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Free vibration analysis of multiple open-edge cracked
beams by component mode synthesis

M. Kisat and J.A. Brandoni

Cardiff School of Engineering, University of Wales, Cardiff, U.K.

Abstract. This study is an investigation of the effect of cracks on the dynamical characteristics of a can-
tilever beam, having multiple open-edge transverse cracks. The flexibilities due to crack have been
identified for several crack depths and locations. In the study the finite element method and component -
mode synthesis methods are used. Coupling the components is performed by a flexibility matrix taking
into account the interaction forces. Each component is modelled by cantilever beam finite elements with
two nodes and three degrees of freedom at each node. The results obtained lead to conclusion that, by
using the drop in the natural frequencies and the change in the mode shapes, the presence and nature of
cracks in a structure can be detected. There is some counter-evidence, however, that the effects due to
multiple cracks may interact to make detection more difficult than for isolated cracks.
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1. Introduction

Vibration analysis, which can be used to detect structural defects such as cracks, of any structure
potentially offers an effective, inexpensive and fast means of non-destructive testing. Any accidental
or intentional modification in a structure will affect its dynamical behaviour and change its stiffness
and damping properties. Several authors (Gudmundson 1982, Gudmundson 1983, Chondors and
Dimarogonas 1980) have illustrated that the presence, location and severity of cracks in any
structural member can be identified by a decrease in the first few natural frequencies. Gudmundson
(1983) and Springer et al. (1988) used saw cuts to simulate open cracks and found satisfactory
agreement between their experimental results and those predicted by theoretical analysis. Cawley
and Adams (1979) used a combination of sensitivity analysis and the finite element method in their
influential study to determine crack location. Gouranis and Dimarogonas (1988) presented a finite
element model for dynamic analysis of an edge-cracked beam. In this work, in order to consider the
discontinuity in both deflection and slope due to the crack, two different shape functions were
needed for two segments separated by the crack. Qian et al. (1990) developed a finite element
model of an edge-cracked beam. They derived the stiffness matrix for a cracked beam element by
an energy method. This stiffness was given different values, depending on whether the crack was
open or closed. The sign of the stress on the crack faces determined the closure condition. This
equation of motion was non-linear requiring a time stepping numerical method. Shen and Taylor
(1991) developed an identification procedure to determine the crack characteristics from vibration
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measurements. Shen and Chu (1992) proposed a modified cracked beam theory and simulated
numerically the dynamic response of simply supported beams having a fatigue crack. Abraham and
Brandon (1995) and Brandon and Abraham (1995) presented a method of utilising substructure
normal modes to predict the vibration properties of a cantilever Timoshenko beam with a closing
crack. Recently Routolo et al. (1996) conducted a harmonic analysis of a cantilever beam with a
closing crack using a finite element model of the Euler beam.

By using the component mode method, proposed by Hurty (1965), any complex problem can be
replaced by several smaller ones each of more manageable complexity - although the structure must
then be re-assembled. In this study the component mode method is used, not only to ease the problem
but, to divide a non-linear problem into two linear subsystems. The coupling process utilised in this
paper has been presented, for intact structures, by Ewins (1984) and Ghlaim (1984).

2. Theoretical model

The chosen model to investigate free vibration of cracked beams is a cantilever beam, of uniform
cross section A4, having double open-edge transverse cracks of depths r and r, at variable positions
& and &, (Fig. 1). The cantilever is divided into three components at the crack section leading to a
substructure approach, by which global non-linear system is separated into three linear subsystems.
The first component has one clamped end and one free end whilst the other components have two
free ends. The coupling of the components at the crack section is obtained via compatibility condi-
tions representing the continuity of axial load, shear load and bending moment on each side of the
crack. Discontinuities of axial displacement, transverse displacement and slope are permitted. These
discontinuities in the displacement field give the opening displacements of the edge cracks. In this
study the cracks are assumed to remain open, thus, the stiffness matrices due to cracks do not
change. Each component, in Fig. 1, is also divided into finite elements with two nodes and three
degrees of freedom at each node as shown in Fig. 2.

2.1. Stiffness and mass matrices of cantilever beam element

The stiffness and mass matrices, for a cantilever beam, have been taken from Petyt (1990)
and adapted to three degrees of freedom for each node, d={u, v, y}. The stiffness matrix for
the two degrees of freedom (v, y) for bending in the xy plane for a two-noded cantilever beam
is given by
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Fig. 1 Geometry of a cracked cantilever beam with double open-edge cracks



Free vibration analysis of multiple open-edge cracked beams 83

A

7

//// A uy B 2 c u,

f// l-/\llj -/\yz |:;3

///’ 2 v, v,
o |4|® 5 c

F u 91 82 2 F,
l:"'sl F\Vll CE) I-'/\Ilz FF64
£ Y Y, 5

2
- L

Fig. 2 Components and dividing them into the finite elements
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where a=L/2 is half length of an element, E is the Young’s modulus of elasticity and I, is the
section moment of inertia and
EI
KAGd’

in which x is the shear correction factor, G is the shear modulus and 4 is the area of the cross
section of the element. The stiffness matrix for the one degree of freedom {u} local axial dis-
placement in the x direction is (Petyt 1990),

Ku = E%El_ﬂ )

B = @

Finally, the total stiffness matrix for all the three degrees of freedom for each node is given by:

K1 0 0 K12 0 0
0 K11 K12 0 K,13 K,14
K, - | 0 K2l K22 0 K23 Ko @

K2l 0 0 K220 0
0 K31 K32 0 K33 K34

| 0 KAl KA2 0 K43 K44

(6x )

(The same structure of equation has been used previously by the authors for a closely related
problem (Kisa et al. 1998) but with different coefficients).
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The mass matrix, for the two degrees of freedom (v, y) for bending in the xy plane for a two-
noded cantilever beam, is given (Petyt 1990) as

m m, nis mgy mo mg —my mg

(M,] = pAa m, ms —my Mg N pl, mg Mg —Mg My 5)
210(1 +3,B)2 ms —my my; —m, 3061(1 +3ﬁ)2 -m,; —mg m; —mMg
my Mg —MmM; Mg mg  my —Mg My

where

m, = 156 + 882+ 12603° m, = (44 +2318+3158)a
my =54 +378B8+6308  m, = (-26-189B-3158")a
ms = (16 +84B+ 126 )a* mg = (~12-84B-126)a (©)
m, =18 mg = (3-45B)a
ms=(8+308+1808)a" my,=(-12-308+908%)a’
in which S is given by Eq. (2).

The mass matrix for the one degree of freedom {u} local axial displacement in the x direction is
(Petyt 1990)

[My] = pAa (M

Wil— WIN
WIN W—

Now the total mass matrix for three degrees of freedom at each node can be given as

M1 0 0 My2 0 0
0 M1l M12 0 M]3 M1l4
M, = | O M1 M22 0 M23 M24 ®
M321 0 0 Mp22 0 0

0 M31 M32 0 MJ33 M34

0 M4l MA2 0 M43 Ma4|

(6x6)
2.2. The stiffness matrix due to crack

Considering the cracked node as a cracked element of zero length and zero mass (Gouranis and
Dimarogonas 1988), the crack stiffness matrix can be represented by equivalent compliance co-
efficients. The compliance matrix was taken from Papadopoulos and Dimarogonas (1987) but
adapted to the chosen beam element. The compliance coefficients matrix can be written according
to the displacement vector 6={u, v, y} as
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¢y 0 ¢p3 .
C=10¢, 0 )]

ci3 0 c3 (3x3)

The inverse of the compliance matrix C™' is the stiffness matrix of the nodal point. Thus, the
stiffness matrix of the cracked nodal element is written as

K, = {[C]_l ‘[C]_} (10)
~[CT O x|

3. Component mode analysis
Consider a component 4. The equation of motion for this component is
MyGa+ Cugu+ Kyq,4 = F4(2) (11)

where My, C4and K are mass, damping and stiffness matrices, respectively, for the component 4, ¢
and f4(?) are the generalised displacement and external force vectors, respectively. For undamped
free vibration analysis Eq. (11) becomes

MG, +K9,=0 (12)
Assuming that
g = ¢sin(wt+ P), § = - ¢sin(wt + B) (13)

and substituting them into Eq. (12), the standard free vibration equation for the component 4 is
obtained as, )

;M9 = K9 (14)
Making the transformation
qq = YySy (15)

where v, is the mass normalised modal matrix and s4 is the vector of principal co-ordinates,
general co-ordinates are transformed to the principal co-ordinates. By premultiplying /. and
substituting Eq. (15), Eq. (12) becomes

I+ ays, = Wafy(2) (16)

@4, and mass normalised modal matrix y, for the component A.

.....
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Fig. 3 Three components connected by springs

The same procedure can be followed for each components.
3.1. Coupling of the components

Consider three components 4, B and C connected together via springs (as seen in Fig. 3). The
kinetic and strain energy of the components, in terms of principal modal co-ordinates, can be given as

T = %jTMS
| (17)
= ESTMS
where T and U are kinetic and strain energy, respectively. M and K in Eq. (17) are
2
7100 w; 0 0
M=1070 K=|0 w, 0 (18)
00/ 0 0 (ch
The strain energy of the connectors, in terms of principal modal co-ordinates, is
Ue = 35" Keps (19)

where K¢ is the connection matrix comprising the stiffness matrices due to cracks. y in Eq. (19) can
be written as

vy 0 0
V=10 y; 0 (20)
0 0 vy,

The total strain energy of the system is, therefore,
l 7 T
Uy = 55 (K+y Keoy)s 21

where K has been given by Eq. (18). The equation of motion of the complete structure is
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§+(K+ v Kew)s = v (2)

where y has been given by Eq. (20), f{Y) is the global force vector for the system. From Eq. (22)
the eigenvalues and eigenvectors of the cracked system can be determined. After solving this equa-
tion, the displacements for each component are calculated by using Eq. (15).

4. Validation of the method
4.1. Theoretical background

The effects of defects affecting a single degree of freedom can be analysed using a rank-one
transformation (Brandon 1990) which computes directly the effect of the modification in structural
behaviour using the transformation matrix from spatial to modal co-ordinates. It follows immediate-
ly, for example, that the modification will have no effect on a mode - either frequency or shape - if
it occurs at a node but will have maximum effect on that mode if it occurs at an antinode (see
Brandon 1997).

More general modifications are significantly more difficult to interpret, requiring the computation
of the inverse of a matrix of the same rank as the modification. In the present study the effect of
two cracks in the structure are simulated. The addition of further defects is straightforward
algebraically and their simulation would provide few additional insights.

4.2. Effect on natural frequencies and mode shapes

In the literature the majority of work has analysed single edge cracked beams. Thus, to check the
validity of the approach, the model has been first applied to a beam having a single open edge
transverse crack. Equations for a single edge crack can be obtained by eliminating expressions for
the component C from the given equations. As can be seen from figures there is very good
agreement between the present results and those obtained by previous researchers in the field. Fig. 4
shows a plot of the ratio of the first natural frequency of the cracked beam respectively to the first
natural frequency of the corresponding intact cantilever beam as a function of the crack depth ratio
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Fig. 4 Frequency ratios for different crack positions, single edge crack
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Fig. 5 Change in the fundamental natural frequency in terms of crack ratio, single edge crack

for several crack positions. The natural frequencies of the cracked beam are, as might be expected
from simple energy considerations, lower than those of the corresponding intact beam. These differ-
ences increase with the depth of the crack. Due to the distribution of bending moment along the
beam, which is greatest at the fixed end, a crack near the free end will have a smaller effect on the
fundamental frequency than a crack closer to the fixed end. In Fig. 5 the results are compared with
the experimental data obtained by Wendtland (1973) and theoretical data obtained by Abraham (1993)
and Shen (1990).

After gaining this confidence that the method is consistent with results in the literature, the
method is applied to a multi-crack model as in Fig. (1). The five lowest natural frequencies for
various crack position pairs (£,/L=0.2; &/L=0.8 and &,/L=0.4; &,/L=0.6) and crack ratios (r/a=0.2,
r/a=0.4, ¥/a=0.6, r/a=0.8) are given in Table 1 and Table 2. The first, second and third mode shapes
are given in Figs. 6-8 for the first case (crack position &/L=0.2, &/L=0.8) and crack ratio
#/a=0.4. In Figs. 9-11 the first, second and third mode shapes are shown for crack position

Table 1 Natural frequencies of the cracked beam for &/L=0.20-£,/L=0.80
Natural freqs. &/L and &/L  r/a ratio 0.20 r/a ratio 0.40 r/a ratio 0.60 r/a ratio 0.80 Intact beam

1st mode 0.2-0.8 1020.009 966.4654 841.1242 549.5574 1037.0189
2nd mode 0.2-0.8 6439.084 6371.585 6160.185 5105.507 6458.3438
3rd mode 0.2-0.8 17675.85 16796.51 14841.10 11124.82 17960.564
4th mode 0.2-0.8 33960.71 30927.33 25454.18 18917.30 34995.429
5th mode 0.2-0.8 41096.63 40156.79 38063.39 34406.58 41368.174

Table 2 Natural frequencies of the cracked beam for &,/L=0.40-£,/L=0.60
Natural fregs. /L and &/L  r/a ratio 0.20  r/a ratio 0.40 r/a ratio 0.60 r/a ratio 0.80  Intact beam

1st mode 0.4-0.6 1028.391 999.6827 922.4313 679.2272 1037.0189
2nd mode 0.4-0.6 6301.214 5854.199 5019.251 3697.001 6458.3438
3rd mode 0.4-0.6 17686.08 16798.65 14631.89 9720.276 17960.564
4th mode 0.4-0.6 34771.10 34053.04 32153.43 28058.85 34995.429

5th mode 0.4-0.6 41080.23 39985.77 37959.20 35869.01 41368.174
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Fig. 6 First mode shape of cracked beam for &1/L=0.20-£,/L=0.80 and r/a=0.4

£1=0.04 £2=0.16

34

intact
24 ---4--r/a=04
1 4

19 0.08 0.12 0.16 02
24

x(m)

Fig. 7 Second mode shape of cracked beam for &,/L=0.20-£,/L=0.80 and 7/a=0.4
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Fig. 8 Third mode shape of cracked beam for &,/L=0.20-£,/L=0.80 and #/a=0.4

(&/L=0.4-&,/L=0.6) and crack ratio #/a=0.4. The change in the mode shapes are clearly apparent at
the crack sections.

4.3. Implications for the inverse problem
The inverse problem in this case is the identification of discrepancies between measured structural

properties and some a priori model (Doebling et al. 1996, Mottershead and Friswell 1993,
Mottershead et al. 1996, and Dimarogonas 1996). The direct problem, analysed here, gives some
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Fig. 11 Third mode shape of cracked beam for £,/L=0.40-&,/L=0.60 and /a=0.4

insights into the ability of the inverse methods to identify multiple cracks. In addition to the work of
Doebling et al. (1996), the reader is referred to the work by Ostachowicz and Krawczuk (1991),
Mares et al. (1999), Liang et al. (1992) and Hu and Liang (1993).

As has been remarked, both experimental and theoretical studies have been largely limited to the
detection and quantification of a single structural defect. What has become apparent to the authors
in the current study is that, perhaps paradoxically, the detection of muitiple defects in structures may
be more difficult than the identification of a single fault, particularly when the defects are close
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together. For example, where the single defect is identifiable by a local change in curvature, two
close defects may interact to make the curvature anomaly of each less apparent.

5. Conclusions

In this paper the analysis of the vibration properties of structures containing multiple cracks has
been presented. The method integrates the fracture mechanics and the joint interface mechanics to
couple otherwise linear substructures (using a component mode formulation). The method has been
benchmarked against known cases from experimental and theoretical studies.

Whilst the results generally confirm existing theory, it is apparent that it may be more difficult to
identify multiple cracks close together than the same cracks occurring in isolation.
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