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A study of dynamic responses of incorporating
damaged materials and structures

Wohua Zhangt, Yunmin Chent and Yi Jin
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Abstract. This paper concerns the development of a computational model for the damage evolution of
engineering materials under dynamic loading. Two models describing the anisotropic damage evolution of
a material are presented; the first is based on a power function of the effective equivalent stress and the
second on the damage strain energy release rate. The methods for computing the damage accumulated in
structural components and their implementation in a finite element programme are presented together with
some numerical results. The dynamic response of a damaged structural component and the dynamic behaviour
of a damaged material have been studied numerically. This study shows that the frequency spectrum of a
damaged structure is down-shifted, while the damping ratio of damaged materials becomes higher, the
amplitude of the response significantly increases and the resonance ensuing from the damage growth still
occurs in a damaged structure.
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1. Introduction

When a structural component is subjected to impact or dynamic loading, its response can cause an
elevation of the stress level especially in a damaged zone or in the region surrounding a crack or a
defect. In particular, the micro structure of the material within the damaged zone is significantly
changed compared to its undamaged state, due to the activation and growth of the damage. As a
result, for example, the frequency decreases and both the damping ratio and the amplitude increase.

During damage evolution, the macroscopic properties of the material change too (Cordebois and
Sidoroff 1982, Marigo 1985). In most cases, the deviation from the elastic response derives from
the nucleation of new micro-cracks and the growth of existing micro-cracks. So it can be said that
the non-linear behaviour of such materials arises as a consequence of the irreversible changes of the
microstructure, which is what happens in a damage process (Fahrenthold 1991, Kachanov 1986).

Hence when analysing damage-mechanics problems, not only the damage initiation, growth and
failure of a structure need to be taken into consideration, but a number of other mechanical
properties of the material also need to be looked at (Zhang 1993, Zhang and Valliappan 1998).
These properties may include elastic modulus, ultimate strength, yield stress, fatigue limit, creep
rate, damping ratio and heat conductivity. The effects on these propertiecs may be even more
significant in cases of anisotropic damage (Cordebois 1982, Zhang and Valliappan 1990).
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In the present study, Audoin and Baste developed a specific ultrasonic device by evaluation of
stiffness tensor changes due to anisotropic damage in a ceramic matrix composite in order to
identify damage in a material (Audoin and Baste 1994). Pandey and Biswas developed an analytical
model for detecting and locating damages in structures using changes in flexibility matrix (Pandey
and Biswas 1994). Gamby et al. (Gamby 1997) presented a model to predict non-uniform
development of damage induced by kinematic wave in composite laminates.

It is of paramount importance in Civil Engineering to be able to predict the effects of damage on
the frequency and dynamic characteristics of a structure, especially under dynamic loading. To this
end, the dynamic response of a damaged structural component and the dynamic behavior of a
damaged material are dealt with this paper within a continuum damage-mechanics approach.

From the numerical examples presented here, it was found that the dynamic loading applied to a
damaged structure, leads to a significant growth and propagation of the damage, to a reduction of
the natural frequencies of the system and to a state of resonance. In studying the properties of the
damaged materials, it was found that the damping ratio increased significantly, whereas the
equivalent viscous damping and critical damping decreased, owing to damage growth.

2. Finite element equations of a damaged body

The concept of anisotropic damage can be considered in two cases, the first is in an isotropic
material, the second is in an anisotropic material. Thus, the anisotropy in damaged materials may be
resulted only from the anisotropic damage in the first case or both by the anisotropic damage and
the anisotropy of material in the second case. The term of anisotropy in this study is considered in
the second case if without special indication.

The finite element equation representing an anisotropcally damaged body can be presented as

[M{ T} +[C(Q(e){ U +K (QO)) N UY={ P(1)} (1
where [M]= f P[N1'[N]dv is the mass matrix for a damaged element, [K (Q(¢))]= I[B]
(711011 U] [B]dv is the time dependent stiffness matrix for an anisotropically damaged element
{P(1)}= I [N]'{O(:)} ds+ I [N]'{ F(t)}dv is known as the general nodal force vector, [C*(Q(#))]

is the tlme dependent damplng matrix.
In the elastic case, the constitutive matrix of an anisotropically damaged material at a given point
and time in a general coordinate system (xyz) can be presented as:

[D'1=[7,]"[D1[T,] 2)

Where [f)*] is the elastic matrix of anisotropically damaged material in the principal coordinates of
the anisotropy (X, X2, X3) (Valliappan, Zhang and Murti 1990). In 2-D, the elastic anisotropically
damaged material can be expressed as
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The anisotropically-damaged state of a material in 3-D can be expressed by the anisotropic damage
vector {Q}={Q,, Q,, Q3}T, where the principal anisotropic damage variables, Q,, Q,, Q, are
the principal values of a second order tensor of damage. The matrix [7,] in Eq. (2) is the coordinate
stress vector transformation matrix defined in 2-D as

cos’ @ sin’6  —sin286
[7o]= sin’ @ cos’@  sin26 4)
0.5sin20 —0.5sin2 0 cos20

in which 8 is the two dimensional anisotropic orientation angle.
The relationship between the net (effective) stress vector {0} and the Cauchy stress vector {0}
for anisotropically damaged materials in the global coordinate system (xypz) can be presented as

{o}=[®"]{ o} (5)

where [®°] is the damage transfer matrix (Zhang and Valliappan 1998), which has the following
formulation in 2-D (plane stress):

cos’ 6 _ sin’@ 0 n 1 1 rpin26
1-Q, 1-Q, -, 1-Q,0 2
0 sin’ 0 + cos 0 n 1 1 rpin26
. 1-Q, 1-9Q, -9, 1-Q,0 2
()= T ©)
n 1 1 rpin26 0 sin"6 _ cos” 6
0 n 1l 1 rpin26 cos’ 6 4 sin” @
-qQ, 1-9,00 2 1-Q, 1-Q,

Since the micro-structure within a material has changed due to damage, the material constants and
the internal energy dissipation (internal damping) also change (Zhang 1993). Therefore, the stiffness
matrix and the damping matrix of a damaged element must be considered as a function of the
damage variable {Q} which varies with time. Strictly speaking, the mass density will also change
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due to the damage. However, from the point of view of mass conservation, the global mass is
unchanged, and a mass matrix independent of the damage has to be assumed. On the other hand,
damage causes a stiffness degradation, and the frequency spectrum of the structure is down-shifted
significantly. Hence, the damage has inevitable influences on the internal damping.

So far, the influence of damage on material damping has not been the subject of any major
experimental or analytical investigation. In order to discuss this problem from the point of view of
numerical analysis, it is convenient to assume a Rayleigh-type damping and the equivalent viscous
damping.

For the Rayleigh damping matrix, one can adopt the usual formulation:

[C(Q()]=a [M]+B[K (Q(n)] )

For the equivalent viscous damping matrix, we have

[C Q1= [ r (DN [N]dv ®)

where a’, B are the Rayleigh damping parameters of the damaged material, and '(¢) is the time-
dependent equivalent viscous damping coefficient.

3. Damage evolution equation

For the complete analysis of dynamic damage, it is necessary to introduce the damage kinetic
equation (Kachanov 1986) of the form

Q=Q(0,, Q, ...) ©)

It means that the damage growth rate is related to the state of stress and damage, which means -
in other words- that the damage and the stresses distributed in an element are a function of time and
position (for example in 2-D, gi(x, y, 7), Q(x, y, 1)). The time and space integration of the damage
kinetic equations in a F. E. analysis is hence difficult (Kachanov 1986, and Zhang 1992).

Most previous investigations considered the damage kinetic equation to be in the form of a power
law (Kachanov 1986, Marigo 1985). So far, two major damage evolution criteria have been
proposed for different kinds of materials. The first is a power function of an equivalent stress and
the other is based on the damage strain-energy release rate (Valliappan and Zhang 1996, Zhang and
Valliappan 1998). Both criteria have been applied in this study. In the case of anisotropy, the kinetic
equation can be represented as

O _og.
dQ, O [ Pe_( g, >0,
W:EAD“Q'D ¢="d (10)
|:| 0 acq<adi
and
D p—
dQ,_Upy"  v,>y, (11)
di
E 0 Y, <Y,
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where 4> 0, n>0 in Eq. (10) are material constants whose values depend on the rate of loading. A
and n can be evaluated by experiments, based on the three point test (Fahrenthold 1991, Gamby
1997). The parameters B> 0, k> 0 in Eq. (11) are material constants, which as well as 4 and n, can
be determined by experimental measurements using a procedure similar to that already presented
(Fahrenthold 1991). g,, can be considered as an equivalent stress based on a failure criterion, such
as von Mises, Mohr-Coulomb or Drucker-Prager (Zhang 1992, Zhang and Valliappan 1998). gy is
the threshold value of the tensile stress at the onset of damage growth in the i-th direction. The total
damage strain energy release rate ¥ can be expressed (Zhang 1992, Valliappan and Zhang 1996,
Zhang and Valliappan 1998) as

_ ] .
Y=Y+, +Y,=3{ 0} [T,]'[d ][ T.]{ 0} (12)
where Y; is the damage strain-energy release rate in the i-th anisotropic direction. Y in Eq. (11) is

the threshold value of the damage strain-energy release rate in the i-th anisotropic direction at the
start of damage growth

*_—1
_ 1 re 10 [D]
Yi=-3{0} [T,] 0, [7,]{ o} (13)
dydyds 0 0 0
dy dyydy; 0 0 0
3 *_—1 * * *
(1= o"[d%] _|dsy dy, d330* 0 0 (14)
i= i 00 0gy 0 0
00 0 0 gy O
0.0 0 0 0 g
in which
df;:;3 i<3 (15)
(1-Q)E,
L ((1=-Q)+(1-9Q))vy
d,.J:(( ’)2( 12)) © i#j, i<3 j<3 (16)
(1-Q)(1-Q)°E,
(=) +a-9y
= i#£j, i<3 j<3 (17)

&gij
T (1-9)(1-9)¢6,

The integration of Eqs. (10) and (11) can be carried out using the Newmark scheme for the
accumulation of damage increments over A¢ intervals at each Gaussian point in an element.
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4. Damping for damaged material

For the Rayleigh damping defined in Eq. (7), the damaged damping ratio " corresponding to the
i-th order vibration mode of a damaged structure can be written in similar manner to that for the
undamaged case as

* ¥ * *D
L g6 (18)
[t 0

where w,* is the i-th circular frequency of a damaged structure.

The contribution of higher order modes to the dynamic response of a structure is less significant
than the contribution of the first and second modes. Hence, the dynamic response can be approxi-
mated using only the first- and second-order damping ratios. In the case of isotropic damage, a
simple relationship can be found from Eq. (18) and the relation wf =(1-Q)w, if the Rayleigh
damping parameters a and (3 are assumed to be constant.

g« _ O
Zi_zq —Q)w,-+(1 Q)BwiD (19a)
_lga O
Zi_EEE +BwiD (19b)

The Rayleigh damping parameters o and [ can be approximately measured by a specified
frequency of a mode such as by the first or the second frequency as (o= w,, B={,/w, or
a=0{w, B={/w,) (Wang 1993). The ratio of /a can be estimated more accurately by the
geometry mean from both modes and formulated independently to the damping ratio as
B/a=1/(w, ). On the other hand, the parameters a and 8 can be approximately measured also
by two frequencies @, @, and a specified damping ratio { as a=2w w {/(w, + w,) and
B=2{/(w, + @) (Wang 1993), the ratio J/a gives the same results as B/a = 1/(w, w,) . Therefore,
a ratio of damaged to undamaged damping ratios 1;={"/{ can be defined as a function of the
damage variable Q and of the ratio between the natural frequencies i/, of the corresponding
undamaged structure;

’7(:%: 20)

Since the ratio of the natural frequency wj/w, is known when the geometrical and physical
parameters of a structure are given, Eq. (20) can describe the influence of damage on the material
damping of a damaged structure. Therefore, 1; can be defined as “the Damping-Ratio Damage
Factor” (Valliappan and Zhang 1993, Zhang and Valliappan 1998). Eq. (20) combined with Eq. (18)
can be used to evaluate the damping ratio {* of damaged materials. Thus, the damaged Rayleigh
damping parameters ", B° can be approximately determined after obtaining the damaged frequency
AW
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Introducing the equivalent viscous damping (Meirovitch 1975) for damaged and undamaged
materials by

y=2mw { 23)
V=27l (24)

where m is equivalent mass. The ratio of damaged to undamaged equivalent viscous damping can
be written as

. 14 (1-Q)P2
r]y:x:(l _(2)’7Z :—(‘)2 (25)
y ]+ﬂ
)

5. Dynamic behaviour of damaged structures
5.1. Response of damaged structure under dynamic loading

The dynamic response of a damaged structure can be obtained by means of numerical solutions
and analytical solutions. If the damage state within a damaged material under dynamic loading has
unstable characteristics, then the response of the damaged structure should be coupled with the
damage growth. For an unstable damage state, the determination of the dynamic response as
mentioned above must combine the Eqs. (11) and (12) with the governing Eq. (1).

In order to clearly and directly illustrate the effect of damage on the dynamic behavior of
materials and the dynamic response of damaged structures, in the present study, simple cantilever
beams, simply-supported deep beams (in the isotropic case) and simply-supported shell plates (in
the orthotropic case) have been studied numerically. The purpose of these analyses is to simulate

Table 1 Structural geometry and material properties of analyzed components

Structural geometry Material properties

Type Size Load E1~E2 Vi P { A~B n~k
Mpa Kg/m®
Cantilever beam  25x 1 x1 Concentratedat 1.0 x 10° 0.3 1.0 0.01
(m) free end 1.0 x 10°

Simple supported 50 x 6 x 2.5 Concentratedat 2.76 x 107 0.22 3600 002 42x107% 22
deep beam (mm) center 2.76 x 107 249%x10% 11

Simple supported 2x2x0.2  Distributed 54.2 0.26 1.0 0.01

squall plate (m) uniform 13.6
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some experimental tests on damaged structures subject to dynamic loading. The structural geometry
and material properties are given in Table 1.

In this study, the analysis of the dynamic response is based on the direct numerical-integration
method in the time domain. From the analysis, it should be noted that the results from different
integration schemes (for example the Newmark and Wilson 6 schemes) do not differ significantly
under the corresponding integration stability conditions for various damage states.

Figs. 1 and 2 numerically compare the analytical solutions (Meirovitch 1975, Zhang 1992) for the
dynamic responses in cases of isotropic damage (v =0.3, E»/E;=1, Q=0.3 and y=1.0) and orthotropic
(anisotropic) damage (Q;=0.3, Q,=0, 8=45°). The dynamic response results plotted in Fig.(1) are
for the cantilever beam with damage state Q=0.2 and viscous damping parameter y=0.1.

The results presented in Fig. 2 are dimensionless, and results for an undamaged plate are also
shown in Fig. 2. The analytical results are obtained only for the isotropic damage case using the
Laplace transformation technique and the numerical results are obtained for both isotropic and
anisotropic damage cases using the Newmark time integration technique.

The responses presented in Figs. 1 to 5 simulate the deflection at the loading point of the structure
under unit rectangular pulse loading over non-dimensional time, where w is the deflection at the
loading point of the structure and 7 is the length of the first period of time when the structure is
undamaged.

In order to illustrate the influence of damage evolution on the dynamic response of a damaged
structure, a dimensionless plot of the ratio of damaged and undamaged maximum displacements for
different representations of damage state is shown in Figs. 3 and 4 for the damaged cantilever beam.
Fig. 3 shows the ratio of damaged and undamaged maximum displacement at the free end of the
cantilever beam against the degree of damage. Fig. 4 shows the ratio of damaged and undamaged
maximum displacement at the free end of the cantilever beam versus the ratio of length of the
damaged zone to the whole length of the cantilever beam as the damage zone spreads from the
fixed and to the free end.

It is evident that the maximum displacement increases significantly with damage growth and
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Fig. 5 Effect of location of damaged element in the beam on the dynamic response

propagation. It can be seen that the value of the ratio is as high as 6 when the damage variable is
0.8. Fig. 3 can be used to illustrate the effect of the damage variable on the maximum deflection of
the damaged cantilever beam. Fig. 4 can be used to observe the effect of damage propagation on the
maximum deflection of the damaged cantilever beam. This phenomenon is defined as the concept of
Damage Propagation (i.e., damage zone expansion) in damage mechanics to distinguish it from the
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concept of Damage Growth (i.e., damage value increases) (Kachanov 1986).

Fig. 5 indicates the effect of the location of the damaged element on the deflection at the free end
of the beam as a function of the non-dimensional time. It can be observed from the dynamic
response of the structure that the location of the damage is very significant comparing cases B and
C for example, it can be seen that the response when the damage is located at the fixed end has
more effect than that when located at the middle element.

5.2. Damage evolution during dynamic response
Figs. 6 and 7 are plots of the dynamic response based on two different damage evolution laws,

under impact loading. As Figs. 6 and 7 show, the displacements and equivalent stress increase with
damage evolution when compared with the case of no damage.
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Fig. 6 Vertical displacement of the node at the bottom and middle section during damage evolution
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Fig. 7 Average net von-Mises equivalent stress in the element at the bottom and middle beam during damage
evolution
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Fig. 9 Averaged damage in an element in the central section and at different depths in the beam during
damage evolution with initial damage of 0.09

Numerical comparisons of the different damage evolution models indicate that the power function
damage evolution law based on the equivalent stress gives a faster damage growth-rate than damage
evolution based on the damage strain-energy release rate. But, when there are pre-existing micro-
cracks, the latter damage evolution law gives a much greater damage value during loading due to
the factor of (1-Q)° in Eq. (15).

In Fig. 8, the major principal stress contours at time f=0.445 msec (at which the maximum
values of stress occur) are shown. It can be observed that the elements close to the middle section
of the deep beam are more stressed than the others and hence the damage grows very rapidly at that
section.

Figs. 9(a) and (b) show damage evolution in the elements located in the central section and at
different depths in the beam, when there is an initial average damage of 0.09 in all elements. The
plots in Figs. 9(a) and (b) indicate the duration history of the averaged damage in each element for
the two different damage growth models respectively.

It should be pointed out again that in the case of zero initial damage, the damage in each element
grows faster when the damage evolution is based on an equivalent stress than in the case of damage
strain-energy release rate. The maximum value of the average damage at time #=2.5 (msec) is
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Fig. 10 Average damage contour with initial damage Q=0.09

0.155 for the damage strain-energy release rate model, and 0.32 for the equivalent stress model.

The damage evolution law of dQ/d=BY* is very sensitive to an initial damage. That is the
specimen fails faster than for the equivalent stress case. This fact has been illustrated in Figs. 9(a)
and (b). Although elements fail from time #=0.44 to 0.50 (msec) according to dQ/d=BY*, the
beam carries the load until # becomes 0.52 to 0.56 (msec). But using dQ/dt=4 (0,,/(1-Q))", the
beam carries the load until time =2.355 (msec).

In Figs. 10(a) and (b), the average damage contours according to the two different damage
evolution laws have been plotted. The damage mainly grows in the central zone of the beam
because of the greater stress concentration there.

6. Influence of damage on dynamic behavior
6.1. Influence of damage on frequency of damaged structure

The influence of damage on the natural frequencies of a continuum system has been studied using
both analytical and numerical analysis. The numerical results were obtained through eigenvalue
analysis using the Subspace Recurrence Method.

The analytical and FE solutions are compared in Figs. 11 to 13. Fig. 11 compares numerical FE
solution of the period 7* for the degree of damage in the cantilever beam with the solution of
eigenvalue analysis for various damage levels Q=0~0.8. In Figs. 12 and 13, the ratios of frequencies
between damaged and undamaged cases are presented for the square plate, both by analytical and
finite element solutions.
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Fig. 12 shows the frequency ratio @,»*/@,» for the damaged and undamaged square plate as the
damage variable Q; varies from 0 to 0.8 simulated for the case of 8=45° and Q,=0. Fig. 13 shows
the cross frequency ratio (cq_/-*/cq, i #j) for the damaged and undamaged square plate as the damage
angle 6 varies from 0° to 90° simulated for the case of Q;=0.5, Q,=0. It can be seen from these
figures that the results of FE analysis compare well with the analytical results.

The influence of damage on the diagonal frequency ratio (w,/w; i=j) and the cross frequency
ratio (a&,*/cq, i #j) between damaged and undamaged cases as the damage variable changes is
presented for three vibration modes.

It is interesting to note from Figs. 12 and 13 that the frequencies for higher modes are ‘down-
shifted’ by a larger amount than that for the lower modes. This phenomenon conforms to the
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Fig. 14 Influence of anisotropic damage angle 6 on frequency spectrum of the damaged square plate

frequency shift trend illustrated also in Fig. 14.

Fig. 14 illustrates the influence of the anisotropic damage angle 6 on the frequency spectrum of
the square plate. It can be seen that the form of down-shifted frequency for different damage angles
0 is quite regular, and the variation of frequency spectrum is symmetric about 0=45° All
frequencies have been down-shifted significantly by anisotropic damage. Whereas, the influence of
the damage angle 6 is not significant on diagonal frequencies (;, =), it is quite significant on the
cross (non-diagonal) frequencies (@), i #j). It can be seen also that the higher the frequency, the
lower the down-shift caused by damage. It should be noted that in the initial isotropic undamaged
state, the cross frequencies (@), i #) have the same magnitude both for 7j-th mode and ji-th mode.
When anisotropic damage occurs, these cross frequencies are shifted by different magnitudes and
hence they attain different values (such that w, and &) due to the non-symmetric property of the
net shear stresses (Valliappan ef al. 1990), T!»/* Z T_/,»*. However, when the damage angle reaches 45°,
the cross frequencies have the same values again.

This particular simulation may be used to identify the state of isotropic and anisotropic damage in
a structural component. From the results presented in this section, the following observations can be
made about the behaviour of damaged vibrating structures:

1. The frequency spectrum is down-shifted for all modes;

2. If the damage is isotropic, the frequency spectrum of the structure is uniformly down-shifted;

3. However, if the damage is anisotropic, the frequency spectrum shift exhibits an anisotropic
behaviour and generates different coupled cross frequencies;

4. The influence of damage angle (8) on the principal (diagonal) frequencies (@) is not as
significant as in the case of the cross (non diagonal) frequencies ().
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As a result, it may be possible to perform a back analysis for a damaged structure by inspecting
its frequencies in the damaged state. By measuring the frequency shifts of damaged structure, the
anisotropic damage state may be investigated by various parametric studies.

6.2. Influence of damage on damping ratio

In order to study the influence of damage on the damping ratio of materials, the history of the
amplitude decrements of the cantilever beam has been recorded. The procedure of the Logarithmic
Decrement Method to measure the damping of the cantilever beam (Meirovitch 1975) has been
numerically simulated for various damage states. Fig. 15 shows the simulated damage factor effects
on the damping ratio ), for various damage states 0-0.8.

Fig. 16 shows how the damage factor for damping ratio n;, viscous damping 1), and critical
damping 1. (Zhang 1992) vary with the damage variable Q for the cantilever beam where wy/w=
0.1596. From this figure, it can be seen that the damping ratio {~ increases significantly, whereas
the equivalent viscous damping and critical damping decrease when damage growth occurs. The
reason for this is that the natural frequency is decreasing significantly and critical damping also
decreases much more than viscous damping.

6.3. Influence of damage on magnification factor

From the engineering point of view, the steady-state response at a point in a structure subject to
harmonic vibrations can be simplified as the response of an equivalent mass-spring system with a
single degree of freedom. The mass should be taken as an equivalent mass, and the stiffness should
be taken as an equivalent stiffness by Rayleigh’s method. Thus, the dynamic response magnification
factor for a damaged structure can be investigated under various damage states.

Figs. 17(a) and (b) show a comparison of the well-known magnification factor (Meirovitch 1975)
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Fig. 15 Comparison of damage factor of damping
ratio n; versus damage Q

Fig. 16 Damage factor for damping ratio, viscous
damping and critical damping versus damage
variable
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Ap=wr/ Ap=ws /o
(a) Undamaged (b) Damaged case

Fig. 17 Comparison of magnification factor between damaged and undamaged cases for various damping
ratios (=0~0.8

for the cantilever beam in both damaged and undamaged cases against the frequency ratio, w/w,
for various damping ratios {=0~0.8. It can be seen that the resonance peak moves forward and

decreases with the damage. This means that, even though the excitation frequency «y is less than the
basic natural frequency @y, a resonant response may become possible in a damaged structure.

6.4. Influence of damage on phase angle

The other influence of damage on the dynamic response of a structure is the phase angle. The

¢* l2

!
0 0.5 1 1.5

S 0 05 1 15 2 25 3
Ap A
(a) Undamaged case (b) Damaged case

Fig. 18 Comparison of phase angle between damaged and undamaged cases
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phase angle of the equivalent system is defined as ¢=arctan(2{ A./1-A,?) (Meirovitch 1975).
Similarly, a damaged phase angle ¢ can be introduced for damaged material.

Figs. 18(a) and (b) show the plots of the different undamaged and damaged phase angles, when
the damping ratio varies from 0.1 to 1.5. Comparing Figs. 18(a) and (b), it can be seen that for the
case of damage variable 0.4, the “invariant point” of resonance in the phase plane, ¢~ Ap is shifted
from Ar=1 (undamaged case) to Ar =0.65.

7. Conclusions

In this study, analytical models describing the effects that damage has on the dynamic response of
a structural element and the damage behaviour of damaged materials have been developed in both
the isotropic and anisotropic cases using the finite element technique. From the results of the
analysis, the following conclusions can be drawn:

When a damaged structure is subjected to dynamic loading, because of higher stresses near the
damaged areas, the dynamic response increases significantly with the degree of damage and this in
turn influences the damage propagation. Further, the natural frequencies are reduced significantly
with the damage growth. For damaged materials, it has been found that the damping ratio increases
significantly while the equivalent viscous damping and critical damping decrease when a damage
growth occurs. Moreover, it was noted that the damage growth may turn the response of a structure
into resonance and as soon as a damage-induced resonance occurs, the stress level increases and the
damage grows even faster.

From the numerical investigation of the dynamic properties of simple damaged structures (like
cantilever beams, deep beams and square plates) the understanding of the influence of the damage
and its growth on the frequency, amplitude, phase angle, response, resonance and material damping
of dynamic systems was gained. This gives the possibility of working out a method for controlling
the damage and its growth in a damaged material, as well the dynamic response of a damaged
structure .
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