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A simplified dynamic analysis for estimation of the effect
of rotary inertia and diaphragmatic operation on the
behaviour of towers with additional masses

G.T. Michaltsost and T.G. Konstantakopoulost

Department of Civil Engineering, National Technical University of Athens,
42 Patission Str., Athens, 106 82, Greece

Abstract. The present paper, deals with the dynamic analysis of a thin-walled tower with varying
cross-section and additional masses. It, especially, deals with the effect of the rotary inertia of those
masses, which have been neglected up to now. Using Galerkin’s method, we can find the spectrum of the
eigenfrequencies and, also, the shape functions. Finally, we can solve the equations of the problem of the
forced vibrations, by using Carson-Laplace’s transformation. Applying this method on a tall mast with 2
concentrated masses, we can examine the effect of the rotary inertia and the diaphragmatic operation of
the above masses, on the 3 first eigenfrequencies.

Key words: concentrated masses; thin-walled member; tall masts; rotary inertia; diaphragmatic operation.

1. Introduction

In all the world, power-transmission towers, wind-generator towers, even, telecommunication
towers, are often made from a cantilever, the tip of which is cut off and it has a circular or
polygonal thin-walled cross-section, which varies along the axis of the cantilever by a whatever yet
known law. Additionally, very often, there are significant concentrated masses, because of floors,
observatories or look-out restaurants. These masses, along with the varying cross-section make a
strong non-linear mathematic problem, with serious mathematical difficulties. There are many
papers in this field. Rohde (1953) gave a power series solution to this problem. Wang and Lee
(1973) extended Rohde’s method and Gaines and Voltera (1976) investigated the eigenfrequencies
of those constructions. Prathap and Varadan (1976) presented a finite deflection of such cantilever.
Bouchet and Biswas (1977) presented a non-linear analysis by means F.E.M. and a vibration
analysis, in 1979. Takabatake and others (1990, 1993, and 1995) proposed a solution using Dirac’s
functions. We are, also, obliged to refer to Kounadis’s study (1976) on the dynamic response of a
cantilever beam-column, with attached masses, but with unchanged sections along its length.
Michaltsos and Konstantakopoulos (1998) presented a non-linear analysis taking into account the
effect of the rotational inertia of concentrated masses. In the present paper, assuming linear strain-
displacement relations and using Heaviside’s and Dirac’s functions, we can write the equations of
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coupled dynamic motion of the cantilever. At first, we investigate the free vibrations and with the
help of Galerkin’s method and that of the mode shape of the simple cantilever with constant cross-
section and without concentrated masses, we determine the equation, which gives the spectrum of
the eigenfrequencies and, furthermore, the shape functions. Then we attempt to solve the problem of
the forced vibrations, also by using Galerkin’s method and solving the resulting system with
Carson-Laplace’s transformation.

2. Analysis
2.1. Introductory concepts and determination of the diaphragmatic influence

2.1.1. Assumptions

We consider the model of Fig. 1. This is made from isotropic homogenecous material, having
modulus of elasticity £. The relation between height /, diameter of the basis and thickness is
suitable for a thin-walled construction. The transverse cross section has geometrical inertia and
rigidity parameters varying along the height /. Each of the above parameters can be expressed by
the equation:

Ri
ROe)=Ror(e)+R,0x = )=Ro| ra(x) + 3 8x —a) [=Ropy () 1)
where: R(x) is any of the above parameters, R, is its value for x=0, R; is the corresponding

parameter of rigidity of the i concentrated mass, #(x) is a given function of x, depending on the law
of the variation R of the cantilever and &x—a;) Dirac’s function.
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Fig. 1 A tower model
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2.1.2. The diaphragmatic operation

Now, we consider an infinitesimal part dx of the cantilever, in which a diaphragm with thickness
J,, which has a distance a; from the origin is included.
The deformation u(x, s) of the beam (which is its warping) is given by the form:

__d¢
u(x. 5)==£ Cio(s) @
where v is the sectional co-ordinate.

On the other hand, the deformations of the plate-diaphragm must be (at the border) equal to those
of the beam:

T/I(Cl,-, S):ué(ya Z) (3)
The work of the internal forces of the plate is given by the form:

2

= (1— Us[]
& J'F J' D,(1-u) By o:0 dydz (4a)

E, [
where: D=—"1t—— (4b)
12 01 — p)°

E, is the modulus of elasticity of the plate and u Poisson’s ratio.

The integral of Eqs. (4a) extends on the total surface of the diaphragm. We note that the
diaphragm may be extended out of the border of the beam (see Fig. 1). Then the integral of the
Eqs. (4a) extends on the total surface of the plate-diaphragm.

If 01(s), 0x(s) are the stresses of the sections 1 and 2 respectively (see Fig. 2), the work of the
beam in the neighbourhood of the diaphragm, because of the above 0; and 03, is given by the form:

82:% 0 EELZ 05(8)uy(a,, S)ds—Ll ,(s)u,(a,, S)ds% )

The above integral (5) extends on the cross-section of the beam only, and expresses the work of the
external (for the part dx) forces 0y(s), Ox(s) because of the Ilongitudinal displacements

Fig. 2 Infinitesimal part dv including a diaphragm
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ul(ala S): uZ(a29 S) .
Taking into account that the bimoment B(x) is given by:

B = [0,(s) Ci(s) [ s O
we can write (because of Egs. 2):

[ surCan, shids == 03 0 B L)ty =-(a) 0 a)

and in a similar way:

I 0y(s)uy(a,, s)tds==B(a,) B'(a,)

s

Then Eq. (5) becomes:

1 1 I
gzz_i[d’ (ay) (B(ay)=¢'(a,) [B(a))]
If the quantity dx has zero as its limit, the values of a; and a; coincide with each other.
If the diaphragm did not exist, we would have:
B(ay)=B(a;) 0 0

But because of the existence of the diaphragm the difference [B(ax)—B(a;)] must have a real
(existing) value B, which is caused by the diaphragmatic operation.

Then:
| ) ) 1,
£==3 Olim {[¢'(a2) - ¢'(a))] (B} ==3 (' (a) (B ™
The work of the internal forces must be equal to that of the external forces:
2
1 _ 0 s
5 (' (a) [B=[.[ D,(1 —H) By -0 dyd:z ®)
From the theory of thin plates, we know that for pure torsion we have:
us(v, z)=C v [k )

where C is a constant, which will be determined from the boundary conditions.
We consider, as a first approximation, that the warping is varying linearly along the axes oy and
oz. Then from Eq. (2) we have:

u(a, s)==¢'(a) Lo(s)=-¢"(a,) b [t (10)

Because of the displacements, which must be equal at the points of touching between beam and
diaphragm (see Eq. 3), and also of Egs. (9) and (10) we have:

C==¢'(a,),
and then: us(y, z2)=—¢'(a,) Oy & (11

Therefore, Eq. (8) is written:
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~¢'(a) B=20,[ D,(1-4) 0~¢'(a)]) dydz=2 0D, {1 —p) 0¢'(a)]’ F,
As long as there is deformation, it must be ¢'(a,) Z 0, and then we get:
B(a;)==2D, 1 — ) F5 P’ (a;) (12)
The above Eq. (12), shows that the influence of a diaphragm can be expressed with an external
loading, which consists of the concentrated bimoment B(a;)

2.2. The equations of the problem

The part of the load due to the torsional vibration of the masses i round the y axis is:
g=mg" =[], (X)W’ (x, 1) + J,w'(x, N H(x = a,)]"

where H(x —a;) is Heaviside’s function.
Neglecting the very small influence of the torsional inertia of the beam (compared to that of the
concentrated masses) we can write:

q=[J,w' (x, VH(x —a)]"=[J,w'(a, )H(x—a,)]"
=[J, %' (a,, 0)O(x —a)]'=J, W' (a,, )8 (x—a,)

Then, neglecting the longitudinal and torsional inertia forces associated with warping and, also, the
transverse shear deformation, the equations of the problem are:

[EL,(x)w" (x, )]"+m(x)Ww(x, £)+c,w(x, t)+iZO Jy‘v'\'/'(x, t) & (x—a;)=p.(x, t)=m,'(x, t)

o o
=
w
SN’

[EC(x)9" (x, )]"=[G1(x)§'] +csP(x, )+O(x)B(x, 1)=M.(x, 1)
We know that: M,=—B'(x), therefore:

M. (x, t)=m(x, t)+ i Myp(x, t) (x —a,)=m(x, t)+ i B'(a;, t) B(x —a,)

Then Eq. (13) become:

[EL(x)w" (x, )]"+m(x)w (x, t)+c, W (x, £)+ ; Sy W' (x, 1) ' (x —a;)=p.(x, )—m, (x, 1)

[EC,(x) 6" (5, 0" =[G ()9 +e4B(x, )+O()D(x. 1)
con(e, 042 Y D1 =) Fa 8" (. ()8 —a)

i=1

e o
~~
—
o~
g

2.3. The free vibration
2.1.1. Free flexural vibration

The equation of the free flexural vibration, if the damping ¢, = 0, is:
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[E1,(x) Ov" (x, 1)]"+ _ﬁ Jy W' (x, )0 (x —a;) +m(x)Ww(x, £)=0 (15)
which, if we take into account w(x, 1)=X(x) [II'(¢) gives:
[E1,(x) X" (x)]" OO (2) + 7(¢) _ﬁ inX'(x) O (x —a,)+m(x) X(x)T(£)=0

or

[£1(x) DX"(x)]" - I _
> X0 D =a)m() K T(0)
or i=
[EI(x) DY’(x)]"—wi{ ZJ%X’(x) 0 (x —a;)+m(x) DX(x)}=0 (16)
Then Egs. (16), because of Eqs. (1), can be written:
rn U " n " D
p;, (x) IX"" (x)+2p", (x) LK™ (x)+p"; (x) IX"(x) .
' ' ' g
A K in _ E
-AU ,-:Z[ 1’170 DY’()C) IZB,(x_ai)—"_pm(x) DY()C) =0 0 (17)
0
)
. — wme O
with: A= ——
E[.Vo E
In order to apply Galerkin’s method, we set:
X(x)=c; Wi (x)+e; Pr(x)+...+¢, W, (x) (18)

where: ¢; are unknown coefficients, which will be determined and Y(x) are arbitrarily chosen
functions of x, which satisfy the boundary conditions. As such functions, we choose the shape
functions of the simple cantilever (without varying cross-section) given by Eqs. (a) of the appendix.

Introducing Egs. (18) into (17), multiplying the outcome successively by %, ¥, .... ¥, and
integrating the results from 0 to /, we obtain the following homogeneous, linear system without
second member of 7 equations, with unknowns c1, ¢, ...., ¢,

c1(4; =A DB, )+ey (4, —A DB, )+...+¢c, (4, —A[B,;)=0 (i=1,2,...n) (19)
where:
/ 0
A=, 10,00 097" (3426, () DV (0 () D! (0] ¥(wha
, - g o
B,= IO P (x) O¥,(x) D‘»‘f,-(x)dx—l_:z1 njy;[‘#,-" ¥(a;) + ¥/ (a,) ¥/ (a,)] E
O

In order for the system to have non-trivial solutions, the determinant of the coefficients must be
Zero:



A simplified dynamic analysis for estimation of the effect of rotary inertia 283

|F|=0  with:i,j=1,2,..n and [ ,;=4,-AB; @n

From Egs. (21) we determine the exact values for A and, from Egs. (17) the spectrum of the
flexural eigenfrequencies w,;.

Assuming that the natural frequencies are dominated by the diagonal terms in the square matrice
I_i/'a

W, = Elo I, (21a)
my LB,
From the first (n—1) equation of Egs. (21), we can finally find:
[ T r, E
. g
g
ﬁ: I_(n—l),Z---,_(n—l)l---,_(n—l)n E
¢ 1T 0 (22)
with:  i=1,2, ...(n=1)  j=2.3,..(n) E
n g
and therefore: X, (x) clsz %Pl + - (’UJD E
2.3.2. Free torsional vibration
The equation of the free torsional vibration, if the damping ¢, = 0, is:
[EC(x) 0" (x, 0]"=[GIn(x) OB’ (x, 1)]'+O(x) Cp(x, 1)=0 (23)
Following the same analysis as in Free flexural vibration , we obtain:
[EC(x) 09" (x)]"~[GIp(x) T’ (x)]'~ 0@ (x) Th(x)=0 24)

Then Eq. (24), because of Eq. (1), gives:

g
[p.(x)¢"" (x)+2p0.(x) "' (x)+p. (x) ¢" (x)]~Ho [y, (x)§" (x)+0";, (x) @' (x)]=VoPo(x) P(x)=0 E
_Gly, w6, E
4
0

with: Mo = ECTO, Vo= ECTO

Applying Galerkin’s method, we finally find:
n d
A, =0, ¢, (x)=d + 2ol 26
[8)=0, 9,(x)=dy 3 HP1+ 7O (26)

which, gives the spectrum of torsional eigenfrequencies wy and the shape functions. Where:
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A=Z,~Hy LH,=v, [N,

Z,= Lj [0.(x)@"" (x)+2p! (x) D" (x)+p! (x) " (x)] P,(x)dx

1, £ 19,0097+, () (] 0 (1)

A=, Polx) D) D9, (x)ds

d,

d,

2.4. The forced vibration

The coefficients

2.4.1. Flexural forced vibration

(o o

are found by solving the (n—1) first equations of the above system.

@7

The equation of motion for the flexural forced vibration, is given by Egs. (14), which, because of

Eq. (1), becomes:

E[_yo[p[“(x)wnn(xa t) + 2p[1,’(x)W"" (xa t) + p[“" ()C)W" (xa t)]+cw D/i}(xa t)+m0pm(x) D;l'}(xa t)+

+ /Z\ J, W' (x, 1) 8 (x —a;)=p.(x, t)=m,' (x, t)

We search for a solution with the form:

w(x, )= Y X,(x) (P, (1)

(28)

where P, (¢) are unknown functions of the time, which will be determined and X,(x) are functions
of x, arbitrarily chosen, which satisfy the boundary conditions. As such functions, we choose those
of Egs. (22), which still satisfy Eq. (18). Then Eq. (28), because of Eqs. (16), becomes:

K

m z a’l%npm)(npn—i_cw z)(l1pl7+m0 z pm‘XvnP”J'_ ZI |:Jy15’(x_ai) Dz ‘Xvnl.l')":|:pz_my'

or after multiplication with X, and integration of the outcome from 0 to /, becomes:

2 1 2 - 1 2
my y @, Dy, P, +¢, Y Dy, [Py +my Y Dy, Py~
7 n n i

/
and:  Dg,= [ 0, (x)X,Xodx
0

2 _

i
D o,n I menXadx
0
3 _

Da,n )(n" (ai)Xa(ai)—i_)(n' (ai)XU’ (ai)

D= [ T, ) =m, (5, 0] Xodds

The above system of Eqgs. (29) is a differential system with unknowns the P, , P, , ...

M=

[Jyl_ & Ds, DPW,}=D

P,

e

(29)
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2.4.2. Torsional forced vibration

The equation of motion for the torsional forced vibration is given by Eqs. (14). Following the
same methodology as in flexural forced vibration, we reach the system:

g
K . 1« _4 0
Oy Y Wy =y, P2 Z D(1—W)F5=5,Pstcs Y Z5,Ps 700y Z5,P5=Z, E
O
—1 ! —2 -3 _ ! O
where: :U,n:IO pe(x)¢n¢adxa :0,11:¢n(ai)¢a(ai)a :G,n:J-O ¢n¢adx E
= mi(x. )dodx and: o=1,2 ]
== J and: o=1,2, ...
Io m,(x by n 2 60y
The above system of Egs. (30) is a differential system, with unknown factors Py, Py, ... Py .

2.5. Solution of the systems (29) and (30)
The systems (29) and (30), with use of Carlson-Laplace’s transformation, and initial conditions:
w(x, 0)=w(x, 0)=¢(x, 0)=@(x, 0)=0 takes the following form:
aqgi(p)trang,(p)+...+a,g,(p)=B, LF(p) (31)

where:

gu(p)=LP,(t) F(p)=LTf(t) p.(x, )=p.(x) o)  m,(x, 1)=m,(x) [Fr)

For the flexural vibration:

K

[

Y

B 2 1 2 1
a,=myw,;D;+tc,Dj Qj-{mODU +
=

JD Sp*=d 4p B +p° O
y/\EDijp_ ij P ij 14 ij

B 1 150 =, ()]

and for the torsional vibration:

(32)

_ 0,632 + 2003 D1 — W) FalE2, [+enZ] (p+OE, D=, p (B, +p* T
aij_ Owll)i—[/' EEZ i( —,U) 5/5E0,n cw—[['&7 0—[['17 =A,;Tp TP ij>

=1

e o

!
Bi:I m.(x) [, Cix
0
The usual forms of functions f(f), (p) are rational functions of p. Then g, takes the form:

N.(p)
p)E—— u=1,2,.n 33
£.(p) M) (33)
where N,, M, are polynomials with respect to p with M,(p) of higher order than N,(p).

Heaviside’s rule can thus be applied, leading finally to Eq. (22):

VD) N0) & Nlp)

P()=L g.(p)=L M,(p) M,(0) & p, 0OV (p)

€2
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in which p;, are the roots of polynomial M,(p).

3. Numerical results and discussion

We consider three towers which have height Z=100 m, 70 m and 40 m.

Table 1 Data of the towers

Masses
L SET Tower a I J; M, F; I ©)
R,=6 1),=5.55 75 50 5 53 27 15 13.3
1 =10 0,=30.5 90 330 250 293 300 60 1950
m,=6.72 C=2.50 95 330 250 293 300 60 1950
R(x)=0.00005*x°-0.01083*x+1 100 50 5 53 27 15 13.3
R,=6 1n,=5.55 75 25 5 53 27 15 13.3
100 2 1=10 0,=30.5 90 25 5 53 90 20 130
m,=6.72 C/=2.50 95 25 5 53 90 20 130
R(x)=0.00005*x>-0.01083*x+1 100 25 5 53 27 15 13.3
R,=2.5 15s=2.80 75 50 5 53 27 15 13.3
3 1,=4.5 0,~12 90 330 250 293 300 60 1950
m,=3 C=1.50 95 330 250 293 300 60 1950
R(x)=0.0001*x*—0.025*x+2.5 100 50 5 53 27 15 13.3
R,=5 1=3 50 50 5 53 25 15 13.3
1 1,=3.60 0,225 57 330 250 193 300 60 1950
m,=3 C~=1.40 62 330 250 193 300 60 1950
R(x)=0.0000326*x*-0.01086*x+1 70 50 5 53 25 15 13.3
R,=5 1hs=3 50 15 5 53 25 15 13.3
70 2 1,=3.60 0,225 57 15 5 53 90 20 130
m,=3 C/~=1.40 62 15 5 53 90 20 130
R(x)=0.0000326*x*—0.01086*x+1 70 15 5 53 25 15 13.3
R,=1.50 In,~=1.70 50 50 5 53 25 15 13.3
3 1,=0.80 0,=6 57 330 250 193 300 60 1950
m,=1.40 C,=0.60 62 330 250 193 300 60 1950
R(x)=0.000816*x*-0.0157*x+1.50 70 50 5 53 25 15 13.3
R=2.50 m,=0.80 ©,=12000 30 10 3 3 6 15 13.3
1 =1 1,~0.80 (C;=0.60 35 150 120 100 300 60 1950
R(x)=—0.015*x+1 40 10 3 3 6 15 13.3
R,=2.50 m,<=0.80 0O=12 30 10 3 3 6 15 13,3
40 2 =1 15,~=0.80 C,=0.60 35 10 3 3 90 20 130
R(x)=—0.015*x+1 40 10 3 3 6 15 13.3
R=0.60 m, =035 0O,=2 30 10 3 3 6 15 13.3
3 1=0.10 I,=0.15 C;=0.20 35 150 120 100 300 60 1950
R(x)=—0.625*x+0.60 40 10 3 3 6 15 13.3
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Table 2 Influence (in percentage) of the rotary inertia and diaphragmatic operation

Flexural Torsional
Length SET W ) () W W w;
1 0.06 0.37 1.05 2.90 2.40 2.38
100 2 0.01 0.01 0.02 0.13 0.10 0.05
3 4.08 5.11 5.14 1.30 1.21 1.08
1 0.05 1.25 2.17 0.6 0.08 0.012
70 2 0.01 0.09 0.14 0.03 0.01 0
3 5.36 7.22 6.43 1.57 1.45 0.97
1 3.15 6.40 5.88 0.08 0 0
40 2 0.01 0.68 0.83 0 0 0
3 7.30 14.20 11.45 2.70 1.89 2.03

Each of these towers has sets of concentrated masses, at the points a;, which are symbolized as
SET 1, SET 2, and SET 3. Generally SET 1 and SET 2 have the same characteristics for the
pylons, but different ones for the concentrated masses while SET 1 and SET 3 have the same
masses but different pylons.

As for the conical surface of the tower, it is a parabola of second order (for the towers with
L=100 m and 70 m) and a straight line (for the tower with L =40 m). Table 1 shows clearly the
above data: For the above cases, we have found the first three eigenfrequencies.

In Table 2 the influence (on percentage) of the rotary inertia on the flexural eigenfrequencies, and
of the diaphragmatic operation on the torsional ones is shown.

From the above table the following conclusions can be obtained:

1. The influence of the rotary inertia of the masses is serious for slender towers, which have

heavy masses. This is obvious from SETS 3 for all the tower heights (the maximum influence
is increased from 4% to 11%).

2. The eigenfrequencies of a tower are least affected by the change of masses (heavy or light
masses). This is clear from the comparison between SETS 1 and SETS 2 for all the tower
heights. That influence is increased from 0.01% to 2.71%.

3. The most affected eigenfrequencies are the second and third ones.

4. The effect of the diaphragmatic operation is very small. The diaphragmatic operation, on the
contrary to the rotary inertia of the masses, has influence on the towers with big diameter and
heavy masses. Generally the differences are very small and the influence is increased from 0%
to 2.90%.
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Appendix
1. The shape functions of the free flexural vibrating cantilever (without varying cross-section) are:
O
W,,(x):cz,,[i—l"(sin)\,,x —sinhA,x)—(cosA,x — cosh}\,,x)} 0
2n |:| (a)
ith: ciy_cosA,ltcoshA,/ O
M, sinA,ltsinhA,/ .

2. The shape functions of the free tortional vibrating simple cantilever (without varying cross-section) are;:

2 1n

k
GD,,(x):cl,,[sinkl,,x—k—l" Etinhkz,,x—ci"(coskl,,x - coskz,,x)} with: E
n c |:|
O (b)

o J$g+ T, WD Gly cuy Kysink,l kb sinhs,!
e 2 U EC; EC/ ¢, ki, cosk,,l+ks,coshk,,! [





