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Strength of prestressed concrete beams in torsion
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Abstract. An analytical model with tension softening for the prediction of the capacity of prestressed
concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The
proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch
for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of
the governing equations a special numerical scheme is adopted which can be applied to elements with
practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied
to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light
transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by
comparison between experimental results and analytical predictions and second, a parametrical study of
the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and
the interaction between torsion and shear for various levels of prestressing. The results of this investigation
presented in the form of interaction curves, are compared to experimental results and code provisions.

Key words: torsional strength; prestressed concrete; nonlinear analysis; torsion and shear; torsion with
shear and flexure.

1. Introduction

Although prestressed concrete beams are very practical and frequently used elements in actual
structures, the research effort devoted to the torsional strength of these members under pure torsion
or combined torsion with bending is very limited (Mukherjee and Warwaruk 1971, Mattock and
Wyss 1978, Wafa ef al. 1992). Furthermore, for T-beams under predominant torsion, although the
flange contribution to resistance against torsion is very significant, there is no commonly accepted
method for the quantification of this influence (Hsu 1984).

The classical elastic approach by Saint Venant to the torsion problem, although properly describes
the elastic behavior of concrete, fails to predict the ultimate torsional strength even in the case of
rectangular plain concrete elements. This theory is based on the assumption that brittle failure of the
element occurs when the maximum tensile stress reaches the concrete maximum tensile strength.
This approach, however, is not consistent with the fact that even brittle materials such as concrete,
exhibit post cracking resistance in tension (Gopalaratnam and Shah 1985) and in shear (Vecchio and
Collins 1986). Thus, ignoring this post cracking tension softening phenomenon, the elastic theory
consistently underestimates the ultimate torsional strength, which for plain concrete elements has
been experimentally observed to be roughly up to 50% greater than the predicted one (Hsu 1984,
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Karayannis 1995a).

Further, two more approaches, the plastic theory and the skew bending theory (Hsu 1984), have
been proposed for the estimation of the torsional strength of concrete elements. However, while the
former is not theoretically quite satisfactory, the skew-bending theory (although describes the failure
mode of concrete elements of rectangular cross-section very well) is rendered useless in practice
because of the mathematical complexity involved for usual flanged section (Cowan 1965, Hsu
1984).

For prestressed concrete in torsion, Hsu (1984) has proposed that from the failure criteria it is
possible to derive a simple prestress factor, which is defined as the strength ratio of a prestressed
element to a nonprestressed element. He has shown that this prestress factor can be used
complementary to the elastic, plastic and skew bending theories.

Recently, an efficient numerical approach for the prediction of the torsional behavior of concrete
elements has been proposed (Karayannis and Soulis 1990). This algorithm, initially based on the
classical elastic theory, uses a special numeric of technique for the solution of the governing
equation of torsion. Recently the technique includes a finite difference scheme resulting from a
second-order finite element shape function for the solution of the equation of torsion and it can be
applied to elements with practically any cross-section since it utilizes isoparametric numerical
mapping. The efficiency and the accuracy of this approach in predicting the ultimate torsional
strength of concrete beams not reinforced in the transverse direction has been dramatically improved
after a major modification by Karayannis (1995a). The modification takes into account a bilinear
stress-strain relationship for the concrete in tension to cater for the tension softening phenomenon,
and allows for a realistic prediction of the entire response of a concrete element subjected to
monotonically increasing torque (Karayannis 1995a). Initial efforts for the application of the
modified method in prestressed girders (Karayannis 1994) yielded promising results.

A further use of this analytical method, properly adapted in order to include tri-linear and
exponential stress-strain relationships for the material in tension, has already been proposed for the
prediction of the torsional behavior of steel-fiber concrete (Karayannis 1995b). Verification of this
approach based on results of experimental work conducted for this purpose, has also been
successfully attempted (Karayannis 2000).

The aim of the present work is twofold; first, the proper modification of the developed analytical
method and its validation in order to describe the torsional behavior of prestressed concrete beams,
and second, the use of the method as an analytical tool for the investigation of the influence of the
prestressing force on the torsional strength of these elements.

The proposed method is mainly applied to plain prestressed concrete elements, but is also
applicable to prestressed concrete beams without heavy transverse reinforcement. This is justified
because in these cases the highly compressive action of the prestressing force improves the elastic
behavior and the peak strength of the specimen but simultancously increases significantly the
possibility for a short brittle post peak response. Thus, the observed behavior of concrete elements
with high prestressing as a whole is very alike to the behavior of the same elements subjected to the
same combination of loading (torsion with axial force) without taking into account the small
influence of the existing reinforcement.

The wvalidation of the developed analysis is achieved by providing comparisons between
experimental results and analytical predictions. These comparisons comprise prestressed concrete
beams in pure torsion as well as in torsion combined with shear and bending, compiled from works
around the world in an attempt to establish the validity based on a broad range of studies. The
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second aim of the present work is approached by a parametrical study of the torsional responses of
rectangular and flanged prestressed concrete beams. The interaction of torsion and bending due to
eccentric prestressing and the influence of the combined loading on the ultimate strength of these
elements are also studied. The results of this investigation and the produced interaction curves are
compared with the results of previous works (both experimental and analytical) and with the
provisions of design codes.

2. Governing equations
2.1. Torsion

The theory of Saint Venant and the complimentary approach by Prandtl (Hsu 1984) describe the
response in torsion of a homogencous structural element based on the assumptions that (i) the
element has a constant cross-section along its length and its axis coincides with the axis of torsion,
(ii) the angle of twist per unit length is constant and (iii) there is no skew restraint. The above-
mentioned theories yield the equation

°F=-2G9 (1)

where F=stress function which satisfies all boundary conditions; J=angle of twist per unit length
and G=shear modulus of rigidity.
In cases where the material’s properties vary over the cross-section, Eq. (1) can be written in the
form
0l 9Fr, 9 (L OF)
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The relationships of the developing shear stress components 7., 7., with the function F, are
1,,=0F/dy and T1,=—0F/0x 3
and the shear stress at a point is
1=t +z)" “)

Since, only shear stresses develop on the cross-section of an element subjected to pure torsion
without skew restraint, an infinitesimal element on this cross-section is in pure shear stress state. In
Fig. 1 an infinitesimal element in pure shear stress state is displayed. From this figure it is deduced
that in the case of pure torsion the response can be characterized by the behavior of the material in
direct tension where the tensile stress is equal to the developing shear stress. This is in full
compliance with the conclusions drawn from early experimental efforts for the study of the behavior
of plain concrete subjected to pure torsion, which revealed that the material fails in tension rather
than shear (Anderson 1935, Cowan 1965).
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Fig. 1 An infinitesimal element in pure shear characterized by the material behavior in direct tension

2.2. Prestressing

The normal stresses o; at a point 7 in the cross-section which develop due to the prestressing force
P, are calculated as
P Pe
1 AC ] .yl ( )
where e is the distance of the point where the prestressing force is applied from the centroidal axis
(eccentricity), 4, is the cross-section area, / is the moment of inertia and y; is the distance of point i
from the centroidal axis.

3. Numerical formulation

An efficient numerical algorithm for the analysis of concrete elements in torsion, recently
proposed by Karayannis (1995a), is employed in the present work. The element section is
discretized by 8-node isoparametric elements. That is, all physical elements (x, y) regardless of their
configuration are mapped to the (&, 1) coordinates (isoparametric mapping) such that —1 < &<1
and —1 £ <1, where the nodes of the mapped elements are located at £&=+1 and n==1.

Let J be the Jacobian transformation matrix and T denotes the transpose matrix; then H=J' J. It
follows that if ' is the inverse of matrix /1, the shear stress components in the computational field

are derived as
Lo =g OF/0¢ such that | =*|=y| = 6)
T.; O0F/dn T., T;
If A denotes the determinant of matrix J and G is the shear modulus of elasticity then the
governing equation of torsion (Eq. 2) can be transformed into the local (&, ) domain as

AR
a_grEET'nD d T-.f'l 290 (7)

At the center (i, /) of an element in the computational grid Eq. 7 may be discretized as
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A. 0 R, 0 R0 A, 0 __
GO Tetn ot Troha T 29h (8)
1j+1 1,j—1 1+1, 1—1,
Thus, the governing equation of torsion can be approximated in a finite difference form (Karayannis
1995a).

4. Material model

The formulation is intended to describe the response of concrete elements under combined
loadings with the predominant and critical action being the torsional moment. With this in mind,
special care has been taken for the material model in tension since in these cases the behavior of the
material in tension characterizes the response of the element.

Thus, in the present work, a bilinear stress-strain model for the behavior of concrete in direct
tension which includes post-cracking tension softening branch is adopted (Fig. 2). According to this
model the stress and strain are shown to increase proportionally up to the point of ultimate tensile
strength of concrete, 7. At this point (¢ in Fig. 2) the strain value &, is equal to f./E,, where E,; is
the secant modulus of elasticity of concrete in tension at peak. After that point only the strain
increases while the stress decreases linearly to zero at the point (f in Fig. 2) where the strain is
equal to the ultimate experimentally observed tensile strain of concrete &.,. If the stress is relaxed at
a point in the softening branch (say point a in Fig. 2) then the unloading occurs along the line Oa
(small cracks close) and the new updated stress-strain relationship follows the path Oaf. Thus,
irreversibility is invoked due to the stiffness degradation. The slope of the line 0a decreases as the
point a approaches the ultimate strain £,,. This way the post-cracking part of the adopted model is
characterized by the maximum acceptable strain £,,, which can be expressed as

gClll: ag(.’l‘ (9)

where a is a coefficient which represents the level of the involved tension softening. Coefficient a
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Fig. 2 Concrete response in direct tension with tension softening branch
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can be considered as a material property which, except for the influence of the stress distribution,
mainly depends on the nature and the size of the aggregates and the other ingredients of concrete.
The influencing role of size effect on this coefficient should also be considered. Realistic values for
the coefficient o can be obtained either directly from experimental works on the tensile behavior of
concrete (Gopalaratnam and Shah 1985) or from comparisons between experimental curves for
concrete beams in torsion and their analytical predictions using the proposed analysis (Karayannis
1995a). Thus, for the commonly used concrete mixtures, the values a =5 to 8 can be considered as
realistic ones (Karayannis 1994, 1995a, 1995b).

5. Material failure criteria

As pointed out earlier, concrete is expected to fail in tension due to torsion since in the examined
cases the torsion is the predominant and critical action. It is obvious, though, that the strength of
concrete at each point of the cross-section is greatly influenced by the developing stress state at this
point. Thus, in the case of prestressed concrete beams under the simultaneous action of torsion,
bending and shear, it has to be considered that at each point of the element’s cross-section a biaxial
state of stress is developed (Fig. 3). For this reason the dual failure criteria by Cowan for the
concrete under biaxial loading (Cowan 1965, Hsu 1984) are employed. According to these criteria,
Mohr’s failure envelope has been simplified into two straight lines AB and BD as shown in Fig. 4.
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Fig. 4 Mohr’s failure envelope for concrete in biaxial stress-state, as simplified by Cowan
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The inclined line AB is assumed to be tangential to the circle C1 for the uniaxial compression and
has an angle to the horizontal equal to 37° which represents the internal friction angle. This line
determines the failure state when concrete fails primarily in compression. The line BD is tangential
to circle C2 for uniaxial tension and determines the failure state when concrete fails primarily in
tension. This criterion is directly applicable by the present approach since the procedure uses the
shear stress obtained by the analysis at each mesh point. For a given stress state (0, T) the failure
criterion is given by the expressions

£=£JO.0396+0.120£—0.1594D£EF (10)

f;’ Df;ll]

T_ | f'oon
E— 1+EDED (11)

Where f.' is the cylinder concrete strength in compression; f;, is the tensile strength of concrete as
it is obtained from the stress-strain model (Fig. 2) and o is the normal stress.

6. Influence of concentric prestressing on the torsional strength

The wvalidation of the described analysis by providing comparisons between results from
experimental studies and analytical predictions is first attempted. Experimental results concerning
the influence of concentric prestressing on the ultimate torsional strength of rectangular beams have
been compiled from studies by Wafa et al. (1992), Allos and Rashid (1989) and Mukherjee and
Warwaruk (1971). A group of rectangular beams which includes 8 specimens with f.'/f.,=12.39 to

Table 1. Comparison of experimental data and predicted values for rectangular beams with concentric
prestressing subjected to pure torsion ( £.'/f.,=12.39 to 17.68 with mean value of 13.40)
COde b/ h f;' ﬁ ﬁ-r ﬁ P Texp Tpred Texp Tpred,P:O P i
name (cm/cm) (MPa) (MPa) (MPa) £, (kN) (kNcm) (kNcm) Torea (kNem) bhf, T,

Wafa et al. (1992)

B0.0-0 3793 4.00 283 1342 0.00 268.0 2503 1.07 2503 0.00 1.07
B0.0-2a 40.72 419 2.84 1436 187.72 4440 4788 093 251.1 0.18 1.77
B0.0-2b 10/25 3659 413 290 12.63 182.09 489.0 479.7 1.02 2558 020 191
B0.0-4a 37.07 3.81 2.10 17.68 33244 4570 5022 091 1854 036 246
B0.0-4b 3556 470 2.87 12.39 276.65 558.0 5586 1.00 2531 031 220
Allos and Rashid (1989)

A3 10/17.5 41.04 4.08 320 1281 161.60 416.5 371.8 1.12 1885 023 221
A4 41.04 4.08 320 12.81 32320 514.1 4907 1.05 1885 045 2.73

Mukherjee and Warwaruk (1971)
C206 15.24/30.48 39.21 4.38* 3.13 12.52 37547 16539 14450 1.14 7626 021 2.17
Mean value: 3865 4.17 288 1340 1.030

=071
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Table 2. Comparison of experimental and predicted data for rectangular beams with concentric prestressing
subjected to pure torsion ( f,'/f.,=8.46 to 9.63 with a mean value of 9.05, concrete with steel-fiber
volume fraction 0.5 to 1.0%)

Specimens Vp Texp Fpred
b=10cm f(' ﬁ ]2-/ ﬁ P L Texp Tpred ER
h=25cm (MPa) (MPa) (MPa) f;‘l (kN) bhf;' Texp‘l’zo Tpred.PZO rpred

Wafa et al. (1992)

B0.5-0 35.10 494 3.65 9.63 0.00 0.00 1.00 1.00 1.00
B1.0-0 39.08 694 4.62 8.46 0.00 0.00 1.00 1.00 1.00
B0.5-2 3416 572 3.55 9.63 184.95 0.22 1.65 1.76 0.94
B1.0-2 42.89 6.92 497 8.63 183.60 0.17 1.69 1.58 1.07
B1.0-4 39.14 695 426 9.19 328.80 0.34 2.06 2.02 1.02
Mean value: 38.07 629 421 9.05 1.006

17.68 and concentric prestressing, tested in pure torsion, are presented in Table 1. Geometrical data,
test results, analytical predictions are also presented in Table 1. Furthermore, comparisons of the
analytical results to the experimental ones (7uxy/7prea) and the ratio 7,,/Tp— of the increased ultimate
torsional strength due to the influence of the prestressing (7)) to the ultimate torsional strength
without the prestressing (7p—), are also included in Table 1. A second group of experimental data
for prestressed rectangular beams with f.'/f,,=8.46 to 9.63 tested in pure torsion (Wafa er al.
1992), are presented in Table 2.

Further, Fig. 5 presented the influence of the prestressing level, v,=P(bh f.'), on the ultimate
torsional strength 7, of rectangular elements in terms of the ratio 7/Tp—,. Thus, curves 1 and 2 in
Fig. 5 represent the influence of V., on the torsional strength of concrete for strength ratios
12 1f.,=13.40 and 9.05, respectively, and are compared with the experimental results of Tables 1
and 2, respectively. The strength ratios of the concrete (compressive strength to tensile strength), for
the tests in Tables 1 and 2, were f.'/f,,=12.39 to 17.68 with mean value of 13.40, and f.'/f,,=8.46
to 9.63 with mean value of 9.05, respectively, whereas the analytical curves 1 and 2, shown in Fig.
5, were calculated based on the proposed analysis for f.'/f.,=13.40 and 9.05, respectively. From
these comparisons it can be deduced that the analytical results are in very good compliance with the
measured ones.

Also shown in Fig. 5 are the analytical predictions deduced by the approach of the prestress factor
as it has been introduced by Hsu (1984) to account for the influence of the prestress in the elastic,
plastic and skew bending theories. According to this approach

T=Typy (12)
where 7, is the ultimate torsional strength of the prestressed member, 7, the ultimate torsional

strength of the nonprestressed member deduced by the skew bending theory and y the prestress
factor which in this case is given as (Hsu 1984)

| g
=1 +0-85ﬁ (13)
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Fig. 5 Predicted interaction curves of concentric prestressing force and ultimate torsional strength of concrete
elements and comparison with experimental values

where O is the prestressing stress and f, the modulus of rupture.

Thus, based on this approach, analytical curves la and 2a for the strength values of the tests in

Tables 1 and 2, respectively, are also presented in Fig. 5.

Further, comparisons of the entire experimental response curves of torque moment 7 versus
rotation 3, for prestressed concrete beams in torsion (Wafa er al. 1992), with predicted behavior
curves yielded by the proposed analysis, are presented in Fig. 6. These comparisons comprise of 5
cases (see also Table 1) with prestressing levels vp=P(bh f.' )=0, 0.18, 0.20, 0.36 and 0.31. The
mean value of the ratio of the measured ultimate torsional capacity 7c, to the predicted one Tpeq for
these cases is 1o/ Tprea=1.03 (Table 1) with a standard deviation of 0.084. From these comparisons
it can be shown that for the examined cases the proposed analytical method describes the entire
response of the prestressed beams very well. Moreover, some differences in behavior between
experimental and theoretical results observed near the ultimate torque are attributed to the load
control conditions under which the beams (Wafa et al. 1992) were tested.

In Fig. 6 the analytical behavior curves of the beams considering stress-strain relationship for
concrete in tension without post-cracking part are also shown. From these results it can be seen that
for the examined cases the ratio 7,,,4/7, a1 [11.37, where T, is the ultimate torque taking into
account the tension softening phenomenon (post-cracking part of the stress-strain relationship) and
a=8, see also Eq. (9), and T, 4- is the ultimate torque considering a=1 in Eq. (9) (elastic stress-
strain relationship without post-cracking part).

Furthermore, experimental results concerning the influence of concentric prestressing on the

173
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Fig. 6 Comparison of experimental response curves of prestressed concrete beams in torsion with predicted
behavior curves obtained by the proposed analysis

Table 3 Comparison of experimental and predicted values for flanged beams with concentric prestressing

subjected to pure torsion ( f,'/f,,=11.3 to 16.7 with a mean value of 14.0)

Specimens Vp Fexp Ppred
by Ihylblh = I P P Tesp Tyrea Tep
30/5/1 0/25 (Cm) f;/ (kN) Aﬁf;, Texp‘PZO Tpred‘PZO rpred
Victor and Aravindan (1978) — T-beams
TC1 14.2 0.00 0.00 1.00 1.00 1.00
TC4 14.0 0.00 0.00 1.00 1.00 1.00
TBI1 13.0 74.16 0.05 1.17 1.21 0.96
TB2 14.3 74.16 0.05 1.24 1.26 0.98
TB3 15.1 74.16 0.05 1.33 1.26 1.05
TB4 12.2 74.16 0.05 1.36 1.26 1.07
TB6 14.0 74.16 0.04 1.25 1.26 0.99
TBI11 13.7 148.33 0.09 1.46 1.51 0.97
TB16 11.3 148.33 0.12 1.51 1.54 0.98
TB17 16.7 148.33 0.08 1.41 1.49 0.95
TB21 14.8 148.33 0.09 1.45 1.51 0.96
TB24 13.0 296.65 0.20 1.81 1.94 0.94
TB25 13.5 296.65 0.18 1.81 1.94 0.94
TB26 14.2 296.70 0.18 1.97 1.94 1.02
Mattock and Wyss (1978) — I-beam
Al 15.8 966.22 0.15 1.53 1.54 1.00
Mean value: 14.0 0.986
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beams and comparison with experimental values

predictions by the proposed approach.

Mattock and Wyss (1978), are presented in Table 3 and Fig. 7 and compared with the analytical

Comparisons of analytical predictions of the ultimate torque and experimental data compiled from
Mattock and Wyss (1978) for flanged girders (with I-shape cross-section) tested in torsion combined
with flexure, shear and prestressing are presented in Table 4. From these comparisons it can be
concluded that the proposed analytical model predicts well the ultimate torque of flanged beams

AL
Fig. 7 Predicted interaction curve of concentric prestressing force and ultimate torsional strength of flanged

o
()

subjected in torsion combined with flexure, shear and prestressing (Karayannis 1994).

Table 4 Comparison of experimental (Mattock and Wyss 1978) and predicted values for flanged girders (I-
shape) tested in torsion combined with flexure, shear and prestressing (In the analysis the softening

coefficient is taken a=7.0)

fc' fsp P M vV Texp Tcal Téxp
Code name
(MPa) (MPa) (kN) (kNcm) (kN) (kNcm) (kNcm) Tea
Al 5241 3.68 966.22 - 11.56 4451 4760 0.94
A3 49.38 3.70 956.44 19941 163.56 5100 4952 1.03
Ad 49.17 3.81 962.22 39068 320.44 4447 4526 0.98
AS 51.52 3.82 955.56 59659 489.33 1534 1565 0.98
A7 53.24 4.03 987.56 26767 92.44 4677 4920 0.95
A8 50.83 3.72 963.56 43886 151.56 3781 3972 0.95
A9 46.97 4.23 976.44 59971 207.11 2429 2026 1.20
Mean value: 0.998
Standard deviation: 0.115
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Analytical curve
f'=19.5 MPa

Experimental data:
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Fig. 8 Contribution of T-beam flanges to the torsional capacity

The lack of knowledge of the contribution of the flanges of T-beams to the shear resistance is
emphasized (Zararis and Penelis 1986). In this work, the contribution of the flange of T-beams to
the torsional capacity based on the proposed method is also examined. Thus, in Fig. 8 the curve of

the ratio 7,/T,, .., versus by/b is presented. T, .., is the ultimate torque of the beam without flanges
(rectangular cross-section) and by is the width of the flanges.

Finally, interaction curves of the torsional strength increase 7),/T)— versus the applied prestressing

15 MPa

Fig. 9 Interaction curves of concentric prestressing force and ultimate torsional strength for
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level vp=P(4,. f.") obtained using the proposed analysis, for high strength concrete f.' =55 MPa
(curve H), for commonly used concrete f.' =28 MPa (curve M) and for low strength concrete

/. =15 MPa (curve L), are presented in Fig. 9. It is noted that the effect of the concrete strength on
the torsional capacity of prestressed concrete elements needs more discussion since the validation

comparisons included in the present work were mainly for concrete strength between 35 to 45 MPa.

7. Interaction of torsion and eccentric prestressing

The influence of eccentric prestressing on the ultimate torsional strength of concrete beams is also
studied. In this case, a constant bending moment without shear force along the entire length of the
beam is developed.

Interaction curves of 7,/Tp—, versus the applied prestressing level vy=P/(4. f."), for three different
prestressing eccentricities expressed in terms of the developed flexural moment, are presented in

Fig. 10. The level of the applied flexural moment is expressed in terms of the ratio v, of the
applied moment A to the ultimate flexural moment A, of the element without prestressing (P=0)
and torsion (T=0), which is easily calculated as

bh*

M,,Zl -1 which for rectangular sections becomes Mf? ..
C
where £, is the modulus of rupture and y,. the distance of the centroidal axis from bottom.

(15)

and £,=0.7 JE (in SI units), respectively.

Interaction curves of Fig. 10 were calculated for concrete compression strength f.' =28 MPa
while the tensile strength /., and the modulus of rupture f, were estimated (ACI 318) as f.,~0.5 JE

From Fig. 10 it can be concluded that increasing the eccentricity of the applied prestressing force
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Fig. 10 Interaction curves of prestressing force
(eccentric prestressing)

and ultimate torsional strength combined with flexure
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decreases the influence of the prestressing on the ultimate torsional strength of the element. For the
examined cases, this decrease ranges from 0 to 17.2% for applied flexural moment level v,~0 to
0.75, respectively.

8. Interaction of torsion and prestressing combined with shear and flexure

The influence of the prestressing force on the ultimate strength of concrete beams subjected to
torsion combined with shear and flexure, is also studied in this work.

Interaction curves of 7,/Tp-, versus the applied prestressing level Vi for concrete compression
strength f.' =28 MPa and loadings which include combined shear and flexure, are presented in Fig.
11. The level of the applied shear force is expressed as the ratio vj- of the acting shear V' to the
ultimate shear strength ¥V, of the section in pure shear state without prestressing and torsion (P=0
and T=0). The maximum shear stress for a rectangular cross-section is given as T,.=(3/2)(V/bh)
and considering that 7,,,, [If., it concluded that V,, [0(2/3)bAf,,.

Thus, from Fig. 11 it is concluded that in elements under combined torsion and shear, the ultimate
torsional strength can be significantly improved by the influence of the acting prestressing force.
Further, in the Fig. 11 shown is that for the case of an element under shear level v,,=0.95 without

11.0 -

AL

Fig. 11 Interaction curves of prestressing force and ultimate torsional strength for combined loading with
shear and flexure



Strength of prestressed concrete beams in torsion 179

1 Curve for (T/T)*+(V/V,)*=1 & P=0

* ACI limit for prestressed concrete

Fig. 12 Interaction curves of /T, versus V/V,, for various levels of prestressing (Vp=0, 0.2, 0.45 and 0.5)

flexure, the ultimate torsional strength 7» can be increased up to 10.5 times for an applied
prestressing level of v,=0.5, compared with the torsional strength of the element without the
influence of the prestressing force 7p—. The favorable influence of the prestressing force on the
ultimate torque decreases as the flexural load increases. Thus, for the previous case, if a flexural
moment equal to 0.75M, is also applied on the element the ultimate torsional strength becomes only
5.3 times greater than the torsional strength without the influence of the prestressing force Tp—.

Furthermore, aiming to a better understanding of the influence of the prestressing force on the
capacity of elements under combined torsion and shear, interaction curves of torsion versus shear
for different levels of prestressing (V»=0, 0.2, 0.45, 0.5) are presented in Fig. 12. The torsion and
the shear are expressed in terms of the ratio 7/7,, and V/V,,, respectively, where T,, and V,, are the
ultimate torque and the shear strength of plain concrete, respectively. In Fig. 12 the values of 7.,
and V., are taken as (ACI 318):

T,,=1.6 Jf.! b*h (psi) (or T,,=0.13 /7. b°h in SI units) (16)
V. =2.68.Jf.! bd (psi) (or V,,=2.22 Jf." bd in SI units) (17)

In Fig. 12 the predicted interaction curves are also compared to the curve produced by the relation
(T HVIVa)=1 (18)
which holds for elements without prestressing V»=0 (ACI 318 1971 through 1989).

9. Concluding remarks

A theoretical tool for the analysis and the prediction of the ultimate strength of prestressed
concrete beams under torsion and torsion combined with shear and flexure, has been introduced.
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The approach takes into account the post cracking softening response of concrete in tension and it
can be applied to elements with practically any cross-section since it utilizes numerical mapping.
Predictions by the proposed method have been compared with the experimental results compiled
from works around the world in an attempt to establish the validity of the approach based on a
broad range of studies. These comparisons were made for prestressed concrete rectangular and
flanged beams in pure torsion as well as in torsion combined with shear and flexure. From these
comparisons it can be concluded that for all the cases examined, the proposed analytical method
predicts well the ultimate torsional strength and the influence of the prestress on it. Further, using
the proposed analysis as a tool, strength interaction curves between ultimate torsion and prestress
level have been produced. The influence of flexure on these interaction curves has been examined
too. Finally, the influence of the applied prestress level on the strength of beams under torsion
combined with shear has also been examined and presented in the form of interaction curves.
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