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Abstract. An alternative interpretation of the completeness requirements for the higher order elements is
presented. Apart from the familiar condition, 2;N~=1, some additional conditions to be satisfied by the
shape functions of higher order elements are identified. Elements with their geometry in the natural form,
i.e., without any geometrical distortion, satisfy most of these additional conditions inherently. However,
the geometrically distorted elements satisfy only fewer conditions. The practical implications of the
satisfaction or non-satisfaction of these additional conditions are investigated with respect to a 3-node bar
element, and 8- and 9-node quadrilateral elements. The results suggest that non-satisfaction of these
additional conditions results in poorer performance of the element when the element is geometrically
distorted. Based on the new interpretation of completeness requirements, a 3-node element and an 8-node
rectangular element that are insensitive to mid-node distortion under a quadratic displacement field have
been developed.

Key words: finite element; completeness requirements; distortion sensitivity; shape functions; geomet-
ric distortion; higher order elements.

1. Introduction

Convergence of finite element results with the mesh refinement is an important requirement to be
satisfied by any successful element. The continuity and completeness requirements (e.g., see,
Zienkiewicz 1977, Bathe 1996) must be satisfied so as to ensure convergence. The continuity
requirement demands that the shape functions must be so chosen that the assumed interpolation
function of the field variable, viz., the displacement in structural analysis, is sufficiently continuous
within and across the boundary of the elements. The completeness requirement demands that the
shape functions must be such that the interpolation function is capable of representing an arbitrary
linear polynomial displacement field exactly. In other words, the shape functions must ensure that
the element is capable of representing rigid body motion and constant strain state correctly.

The continuity requirement is usually satisfied by ensuring that the shape functions (and hence the
displacement model) are polynomials of an appropriate order. Typically, if the stiffness integrands
involve derivatives of order m, the shape functions must be at least C" continuous within the
element and C"' continuous across the element interface. The completeness requirements are
satisfied for a 2-D isoparametric element, for example, if the element shape functions, &, satisfy the
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conditions,
S N (1
> Nx=x and )
> Ny=y 3)

In the literature, the completeness requirements are frequently associated with the ability of the
element to represent an arbitrary linear polynomial displacement field. For this reason, we will refer
to these completeness requirements as the /inear completeness requirements. In the limit of mesh
refinement, the element size becomes so small that the displacement field within each element can
be considered to be linear, and hence an element satisfying the linear completeness requirements is
expected to converge to an exact solution without any problem.

It was once believed that elements satisfying the continuity and completeness requirements would
indeed, in the limit of mesh refinement, converge to the actual solution without any difficulty.
However, there have been instances which have contradicted this belief. The host of locking
problems (e.g. see, Prathap 1993, Wilson et al. 1973) and the deterioration of solution accuracy with
geometric distortion are two examples. To avoid the problem of locking, in addition to the
continuity and completeness requirements, certain other conditions have to be satisfied by the
displacement model (Prathap 1993). Non-conforming elements (e.g. see, Zienkiewicz 1977, Wilson
et al. 1973, Taylor et al. 1976) which violate the inter-element continuity requirements have been
used successfully. However, such formulations are highly sensitive to geometric distortion of the
element, and the patch test (e.g. see, Irons et al. 1972) has been introduced to check the ill effects
of the violation of inter-element continuity and completeness requirements in a global sense, i.e., for
a patch. These observations are the source of motivation for several investigations into the
continuity and completeness requirements.

It is frequently inconvenient to refine the mesh successively in order to check for convergence. As
an alternative to successive mesh refinement, higher order elements are sometimes used. In the
context of the higher order elements, however, the completeness requirements need to be interpreted
carefully. These elements use a higher order interpolation model, and attempt to obtain convergence
using fewer elements. With fewer elements, the elements are larger, and hence, the linear
completeness requirements are no longer sufficient as they ensure convergence only in the limit of
mesh refinement. Thus, for the effective use of higher order elements, it is necessary to investigate
the higher order completeness requirements of shape functions. Higher order patch tests (e.g., Taylor
et al. 1986) do address the problem of representation of higher order strain states. However, in this
paper, the problem is looked at from the viewpoint of an individual element instead of a patch. This
yields some interesting insights with regard to the additional conditions to be satisfied by shape
functions apart from the usual ones given by Eqgs. (1)-(3). An important related reference is Lee and
Bathe (1993) wherein the effect of element distortion and is relation to completeness requirement is
discussed for isoparametric elements.

The concept of completeness is closely related to the geometric distortion of the element. The
later part of this paper deals with the geometric distortion of a quadratic bar element and a quadratic
2D plane element, and hence a definition of the type of distortion that will be discussed in this
paper would be in order. Two types of distortion, viz., mid-node distortion and angular distortion as
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(a) Undistorted (reference) geometry for the (b) Undistorted (reference) geometry for the
bar element 2D plane element

(c) Typical mid-node distortion (d) Typical angular distortion

Fig. 1 Undistorted and distorted geometries for the quadratic bar and quadratic plane 2D elements

shown in Fig. 1, are considered. In the case of a bar element, a geometry with the mid-node equi-
spaced from the end nodes is referred to as the undistorted geometry. In the case of a 2D element, a
rectangular/square geometry with the mid-nodes equi-spaced from their corresponding adjacent
corner nodes is referred to as the undistorted geometry. For a bar element, only the mid-node
distortion applies. A 2D element can have either an angular distortion or a mid-node distortion or
both. In the case of the angular distortion, the element is of a quadrilateral shape with the mid-
nodes equi-spaced from the adjacent corner nodes, whereas in the case of the mid-node distortion,
the mid-node is not equi-spaced although the element is of rectangular shape. Only one type of
distortion is considered at a time. The case of simultaneous presence of both distortion types is
beyond the scope of this paper.

Angular distorted elements usually appear in the mesh generation of curved geometries and in
transition regions from coarse to fine mesh, and also in the nonlinear problems involving large
deformations. For fracture mechanics application of rectangular elements, the mid-node distortion is
sometimes introduced intentionally in order to simulate the 1//r stress singularity. The mid-node
distortion also occurs in nonlinear problems involving large deformations.

2. Conditions to be satisfied by shape functions

In this section, a complete list of conditions under which the shape functions satisfy completeness
requirements is derived for a C° continuous higher order 2-D element.
Consider a polynomial displacement field in the global Cartesian coordinate system of the form

w=agtaixt+aytatapytas’ + - @)
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v=botbx+boy+bax?+bpy+bsyt + o (5)

where a; and b; (j=1, 2, 3, ..) are undetermined constants. The nodal displacement values
corresponding to this field are given by

umagtaxFagytasy taxytasy+ (6)
Vimbotbixitbyyitbax b yitbsy” + - (7)

where i refers to a typical node number. Using the shape functions, the assumed displacement field
is written as

u=y Nu, (8)
v=> Ny, 9)

The shape functions may be assumed to be defined either in terms of the global Cartesian
coordinates (x, y) or the local coordinates (&, n).

We look for an element that can represent exactly the field given by Egs. (4) and (5). Therefore,
the shape functions need to be chosen in such a way that the element reproduces the field given by
Eq. (4) and (5) exactly at any point inside the element, when the nodes are assigned displacement
values in accordance with Eq. (6) and (7). Substituting for «, v, «; and v; from Eqs. (4)-(7), Eqgs. (8)
and (9) may be written as

2
apta\xtaytasx +a4xy+"':aogz N/H*'ala fo/D*'azglz Niyi%'
0352 Nix?D+G4§ N/xfy/%"“ (10)

b0+b1x+b2y+b3x2+b4xy+---=bogz Ni%blg fo/D*'sz}z Niyi%'

by NxigrbuEy Ny g (11

Since the constants a; and b, are arbitrary, Eqs. (10) and (11) are satisfied only if the following
conditions are satisfied:

y'=y Nalvls pog=1.2,3, .. (12)

Similarly, for a 3-D displacement field, the condition to be satisfied is of the form, x’y!z'=
SNxYIZ  pog, r=0,1,2,3, .. Eq. (12) is now interpreted for a particular element. For an 8-node
quadrilateral element, eight arbitrary constants can be accommodated in the displacement model,
and hence we may ideally want the following displacement field with eight unknown coefficients to
be represented by the element exactly:

u =aytax-taytastaxytasytagtytaxy? (13)
v =botb1x+byy+bx* +hyxy+bsy +bex*y+bixy? 14
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For this to be true, Eq. (12) yield the following eight conditions.

> NI (15)
z Nx,=x (16)
2 Ny (17)
> Npxi=x’ (18)

ZI Nixy=xy (19)
IZ Ny=y" (20)
Zl Nxiy=x"y @21)
Z Ny =xy’ (22)

2.1. Interpretation of the conditions represented by Eqgs. (15)-(22)

The condition given by Eq. (15) is well known in the literature. The conditions given by Eqgs. (16)
and (17) are also familiar although their interpretation here is rather different; these are the
conditions that need to be satisfied by the shape functions for the element to represent correctly the
rigid body motions and constant strain conditions. In the literature, Egs. (16) and (17) are usually
presented as the basis of geometric interpolation for isoparametric elements. Thus, isoparametric
formulations inherently satisfy these equations (Eqs. 16 and 17). Satisfaction of Eqs. (15)-(17)
ensures convergence in the limit of mesh refinement. Thus, the conditions, Eqs. (15)-(17), are
already known in the literature. However, the conditions given by Eqgs. (18)-(22) are rarely
discussed and hence form the focus of this paper.

When the elements have no geometrical distortion, all the conditions (Eqgs. 15-22) are usually
satisfied. In distorted situations, however, Egs. (18)-(22) are not generally satisfied. Non-satisfaction
of these additional conditions affects the performance of the element. This is demonstrated for a few
typical elements in later sections. For ease of reference, Eqs. (15)-(17) and Egs. (18)-(22) will,
hereinafter, be referred to as the linear or lower order completeness requirements and the higher
order completeness requirements, respectively.

What do the higher order completeness requirements signify? Satisfaction of Eq. (18), for
example, would mean that the x> term of the displacement field can be exactly represented by the
shape functions. The other conditions can be interpreted in a similar manner.

Eqgs. (15)-(22) represent eight conditions in eight unknown shape functions and hence can, in
principle, be solved symbolically for shape functions. However, the numerical solution may not
exist when the coefficient matrix on the left hand side is singular. For a non-singular case, solving
Eqgs. (15)-(22) appears to be an elegant approach to derive shape functions. However, the shape
functions derived thus have their limitations. The numerical problems considered later will
demonstrate this.
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2.2. Conditions based on the derivatives of shape functions

Differentiation of Eqs. (15)-(22) with respect to x, yields the following equations,

> N..=0 (23)
ZI N,-Wxx,:] (24)
2 M= (25)
Z N, x?=2x (26)
Z XYY 27)
Z N, yi= (28)
2 X YE2xy (29)
Z xy= (30)

Egs. (23)-(30) may be viewed as completeness requirements stated in terms of the shape function
derivatives. Since Egs. (23)-(30) are obtained from Egs. (15)-(22) by differentiation, satisfaction of
Eqgs. (15)-(22) would automatically mean satisfaction of Egs. (23)-(30) while the converse is not
true. Hence, Eqs. (15)-(22) represent a more stringent set of completeness requirements than Eqgs.
(23)-(30).

Incidentally, the solution of Egs. (23)-(30) immediately yields the global shape function derivatives,
N,,, i.e., the shape function derivatives with respect to x. No additional matrix inversion is required
in solving these equations as the left hand side is the same as that of Eqgs. (15)-(22). Similarly, the

derivative with respect to y, N, can also be computed.

3. Demonstrative problems

In this section, the effect of non-satisfaction of the additional completeness requirements on the
performance of the element is demonstrated for a 3-node bar element, and 8- and 9-node quadrilateral
elements.

3.1. A cantilever bar modelled as a single 3-node bar element with mid-node distortion -
Problem 1

A cantilever bar under uniformly distributed axial load modelled by a single 3-node bar element is
considered (Fig. 2). The mid-node, i.e., node no. 2, is deliberately placed away from the centre of
the element. The length, area of cross section, and Young’s modulus of the material are taken as 10,
1 and 50, respectively. No specific units are assigned to these numbers. Consistent units may be
assumed. The intensity of axial pull is taken as 10 per unit length. Although this is a trivial problem
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to be solved by the finite element method, it serves as a good example to demonstrate the effect of
non-satisfaction of the additional conditions discussed in section 2.

The exact displacement, u, of the cantilever bar under the given uniformly distributed tensile load
is expressed as u=2x—(x*/10) which is a quadratic polynomial of the form w=aytax+a-x*. This
involves three coefficients and hence we may ideally want a 3-node element to solve this problem
exactly. However, whether or not a 3-node element can solve the problem exactly depends on the
type of shape functions employed. For the quadratic displacement field to be represented exactly by
the 3-node element, the shape functions need to satisfy the following three conditions.

> N=1 (31)
> Nx=x (32)
> Naxi=x’ (33)

We now consider two different formulations to study the significance of the conditions (31)-(33).
Formulation 1: Standard isoparametric formulation of a quadratic bar element is considered. The
shape functions are as follows:

Ny==3&(1 =) (34)
Ny=(1-&) (35)
Ny=1E(1+8) (36)

Formulation 2: This formulation is new, and is based on the concepts developed in this paper.
The shape functions are derived by solving Eqs. (31)-(33). First, we substitute x=Nx;+Noxy+N3x3
(where Ny, N, and N; are given by Eqs. 34-36) on the right hand side of Eqgs. (31)-(33), and then,
solve for the new shape functions which are of the form,

Uniformly distributed tensile load of 10 units per unit length

> 5 —>—>—> > —>—>—> —> —>

ALY

1 3

2
* ? *
I d x3=10
X1:O X2 [ 3

Fig. 2 A cantilever beam under a uniformly distributed tensile load modelled with a single 3-node bar
element having mid-node distortion
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Ni==3&(1 ~ ) H,H, &)
Ny=(1 - &)H,H; (38)
Ny=3 8+ 1,1, (39)
where
le(za—l)gzz(cx—l) (40)
H,=(2a-1)é-1 (41)
_(2a-1)é=2a
Hy= 2(1 —a) (42)
X)X
a—x—3 . (43)

The quantity a, defined in Eq. (43), provides a measure of mid-node distortion. Let us now
investigate if the conditions, Eqs. (31)-(33), are satisfied by Formulation 1. Using Eqs. (34)-(36), it
is easy to verify that the first condition (Eq. 31) is satisfied identically. The second condition (Eq. 32)
is satisfied inherently as we will be using the isoparametric formulation with Eq. (32) itself as the
interpolation formula for x. Let us now check the third condition (Eq. 33).

Substituting for N;’s (from Egs. 34-36) in Eq. (32), x may be written in terms of & as

x=cotc|E+c, & (44)
where ¢, i=0, 1, 2 are constants. Using Eq. (40),
xX*=(cote &+, &Y =dytd, E+dr E+dy E+d,y & (45)

where d,, i=0, 1, 2, 3, 4 are constants. Thus, the expression for x* (Eq. 45), and hence the right hand
side of Eq. (33), involve & and & terms which means that, for the satisfaction of Eq. (33), the left
hand side of Eq. (33) also must involve & and &' terms. However, using the expression for shape
functions (Eqgs. 34-36), the left hand side of Eq. (33) can be shown to be a quadratic function in &.
Therefore, the third condition (Eq. 33) is not satisfied in general. However, when the mid-node is at
the centre of the element, the relation between x and & is linear, in which case, the constant ¢, in
Eq. (44) and the constants ¢,, d; and d; in Eq. (45) vanish. Hence, for this special case, both the left
and right hand side of Eq. (33) are quadratic functions of &, and Eq. (33) is satisfied.

Another way to check if Eq. (33) is satisfied is to rewrite Eq. (33) in the form of a residue,
R=%,Nx?-x°, and then substitute for x using Eq. (32) and N;’s using Eqs. (34)-(36). The resulting
expression for the residue is simplified to yield

R=5 (1 =20, + 1) &(1 = &) (§-2)-28x, 10, +2)) 46)

It can be easily verified that the residue, R, reduces to zero when the mid-node is located at the
centre of the element, i.e., x,=(x+x3)/2.

For Formulation 2, the conditions, Eqs. (31)-(33), are inherently satisfied whatever the position of
the mid-node, as the shape functions themselves have been derived by solving Egs. (31)-(33). Table 1
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Table 1 A summary of the completeness requirements satisfied by Formulations 1 and 2
of Problem 1 under mid-node distortion

Completeness requirement Formulation 1 Formulation 2 (new)
2N=1 Eq. 3D Yes Yes
2Nx~=x Eq. (32) Yes Yes
T N =x Eq. (33) No Yes

summarises our observations on the satisfaction/non-satisfaction of Eqs. (31)-(33).

For the numerical solution of the problem, consistent load vectors are used in both formulations.
The stiffness matrix and the load vector are evaluated with 3 Gauss points, which is the exact
numerical integration for both formulations. The numerical results of this demonstrative problem are
presented in section 4.1.

3.2. A cantilever beam under pure bending modelled with one 2D rectangular element
with mid-node distortion - Problem 2

A cantilever beam of size 10 X 2 X 2 is subject to a pure bending moment of 4000 units applied at
the free end (Fig. 3). This problem is modelled using one 8-node/9-node rectangular element. One
of the mid-nodes, i.e., node no. 6 (Fig. 3), is deliberately placed away from the mid-side position.
Young's modulus of the material and Poisson’s ratio are taken as 1500 and 0.25, respectively. Three
different formulations are considered.

Formulation 1: Standard isoparametric formulation of the quadratic Serendipity element (8-node)
is considered. The shape functions are as follows:

4000

VIV IVL

10

(a) A cantilever beam under pure bending

L Y
7 6 5 2000
u7=0 —
9
us=0 @38 ° 7 >
X
u;=0, v;=0 -
1 2 3 2000
5

(b) An one-element finite element model

Fig. 3 A cantilever beam under a pure bending load modelled with one plane rectangular element (8-node/
9-node) having mid-node distortion
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N=3(1+ EE)(1 +1n)(£&,+ 110, = 1), for comer nodes (“7)

2 2
N+ £8) (1 -+ L+ an)(1 - 8), for midmnodes (48)

Formulation 2: The shape functions are obtained in principle by solving Egs. (15)-(22). Analytical
solution of these equations would yield expressions for the shape functions that are too long to
handle, and hence is not of interest. For computing the stiffness matrix, it is sufficient to compute
the numerical values of shape function derivative at the sampling points of numerical integration,
and these values are directly obtained by solving Egs. (23)-(30) numerically. Other details regarding
this formulation are given in Appendix A.

Formulation 3: Standard isoparametric formulation of a 9-node Lagrangian element is considered.
The shape functions are as follows:

Ny=(1-&)(1-n) (49)
N2 (14 (1 =) (50)
N3 (1= E)(1 =)= &)
N3 (1 =) (1 - = (52
N2 (1= E)(1+n)-3? (5)

N=3 0+ (1 M-S+ M- e
N (1=)(1 = )=5(V + o) = (59)
Ny (1=§) (1) -5 (V; + N - (56)
N (L)1) =5 (Vy + N5) -3 57)

The pure bending moment is simulated by two equal and opposite forces of 2000 magnitude as
shown in Fig. 3. In all the three formulations, the stiffness matrix is evaluated by the numerically
exact 3-point Gaussian quadrature.

The solution to a cantilever beam under pure bending moment involves a quadratic polynomial in
x and y. A quadratic displacement field in x and y involves six unknown coefficients, viz ay, a1, a,
as, a4 and as of Eq. (13), and by, by, b, b3, by and bs of Eq. (14). An 8-node element can handle
eight unknown coefficients. For a quadratic displacement field to be represented exactly by an 8-
node rectangular element, the conditions to be satisfied are given by Eqs. (15)-(20). It is easy to
verify that the condition, 3,NV=1, is satisfied by Formulation 1; also the conditions, 2,Nx=x and
2. Ny=y, are inherently satisfied because of the isoparametric formulation. Similarly, all these three
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Table 2 A summary of the completeness requirements satisfied by Formulations 1, 2 and 3 of Problem 2
under mid-node distortion

Formulation 1 Formulation 2 Formulation 3

Completeness requirement

(8-node ‘Serendipity’) (new) (9-node Lagrangian)
ZN=1 Eq. (15) Yes Yes Yes
2Nx~=x Eq. (16) Yes Yes Yes
ZNy=y Eq. (17) Yes Yes Yes
S Nx=x* Eq. (18) No Yes No
ZNxy=xy Eq. (19) No Yes No
SNy= Eq. (20) No Yes No
SNxPy=*  Eq.(21) No Yes No
SNxy’=xy> Eq.(22) No Yes No

conditions are also satisfied by Formulations 2 and 3. The rest of the conditions were tested using
Mathematica software. The results are summarised in Table 2.

It is seen from the table that Formulation 2 satisfies all the conditions, and Formulations 1 and 3
satisfy only the first three conditions. The numerical results of all the three formulations are
discussed in section 4.2.

3.3. A cantilever beam under pure bending modelled with two 2D elements with angular
distortion - Problem 3

We consider the same cantilever problem with all the three element formulations as in Problem 2.
However, two elements are used here along the length, and the angular distortion as shown in Fig. 4
is considered instead of the mid-node distortion. As in Problem 2, it is easy to show that all the
three formulations satisfy only Eqs. (15)-(17). Mathematica is again used to test the rest of the
conditions, Eqs. (18)-(22). The results are summarised in Table 3. It is seen from the table that
Formulation 1 satisfies only the first three conditions, Formulation 2 satisfies all the conditions, and
Formulation 3 satisfies the first six conditions.

It is seen from Tables 2 and 3 that Formulation 2 satisfies all the completeness requirements.
However, it is easy to verify that it does not satisfy the inter-element compatibility. Formulation 1,

| I

Fig. 4 A cantilever beam under a pure bending load modelled with two plane rectangular elements (8-node/

7 6 13 12 2000
u7=0 g \d i
ug=0 @38 e 14 4 =15 T -
Element no. 1 Element no. 2 X
u1=0, V|=0 @ TS
1 2 9 10 2000

9-node) having angular distortion

o
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Table 3 A summary of the completeness requirements satisfied by Formulations 1, 2 and 3 of Problem 3
under angular distortion

Formulation 1 Formulation 2 Formulation 3

Completeness requirement

(8-node ‘Serendipity’) (new) (9-node Lagrangian)
ZN=1 Eq. (15) Yes Yes Yes
2Nx~=x Eq. (16) Yes Yes Yes
ZNy=y Eq. (17) Yes Yes Yes
S Nx=x* Eq. (18) No Yes Yes
ZNxy=xy Eq. (19) No Yes Yes
SNy= Eq. (20) No Yes Yes
SNxPy=*  Eq.(21) No Yes No
SNxy’=xy> Eq.(22) No Yes No

however, satisfies the inter-element compatibility, but only the first three completeness requirements.
Formulation 3 satisfies the inter-element compatibility and the first six completeness requirements,
viz. Eqs. (15)-(20) which are just required to capture exactly the quadratic displacement of the
problem. The numerical results of the problem are presented in section 4.3.

4. Discussion of numerical results

4.1. Results for Problem 1

The displacement values computed by the two formulations are plotted in Fig. 5. The following
are the main observations:
1. Formulation 2 gives exact displacements at every point in the element whatever the position of

12

u(x) s P |

s« s & 1 8 5 1
Distance along the length of the element, x
Fig. 5 Computed displacement values, #(x), for Formulations 1 and 2 of Problem 1 (——, Exact solution,

Formulation 1 for x,=5, Formulation 2 for any x,: 0<x,<10Q; ------ , Formulation 1 for x,=3; —-—-—,
Formulation 1 for x,=7)
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Table 4 Error in the displacement of the mid-node for Formulation 1 of Problem 1

X a:u % error, By x 100
X3 —X; Uy

1.0 0.1 —-117.8947

3.0 0.3 -10.9804

5.0 0.5 0.0000

7.0 0.7 —6.1538

9.0 0.9 —22.6263

mid-node.

2. Formulation 1 gives exact displacements at every point in the element for x,=5, i.e., only when
the mid-node is at the centre of the element.

3. For other values of x,, Formulation 1 generally gives inaccurate displacement distribution. How-
ever, at the end nodes it still gives the exact results. The error in the displacement of the mid-
node for typical mid-node positions is shown in Table 4.

The poorer performance of Formulation 1 is a direct consequence of non-satisfaction of the
completeness requirement given by Eq. (33). In order to prove this fact, an error model is developed
now. Let us start with the error, £, introduced by non-satisfaction of Eq. (33).

E=x2—z N,-xf (58)

The error in the shape functions, AN, is given by the solution of the simultaneous equations,

Z AN =0 (59)

> ANx=0 (60)

Z AN,-x,?=E (61)
Let

M=Ni+AN, (62)

Using the shape functions, M,, the stiffness matrix and load vector are derived in the usual manner.
The equations for the element may be written in the form

(K+DK)(u+Du)y=P+AP (63)

where K, u and P are the exact stiffness matrix, displacement vector and load vector, respectively,
and AK, Au and AP are the corresponding quantities due to the error in shape functions.
Eq. (63) is re-written as

Au=(K+AK)™" (AP-DAKu) (64)
where

u=K"'P (65)
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&x)

Al Y
i
_ob 1
B0 ] 2 3 3 5 s 7 5 9 10
Distance along the length of the element, x
Fig. 6 Computed strain values, &x), for Formulations 1 and 2 of Problem 1 (——, Exact solution,
Formulation 1 for x,=5, Formulation 2 for any x,: 0<x,<10; ------ , Formulation 1 for x,=3; —-—-—,

Formulation 1 for x,=7)

After simplifying the expressions for Au and u, the expression for the error in the displacement of
the mid-node is obtained as

Au, 7(1-2a)’

u, 20a(a-2) (66)

where a is defined in Eq. (43). It is easy to verify that Eq. (66) exactly predicts the errors shown in
Table 4. This proves that the error in the finite element solution with Formulation 1 is entirely due
to non-satisfaction of the completeness requirement, Eq. (33).

Fig. 6 shows the plot of strain distribution along the length of the element. It is seen from Fig. 6
that the distribution is linear (as it should be based on an exact solution) for Formulation 2
regardless of the position of mid-node in the range, 0 < x, =< 10. For Formulation 1, the distribution
is generally nonlinear except for the case of x,=5.

4.2. Results of Problem 2

The results for Problem no.2 are shown in Tables 5 and 6 which demonstrate the effect of mid-

Table 5 Computed vertical displacement at node no.5 (Fig. 3) for Problem 2

Mid-node Formulation 1 Formulation 2 Formulation 3
off-set, 0 (8-node ‘Serendipity”) (new) (9-node Lagrangian)
0.0 100.0 100 100.0
1.0 74.9 100 752
2.0 39.5 100 30.6
3.0 12.8 100 11.7
4.0 9.8 100 8.2

Exact solution 100




Completeness requirements for higher order elements 107

Table 6 Computed 0Oy, stress magnitude at node no. 6 (Fig. 3) for Problem 2

Mid-node Formulation 1 Formulation 2 Formulation 3
off-set, & (8-node ‘Serendipity”) (new) (9-node Lagrangian)
0.0 3000 3000 3000
1.0 2445 3000 2183
2.0 1350 3000 835
3.0 428 3000 353
4.0 293 3000 284
Exact solution 3000

node distortion for the three formulations.

It is seen from Tables 5 and 6 that Formulation 2 gives exact displacement and stress values
regardless of the position of the mid-node. Formulations 1 and 3 give exact values only when 0=0,
i.e., for the case of no mid-node distortion, and for 0# 0, the computed values involve large errors.
Thus, Formulations 1 and 3 are sensitive to mid-node distortion whereas Formulation 2 is not. The
reason for the distortion insensitivity of Formulation 2 is that it satisfies (see Table 2) all the
necessary completeness requirements, i.e., Eqs. (15)-(22) for the quadratic displacement field under
consideration.

4.3. Results for Problem 3

The effect of angular distortion on the tip deflection is studied in this problem. The distortion is
introduced by varying the x-coordinate of nodes 3 and 5 (Fig. 4) by equal distances (J) in opposite
directions. While doing so, the mid-nodes are always kept at the centre of the corresponding sides.
The displacement and stress values at typical points are shown in Tables 7 and 8, respectively, for
all the three formulations. The numerical integration of the stiffness matrix was carried out with 3x3
Gaussian quadrature. It is seen from Tables 7 and 8 that Formulations 1 and 2 are sensitive to
angular distortion whereas Formulation 3 is not. Formulations 1 and 2 exhibit sensitivity to angular
distortion for different reasons: Under angular-distorted geometry, Formulation 1 satisfies inter-
element compatibility but not all the necessary completeness requirements, i.e., Eqs. (15)-(20) for
representing the quadratic displacement field of the problem (see Table 3). On the other hand,
Formulation 2 satisfies all the completeness requirements, but not the inter-element compatibility.
However, Formulation 3 satisfies all the necessary completeness requirements, i.e., Eqs. (15)-(20),

Table 7 Computed vertical displacement of node no. 12 (Fig. 4) for Problem 3

Mid-node Formulation 1 Formulation 2 Formulation 3
off-set, 0 (8-node ‘Serendipity’) (new) (9-node Lagrangian)
0.0 100.0 100.0 100
1.0 99.4 100.8 100
2.0 89.4 108.1 100
3.0 59.7 128.7 100
4.0 32.0 169.5 100

Exact solution 100
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Table 8 Computed 0Oy, stress magnitude at node no. 5 (Fig. 4) for Problem 3

Mid-node Formulation 1 Formulation 2 Formulation 3
off-set, & (8-node ‘Serendipity’) (new) (9-node Lagrangian)
0.0 3000 3000 3000
1.0 3058 3286 3000
2.0 2765 4114 3000
3.0 1627 5239 3000
4.0 629 6717 3000
Exact solution 3000

as well as the inter-clement compatibility requirement under angular-distorted geometries, and
hence, this element is distortion-insensitive for the quadratic displacement field.

It is seen that Formulation 2 resulted in exact displacements for Problem 2 (see Tables 5 and 6)
and not for problem 3 (see Tables 7 and 8). This is because of the fact that in Problem 2 the
element geometry is rectangular although it has mid-node distortion. For rectangular geometries, the
shape functions of Formulation 2 satisfy inter-element compatibility requirements in addition to all
the completeness requirements.

It is well known in the literature (e.g., Lee and Bathe 1993) that under distorted geometry, the
maximum order of polynomial up to which an element can preserve completeness generally
decreases, and the Lagrangian elements are better than Serendipity in this respect. In this paper, the
problem of degeneration of the completeness has been looked at from a different perspective. The
conditions (Eq. 12) that the element shape functions need to satisfy in order to preserve the original
completeness of the undistorted element have been presented. Further, these conditions have also
been exploited successfully to develop a distortion insensitive 3-node bar element, and an 8-node
rectangular element that is insensitive to mid-node distortion.

5. Conclusions

An alternative interpretation of the completeness requirements of higher order C° elements is
presented in terms of certain conditions to be satisfied by the shape functions. These conditions are
of the form,

S NaWZ=Y L pog.r=0,1,2,3, .n (67)

where » is the number of nodes in the element, and x"y?z" is a typical monomial term in the
polynomial displacement model. All these conditions are usually satisfied by the existing elements
in their undistorted geometry. However, under geometric distortions, not all the conditions are
satisfied. The significance of non-satisfaction these conditions has been investigated for three typical
elements. The following are some of the important observations:
1. Non-satisfaction of these conditions leads to poorer performance under geometric distortions of
the element. For a 3-node bar element (Formulation 1 of Problem 1), an error model (Eq. 66)
for the mid-node displacement has been derived based on the residue of that condition (Eq. 33)
which is not satisfied.
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2. A 3-node bar element that is insensitive to mid-node distortion has been developed by solving
the set of equations representing the necessary completeness requirement of the problem given
by Eq. (67). This approach can be directly extended to any higher order bar element.

3. Extension of the above method to develop distortion-insensitive 2-D elements is more challeng-
ing. For example, such an 8-node quadrilateral element works well only for mid-node distor-
tions (Problem 2) and not for angular distortions (Problem 3). This is because the shape
functions thus derived do not satisfy the inter-element compatibility under angular distortions.

4. The shape functions of the 9-node Lagrangian element for Problem 3 satisfy, in addition to
satisfying inter-element compatibility across the element boundaries, all the necessary complete-
ness requirements under angular distortions, and hence the element’s insensitivity to angular
distortions.
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Appendix A
Formulation of the 8-node plane element that satisfies all the completeness requirements

The starting point for this formulation is the set of completeness conditions represented by Eq. (12). For
convenience we denote these conditions in the form,

PN=P (68)
where
P:[P1>P2>P3a"'>P8] (69)
Pi:[lo Xis yia xlgi xiy[: yfax?y[: x[yl?]] (70)
N:[le NZ: N})"':N8]] (7])

P=[1, x, 3, %, xp, ¥ Xy 0] (72)
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and the subscript i (1 = i < 8) refers to a typical node number. The shape functions, V,, are obtained in princi-
ple by solving Eq. (68).

N=P'P (73)

The strain-displacement matrix, B, is obtained as,

N, 0| [(P'P) 0
B-lo N-| 0 (#hy 74

N Nd (P (PP

where the subscripts x and y refer to derivatives with respect to x and y, respectively. The stiffness matrix, K,
is obtained as,

K= L,BTDde (75)

The expression for B and hence K in Eq. (75) involves the global coordinates, x and y. In order to facilitate
the numerical integration of Eq. (75), x and y are expressed in terms of the local coordinates ¢ and 1) using
the shape functions given by Eqs. (47) and (48), in which case, Eq. (75) takes the form,

K=[ [, B'DB ( Dei[J]d&dn (76)

where J is the Jacobian matrix and ¢ is the thickness of the element. Gaussian 3x3 integration rule is used to
integrate Eq. (76).





