range of parameters and compared with those
obtained from other solutions. A parametric study was performed to examine the effect of different soil
improvement parameters on vertical and torsional impedance functions of the soil. The effect of the
increase in the shear modulus and the width of the improved zone is investigated.
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1. Introduction

The dynamic response of piles and other embedded foundations is greatly influenced by the
restraining action of the surrounding soil. Novak (1974) proposed an approximate but efficient
method for the evaluation of soil impedance in which the soil is subdivided into a series of thin
independent layers of infinite extent in the horizontal plane and it is assumed that waves in the soil
propagate only horizontally. In this approach, soil impedances are defined as harmonic forces
arising along an inner circular boundary due to a steady-state harmonic displacément of unit
amplitude. Novak and Beredugo (1972), Novak (1977) and Novak and Howell (1977) computed
soil impedances assuming homogeneous soil layers with uniform properties.

The soil region immediately adjacent to the foundation can experience a change in its effective
properties for several reasons such as nonlinearity due to high strain levels, disturbance and
remolding due to construction operations, compacting due to pile driving in cohesionless soil and
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strengthening of soil adjacent to the foundation using compaction or other soil improvement
techniques.

Novak and Sheta (1980) accounted approximately for the effect of the change in soil properties
adjacent to the foundation. For a weakened soil, they introduced a homogeneous massless narrow
annular boundary zone of reduced shear modulus and increased material damping. Other solutions
were developed to account for the mass of the boundary zone. These solutions include Veletsos and
Dotson (1986) and Veletsos and Dotson (1988). However, Novak and Han (1990) found that a
homogeneous boundary zone with a nonzero mass yields undulating impedances due to wave
reflections from the interface between the two media. In some situations, the boundary between the
two media is fictitious and the undulations are artificial. Dotson and Veletsos (1990) and Han and
Sabin (1995) introduced boundary zones of varying shear modulus to ¢liminate these undulations in
the impedance functions. Dotson and Veletsos (1990) proposed including a boundary zone for which
the shear modulus is considered to increase exponentially. In their model, the ratio of the change in
the shear modulus and the width of the boundary zone cannot be varied arbitrarily for a specified
exponent. Han and Sabin (1995) proposed a boundary zone whose shear modulus varies in a
parabolic fashion. Both models are not applicable for the strengthened boundary zone.

This paper has two objectives, the first being to determine the dynamic impedances for
viscoelastic layers with arbitrarily varying material properties (shear modulus and material damping)
in vertical and torsional vibration modes. The results are compared with those obtained for
homogeneous layers as well as for composite layers obtained using other models. The second
objective is to evaluate the effect of soil strengthening on the impedance function of a soil layer and
to investigate the influence of different parameters of the strengthening process to achieve the
optimum treatment.

2. The composite medium

In many situations, the soil properties vary continuously within the region adjacent to the
foundation. The shear modulus of the soil adjacent to a vibrating pile depends on the strain level
which declines continuously with distance away from pile. The increase in the shear modulus of soil
due to driving piles in cohesionless soils and the installation of tapered piles varies continuously
with distance. The improvement in the clay properties using the electrokinetic treatment depends on
the intensity of the electric field that varies continuously in the radial direction (El Naggar et al.
1998 and 1997). In all these cases, the shear modulus of the soil varies continuously in the radial
direction and hence a model that represents this variation in the shear modulus of the boundary
zone is implemented here.

To account for the effect of the radial inhomogeneity, it is assumed that an embedded cylindrical
body of radius ry is surrounded by a linear viscoelastic medium composed of two concentric regions
(Fig. 1(a)), an outer semi infinite undisturbed region and an inner annular boundary zone of
disturbed material and width ¢,. The radius of the interface of the two regions is denoted by b. The
complex-valued shear modulus of the layer, G'(r), is considered to vary according to the
expressions
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Fig. 1 Model of composite layer considered: (a) Variation of complex shear modulus with radial distance

{b) Notation for stiffness calculation of the composite layer

G, F=¥,
G'(r = Gy f*(”) ro<r<b
Gy r=b

in which

Go=Go(1+iDy)
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where G, and G, are the shear moduli of the soil layer at the outer region and the cylinder
interface, respectively, and Dy and D,, are the material damping coefficients at the same locations,
respectively. The function that describes the variation of material properties within the boundary

zone, [ (r), is given by the expression
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£ (=M (1+ifp(r) Dy) (3)
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In Eq. (4), GR=G,./Gy, DR=D,,/D;, and p and ¢ are positive-valued exponents. Egs. (1) through (4)
represent a continuous variation of the material properties within the boundary zone. For a
strengthened boundary zone, GR > 1 and Eq. 4 represents a gradual decrease of the shear modulus
within the boundary zone from G,, at the central hole interface to G, at the interface with the outer
region. For a weakened boundary zone, Eq. 4 represents a gradual increase of the shear modulus
within the boundary zone from G, at the inner interface of the boundary zone to G, at the outer
interface.

The inner region is subdivided into N concentric annular zones as shown in Fig. 1(b). Each zone
is modeled as a spring whose complex constant is derived assuming a homogeneous zonc with
shear modulus, G”, determined from Egs. (2) through (4) with the pertinent radius value, r'.

3. Soil stiffness in vertical vibration

When a homogeneous viscoelastic soil medium undergoes a vertical motion, the differential
equation that governs the vertical displacement amplitudes, w(r)=w, is given as (Novak 1974)

PEYL AW a2 (5)
dr dr
in which

v 1FiD;

where the shear wave velocity, v=(G/p)'", p = mass density, D= material damping of soil, @ is the
radial frequency and i = J~1. The solution of Eq. 5 may be written as

w(#y=A,Ko(sr)+ B, Lo(sr) 7N

)1/2

in which I, and K, are the modified Bessel functions of zero order of the first and second kind,
respectively, and 4, and B, are complex-valued constants to be determined by satisfying the
boundary conditions in each region.

3.1. The inner region

The inner medium is modeled as a series of springs whose constants are derived assuming
homogeneous annular zones of nonzero mass, i.e., the shear modulus and material damping are
considered to be constant within cach annular zone and hence, Egs. (5) through (7) hold for each
zone. The stiffness of the inner medium can be obtained directly by considering the compatibility
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conditions at the interface between cach consecutive annular zones or by evaluating first the
stiffness of each annular zone separately and joining them as with a number of springs in a series.
Because of the computational convenience, the latter approach is used in this study. The same
approach is used to derive the stiffness of the composite medium, i.e., the stiffness of the composite
medium is evaluated from the stiffness of the inner and outer fields as with two springs in a series.

The boundary conditions for the stiffness of each zone are w(r*")=1 and w(r')=0, where r"~' and
r' are the inner radii of zones i—1 and i, respectively. Applying these boundary conditions, the
integration constants, 4, and B,/, are determined as

; I(s'r)
A= — — — — (8)
Io(s'FYK (s’ F )=1,(s'F )Ky(s'F)
. K i
B,=- i i HO(S”)i i1 i )
Ly(s'FYK(s'F )=Iy(s'r Ky (s'r)
B v G i wi_
where s'= = —, D' =fp(r)Dy and G =f5(r)G,.

/\/1+1D

The vertical stiffness of each annular zone is computed by integrating the shear stress due to
harmonic displacement of a unit amplitude at the boundary interface at r=r""'. The resulting
complex vertical stiffness is

K =2/ 'G" (A s'K (' =Bl s, (5% ")) (10)

in which /; and K, are the modified Bessel functions of first order of the first and second kind,
respectively. The complex vertical stiffness of the inner region is calculated as the result of a series
of springs as

—1—:2 i (11)

3.2. The outer region

The outer region is a homogeneous medium and Egs. (5) through (7) hold. The condition of decaying
displacements with horizontal distance requires that B,=0. The second boundary condition for the
stiffness determination of the outer region, w(b)=1, is used to determine the integration constant A,,.
The stiffness of the outer region is then computed by integrating the shear stress, =G CZ; due to
a harmonic displacement of a unit amplitude, w(b)=1, along the interface of the two regions. The
resulting complex stiffness of the outer region is

K (s0b)

K= ZnGO(vob)KO( s (12)

0]

Vooal 1 +iD0.

where s,=
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3.3. The vertical stiffness of the composite layer

The complex stiffness of the composite medium is calculated from the stiffness of the inner and
outer regions as the resultant of two springs in a series. The vertical stiffness of the composite layer
is then given by

K,= KoKy (13)
"KLK,
For the purpose of presentation, K,, will be expressed in the form
K,=rnGy(S,, t+ia,S,.») (14)

w
in which aozlg, vm—A/—E——“, and S,,; and S, arc real, dimensionless stiffness and damping
parameters, respectively, that depend on @, t,/ry, GR, Dy and D,,. Figs. 2(a) and (b) show the
stiffness and damping parameters, S, and S,,, for a soil layer with GR=0.25; D,=0.1; and D,=0.05
for t,/r,=1.0 and 0.1, respectively. The number of concentric cylinders of the weak zone was varied
from 1 to 20. It can be observed from Fig. 2a that increasing the number of the concentric cylinders

4
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3L
w'; 2
1
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Fig. 2 Effect of number of concentric cylinders considered on computed vertical impedances (GR=0.25)
(@) t,/r,=1.0 (b) t,./r,=0.1
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above 10 has virtually no cffect on the solution. Also, it can be observed that the undulations arc
eliminated. Fig. 2b shows that 5 cylinders only are enough when 1,/r;=0.1. Based on these
observations, =10 was assumed through the rest of this study.

3.4. Vertical impedance of composite medium with weakened boundary zone

The available solutions deal mainly with weakened boundary zones. Fig. 3 presents the
comparison with some other solutions. For the sake of comparison, K, in this figure is expressed in

)

the form K =G, (S, +ia,S,,) where a!m:—aﬂ and vm:ﬁ (because somc of the other
solutions are presented in this form). The stiffness and damping parameters, S,,; and S,,, obtained
from the present analysis are presented with those obtained by Novak and Sheta (1980), N-S,
Dotson and Veletsos (1990), D-V, and Han and Sabin (1995), H-S in this figure.

These solutions are for a soil layer of a unit thickness and with ¢,/ri=1, GR=0.25 and D,=D=0.
The mass density of the inner region is assumed to be cqual to the mass density of the outer region
in all solutions except for the N-S solution. The present solution yields results that are in good
agreement with N-S solution with a slightly lower stiffness. This may be attributed to the inclusion
of the mass of the inner region in the present solution while it is ignored in N-S solution. The
stiffness obtained by H-S solution is influenced by the number of terms considered in the analysis
(i.e., not convergent). The results presented here are calculated using 12 terms. This solution yields
considerably higher stifthess and damping parameters and was found to be unstable for an improved
boundary zone.

4, Soil stiffness in torsional vibration

In torsional vibration of the medium, the torsional displacement amplitude, v(r)=v, is governed by
the differential equation

8 8
—o— Present GR=0.25 tm/ro =10
—®— Homogeneous D,=D=00

6 b a— N-S (1980) 6 -

—v— D-V (1990)
| —— H-S (1995)

Parameter S,
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By
f

N
)
T

r/,.___.———-'—l——

0 1 i L 0 i 1 1

00 05 1.0 1.5 20 0.0 05 1.0 1.5 20
Frequency a, Frequency a,
(a) Stiffness (b) Damping

Fig. 3 Comparison of vertical impedance functions with other solutions (z,/r,=1.0, GR=0.25, D,=D,=0.0)
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Fig. 4 Comparison of torsional impedance functions with other solutions (¢,/r,=1.0, GR=0.25, D,=D,=0.0)

2
er—}-}er@—
dr’ dr

The solution for Eq. 15 can be assumed in the form

(s +1)v=0 (15)

v(r)=A,K,(sr)*+B.1,(s7) (16)

where 4, and B, are integration constants to be determined by satisfying the boundary conditions for
each region.

The same procedure applied for the vertical vibration mode is employed to develop the torsional
stiffness of the composite medium. The torsional stiffness and damping parameters, S,; and S,;
obtained from the present analysis are compared with those obtained by Novak and Sheta (1980),
N-S, Dotson and Veletsos (1990), D-V, and Han and Sabin (1995), H-S in Fig. 4. These solutions
are for a soil layer with GR=0.25, ¢,/r,=1.0, and D,=D,=0.0. The torsional stiffness depicted in this
figurc is expressed as K‘,:ﬂGmr(z)(S,,lJriamS‘,z). It may be noticed from the figure the stiffness
obtained by present solution is closer to that obtained by N-S and both are less than that of the
homogeneous case.

5. Effect of soil strengthening on dynamic impedances

In many situations, the soil properties adjacent to the foundation can be improved. This
improvement can be due to the construction of the foundation as is the case with pile driving in
cohesionless soil, installation of tapered piles and compacting the soil around massive shallow
foundations. Soil improvement can also be due to the application of one of the soil improvement
techniques such as jet grouting, chemical grouting, cement grouting and chemical and lime
injection. However, most of these techniques arc suitable for soils around and underneath inland
massive foundations. :

The advancement of the application of electrostatics has resulted in a novel approach for the
electrical strengthening of soil by dielectrophoresis. Lo et al. (1994) used dielectrophoresis to
strengthen natural clays. They found that the properties of the clay were improved significantly after
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dielectrophoretic treatment. Experimental work done by Shang and Dunlap (1998) revealed that the
electrokinetic treatment resulted in an increase of the shear strength of a marine sediment by up to
267% and an increase of the pullout resistance of steel plates, embedded in that marine sediment,
by up to 88%. El Naggar et al. (1997 and 1998) and Abdel-Meguid ez al. (1999) investigated the
effects of this innovative technique on the responsc of piles installed in clay soils. They reported an
increase of 41% of the axial pile capacity and 81% in the lateral pile capacity and concluded that
the soil improvement is confined to the soil region adjacent to the piles. It is important to note that
the strengthening of the soil in this technique is duc to nonuniform cylindrical electric fields around
piles. The parameters which influence the level of soil improvement are the electric field intensity,
the arrangement of electrodes and their distance from cach other and between the piles, and the
duration of the application of the treatment. These paramcters influence the increase in the shear
modulus of the soil around the pile and the extent and variation of this increase.

The objective of this section is to understand the effect of the increase of the soil shear modulus
and the width of the improved zone using electrokinetics on the vertical and torsional impedance of
the soil layer. The exponent p is taken as 0.25 in this study. This value was found to best fit the
potential distribution in the treated soil sample in an clectrokinetic treatment setup (see Shang and
Dunlap 1998). As the effect of this technique on the material damping is not yet known, the
material damping in the improved zonc is assumed to remain unchanged (i.e., D,=D,=0.1, and ¢=0)
for all the results presented in this scction.

Figs. 5 and 6 show the effect of the width of the improved zone (represented by ¢,/r,) on soil
reactions for a soil layer with GR=2 in the vertical and torsional directions, respectively. It can be
observed from Figs. 5a and 6a that increasing ¢,/r, results in an increase in the stiffness in the
vertical and torsional directions, respectively, and the effect is more pronounced as frequency
increases. However, different trends for damping may be noticed from Figs. 5b and 6b. While Fig.
5b shows that increasing ¢,/r, results in an increase in damping cspecially in the lower frequency
range in vertical excitation, Fig. 6b shows that for torsional excitation, incrcasing #,/r, results in a
decrease in the damping (except for the frequency range «,<0.2). Fig. 7 describes the effect of the
increase in the shear modulus of the improved zone (represented by GR) on the vertical impedance
for a soil layer with ¢,/r,=1.0 and different shear modulus ratios. It can be noticed from the figure
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Fig. 5 Effect of width of improved zone on vertical impedance functions of soil layer (GR=2, D,,=D,=0.1)
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Fig. 6 Effect of width of improved zone on torsional impedance functions of soil layer (GR=2, D,=D, =0.1)
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that both stiffness and damping of the layer increase with increasing GR.

Fig. 8 shows that as GR increases the torsional stiffness of the layer increases and the damping
increases for a,<1.5 but decreases for higher frequencies. To illustrate the effect of a GR increase on
the total torsional stiffness of the layer, |S,|, Fig. 9 displays the variation of |S,| with #,/r,=1.0 and
different GR ratios. It can be noticed from the figure that the total stiffness increases as GR
increases for all frequencies.

To examine the optimum combination of shear modulus ratio, GR, and improved zone ratio, t,./7,,
Figs. 10 through 13 are presented. These combinations presumably represent approximately equal

20
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2 | 1 S 1 1
0.0 0.5 1.0 1.5 20 2.5 3.0

Frequency a,

Fig. 9 Effect of shear modulus ratio of improved zone on total torsional impedance functions (¢,/7,=1.0,
D,=D,=0.1)
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Fig. 10 Comparison of vertical impedances of soil layer with different combinations of shear modulus ratio
and width of improved zone
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energy consumption or improving effort. Fig. 10 shows that for vertical excitation, a soil layer with
t./r,=1.0 and GR=2 yields the best stiffness results but a soil layer with #,/r,=0.5 and GR=4 yields
the best damping results. For torsional vibration, similar conclusions may be made from Fig. I1.
Fig. 12 shows that in vertical excitation, a soil layer with ¢,/r,=1.0 and GR=2 would yield higher
|Swl values for a,<1.0, however, as a, exceeds 1.0 a soil layer with 7,/r,=0.5 and GR=4 would yield
higher |Sy| values. The same trend is observed from Fig. 13 for the torsional vibration case.
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Fig. 11 Comparison of torsional impedances of soil layer with different combinations of shear modulus ratio
and width of improved zone
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Fig. 12 Comparison of total vertical impedances of
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Fig. 13 Comparison of total torsional impedances of
soil layer with different combinations of
shear modulus ratio and width of improved
zone
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6. Conclusions

Vertical and torsional vibration of a radially inhomogeneous soil layer was investigated
theoretically in terms of linear viscoelasticity. Solutions for vertical and torsional dynamic
impedances of a radially inhomogeneous soil layer with a central cavity function were developed.
The analysis proposed can model a soil layer with a radially weakened or strengthened annular
zone. The soil properties within the annular zone (both shear modulus and damping ratio) may vary
piecewise continuously with a smooth transition into the outer zone, so that the undulations in the
impedance functions are eliminated.

The influence of improving the soil properties within the annular zonc was examined. The effects
of the shear modulus ratio and the width of the improved zone are studied. It was found that the
optimum treatment configuration should be designed according to the frequency range of the
expected excitation. For excitations with low frequency, typical of offshore environmental loads
such as wind and wave, wider improved annular zones would yield higher impedance functions. For
soils subjected to excitations with high frequency content, higher shear modulus ratios would result
in higher soil resistance.
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