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Vibration of elastic and viscoelastic multilayered spaces

P. Karasudhit and Y.C. Liut

School of Civil Engineering, Asian Institute of Technology, Bangkok 10501, Thailand

Abstract. The near field is discretized into finite elements, and the far field into infinite elements. Closed
form far-field solutions to three fundamental problems are used as the shape functions of the infinite ele-
ments. Such infinite elements are capable of transmitting all surface and body waves. An efficient scheme to
integrate numerically the stiffness and mass matrices of these elements is presented. Results agree closely
with those obtained by others.
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1. Introduction and nomenclature

1.1. Discretization of material domains

Analytical methods become impractical if not impossible when extended to load transfer
problems and/or multilayered half spaces. Several numerical methods have been developed to
bypass such difficulties. At the present stage of development, the most efficient numerical al-
gorithm seems to be the one that involves infinite elements for the far field and finite ele-
ments for the near field, as shown in Fig. 1 (a). The near field, consisting of the partially em-
bedded body and a finite region of the half space around it, is discretized into conventional fi-
nite elements. The far field covering the rest of the half space is discretized into infinite ele-
ments. Near the surface of the half space are horizontal infinite elements (HE), while the re-
mainder of the far field is occupied by radiating infinite elements (RE). Every infinite ele-
ment, more clearly shwon in Fig. 1 (b), has nodes only on the interface between the near field
and the far field. Rajapakse and Karasudhi (1986) for homogeneous isotropic elastic half space
assumed that the shape functions of the infinite elements have exponential forms of attenua-
tion. More rationally, far-field displacement functions of the three fundamental problems, to
be described in the next sections, should be used as the shape functions of infinite element
nodal lines as indicated in Fig. 1 (a). Symbols for Cartesian, cylindrical and spherical coordi-
nates are defined in Fig. 2.
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Fig. 1 Discretization of material domains.
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1.2. Fundamental problems

Three fundamental problems were considered by Karasudhi and Liu (1992): a homogene-
ous half space, a homogeneous full space, and two different half spaces perfectly bonded to-
gether. The Cartesian displacement components are denoted by «, v, and w, respectively; and
the cylindrical displacement components are u, , # and z, (= w), respectively. In the second
fundamental problem, the homogeneous full space is treated as two half spaces bonded together.

Plane problems are those of two-dimensional (2-D) spaces. The xy-plane is used as the
plane of reference, the xr-dimension is infinite, i.e. —oo <x< oo, while the y-dimension is con-
stantly finite or infinite. For isotropic in-plane problems, w vanishes, while » and v are func-
tions of x and y only, independent of z. In isotropic antiplane problems, # and v vanish, while
w (x, y) is the only non-vanishing displacement component. In the first fundamental problem,
the x-axis is put on the surface of the homogeneous half plane; so, 0<y<oo, In the second
and third fundamental problems, the x—axis is at the interface where the two half planes are
perfectly bonded together; so, 0<y<oo and 0=y > —co for the underlying and overlying half
planes, respectively. Unless specified otherwise, subscripts 2 and 1 are used to denote such
respective half planes.

In a three-dimensional (3-D) space, the x and y-dimensions are infinite, i.e. 0<y <o,
while the z-dimension is constantly finite or infinite. For isotropic axisymmetric problems, u,
vanishes, while «, and w are functions of » and z only, independent of &. In isotropic pure
torsion problems, #z, and u, vanish, while #, (7, z) is the only non-vanishing displacement-
component. In a general 3-D problem, there are three non-vanishing displacement com-
ponents; u#, (v, 8, 2), uy (v, 8, 2), and u, (r, 8, 2). In the first fundamental problem, the x and
y-axes are put on the suface of the homogeneous half space; so 0<z< oo, In the second and
third fundamental problems, the x and y-axes are at the interface where the two half spaces
are perfectly bonded together; so, 0<z<oc and 0=z> —oo for the underlying and overlying
half spaces, respectively. Unless specified otherwise, subscripts 2 and 1 are used to denote
such respective half spaces.

1.3. Problem numbers

In each fundamental problem, the load is of unit intensity and concentrated at the origin 0
of the reference coordinate systems. In Tables 1 and 2; the usual explicity symbols for stress
components are adopted, § denotes the Dirac-delta function, the superscript’”’ denotes the
first derivative, 0° stands for an infinitesimal positive quantity, the only inhomogeneous
boundary condition for each case is listed, and a ‘mode type’ is assigned to each case. Later
(in Tables 4 to 7), each problem will be referred to by three numerals separated by periods;
the first numeral stands for the fundamental problem number, the second for the dimensions
of the space, and the third for the mode type.
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Table 1 Mode types for plane (2-D) problems.

Fundamental Unit Load The Only Inhomogeneous Mode
Problems Type  Direction Boundary Condition Types

Force y Oy(x, 0) =—6 (1) 1

| Force x Ou(z, 0) = —6 (x) 2

Force z Oy, 0) = —8 () 3

Moment Y Oyelz, 0) = =8 () 4

P Force y Oyy1 (X, 0)—0yyy (x, 0) =6 () 1

and Force x Oy (T, 0)—0yp (x, 0) =& (2) 2

Force z Oy (X, 0)~0yz (x, 0) = 8 () 3

Moment v Oya1 (X, 0)~0un (z, 0) = 8 (2) 4

Table 2 Mode types for three-dimensional (3-D) problems.

Fundamental Unit Load The Only Inhomogeneous Mode
Problems Type  Direction Boundary Condition X 277 Types

Force z O, 0,0) =—45 (r—0%) 5

1 Force z Ou(r,0,0) ==08 (r—0%) 6

Moment z 057, 0,0) =6V (r—0%) 7

2 Force 2 0, 0,00—0,0#,0,00=8 #—0%) 5

and Force z Oar1 (7,0, 0) =0 (r,0,0)=6 (»r—0%) 6

3 Moment z Cwa(r,0,0)—0(r, 0,0 =80 (F—=0%) 7

2. Far-field solutions to fundamental problems
2.1. Qutgoing and attenuating waves

Displacement components in harmonic vibration problems take the forms
F(x, y) exp (iwt) and F(r,0, 2) exp (iwt)

for 2-D and 3-D spaces, respectively; where w is the frequency, f=time, and i=y —1 . The
inverse integral trasforms involved (Karasudhi 1991) are; for isotropic elastic planes,

f:f(v , Qp, Ag) [e-%y , e—asy] cos nxdn, f:f(v s Ap, As) (e—apy, e—asY)sin nxdn (la,b)
and for isotropic elastic 3-D spaces,

[ 7@, a0 a0 (emarz, ee2) Tntnrrdn @)
where [, is a Bessel function of the first kind, and

ap(n) = +Vn'=n%, as@)=+/n'—7} (3a, b)

in which

aw aw //1+2/z’ o = /% (42-d)

= ==, Cp=
7p p’ 7s Cs b V 0
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a is a positive real constant of length dimension, 7, and 7, are dimensionless pressure and
shear wavenumbers respectively, ¢, and ¢s are pressure and shear wave speeds respectively, A
and z are Lames constants, and o is the mass density. Together P-waves (P for pressure) and
S-waves (S for shear) are called body waves. A surface wave exists, when f assumes the quo-
tient form

F@, a, @5) = —ﬁ%f% 5)

and if the root of Fg(7) exists at 7 =7, . For the first fundamental in-plane and 3-D pro-
blems,

Fr(7) = (27%=1)% — 41%a,(1) as(n) =0 (6)

It can be shown that 7, >7s>7,=0. For the third fundamental in-plane and 3-D problems,

2 2 2
Fe@)=2%@ 2“.317731 —B37 32)2+77 A p1 @ pp 1852~ Ay s (772_,827782 )2
2 2 2
—Qppl sy (7 2_:317731)2 + 81827, Ty (@p1@s2 0 ppts;) =0 (7)

where

_ 1 _ 1 _[cs2]? .y
br=qmmy A TEen At lan] A (82-9)

Stoneley (1924) made a through investigation on the subject, thus gained the recognition in
having it named as the Stoneley wave. Koppe (1948) solved equation (7) numerically and con-
cluded that

Ts1s Msz <R < Mg 9)

where 7z, is the greater Rayleigh wavenumber among those obtained separately by solving
equation (6) for each of the constituent homogeneous half planes. There exists at the most one
Stoneley wave. The condition for such existence, found by Cagniard (1962), can be written for
the case where ;<1 as

—(B3s+B:s=2)%+ (B4—2)2 [(1—Bsr}) (1=B) |2 +B3B.L (1—7,) (1—B3)1112<0 (10)

Table 3 Wavenumbers for far field in elastic problems.

Fundamental Wavenumbers
Problems Body Surface
In-plane u, v Tps Us Tr

) Antiplane w Vs None
3-D Ur, Uz Tos Ns TR
Ug Vs None
In-plane u, v Tps Ts None
2 Antiplane w 7s None
3D ur, u, Tos Ws None
Ug s None
In-plane u, v Tors Ms1s Tozs sz 7 OF none
Antiplane w Dsts Ts2 None
3D up,u, To1s 1s1s Tens Us2 7 Or none
Uqg Ds1s Ts2 NOHC
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where y =cs/cp. The existence of body and surface waves for the field (i.e. where x or » is
large) in elastic fundamental problems is summarized in Table 3.

For isotropic viscoelastic solids, ¢, A, ¢, and ¢ are complex function of @ with both real
and imaginary parts positive, i.e.

p=p(1+iB), A=A(+iB*%), cs=cs (1+iBs), co=cp(1+iBy) (11a-d)

The body wavenumbers given by equations (4a, b) are complex, with positive real parts but
negative imaginary parts, i.e.

Eo=np—ibp, &s=ns—1s (12a, b)
Equations (3) become, respectively,

ap(n) = V0'=8s', as() = yn*=§ (13a, b)

Replacing 7 by ¢ in equation (6) or (7) and solving for its root, the surface wavenumber can be
obtained in a similar form as of a body wavenumber, i.e.

Er = 7r—1&R (14)

A wave, outgoing as x increases, has a factor exp (—:7x); while attenuations due to material
properties and geometry are represented by factors exp (—¢x) and x ", respectively, where »
is non-negative. In elastic solids, there is no material attenuation since

Ep=86 =& =0 (15a, b, c)
2.2. 2-D fundamental problems

For fundamental plane (2-D) problems, the C.P.V. (Cauchy’s principal value) of each of
the infinite integrals defined by equations (1), with ¥ =0 but large x, can be obtained in outgo-
ing and attenuating wave forms as a combination of

x " exp (—ibpx), x "exp (—ifsx), exp (—ilzx), (16a, b, ¢)
The geometric attenuation (or radiation) of the surface wave is in the order of ™%, i.e. no ra-
diation The P-wave radiation and the S-wave radiation for each problem number (assigned
in Section 1.3) are as presented in Table 4.

2.3. 3-D fundamental problems

For fundamental 3-D problems, the C.P.V. of each of the infinite integrals defined by
equation (2), with z=0 but large », can be obtained as a combination of

r " exp (—i&pr), 7 "exp (—ifs), r % exp (—ilz7) (17a, b, ¢)

The radiation of the surface wave is in the order of »'’2. The body wave radiation for each
problem number (Section 1.3) are as presented in Table 5.



Vibration of elastic and viscoelastic multilayered spaces 109

Table 4 Body wave radiation for plane (2-D) problems.

Problems Displacements P-waves S-waves
1.2.1 u, v 2732 732
1.2.2 U, v 2 23
1.2.3 w _ St
1.2.4 w - V2
2.2.1 u by (1.2.1)* x 32 T ¥

v 7302 et

2.2.2 u 12 232
« by (1.2.2) 302 232

2.2.3 w _ Ze
2.2.4 w - e
3.2.1 U, v Pl 232
3.2.2 u, v x ¥ 82
3.2.3 w - 1-_3/2
3.24 w _ 232

( )*=substitute problem, since actual problem gives trivial component.

Table 5 Body wave radiation for 3-D problems.

Problems Displacements P-waves S-waves
1.3.5 Ur, Uz 2 y2
1.3.6 Uy, Uz 7,‘2 7_—2

U - 72

1.3.7 s _ ,!
2.3.5 u, by (1.3.5)* y 2 2
Uz 7_2 7’_1

2.3.6 ur rhl er
u, by (1.3.6)* y 2 y 2

Up - ot

2.3.7 “s - !
3.3.5 Ur, Uz y2 y 2
3.3.6 Uy, Uz 7’2 7’_2
Ug - y 2

3.3.7 e - »2

( )* = substitute problem, since actual problem gives trivial component.

2.4. Underlying half plane

Results for large » inside the underlying half plane of a multilayered plane can be obtained
easily by setting, in the second fundamental problems, the x’-axis of another coordinate
system (x’, ') to coincide with a certain »-direction. Since such results happen to be at ¥’ =
0, they can be readily taken form Section 2.2. Displacement components for each problem
number (Section 1.3) are listed in Table 6.
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Table 6 Plane (2-D) problems for large r.

Problems Displacements, £’ = »
2.2.1 uy (r,0)=sin0u’ " (x’, 0)
ug (r,8) = cos v’ (z', 0)
222 uy (r,0)=cos u’*" (2’, 0)
uy (r,0) = —sin v’ “” (x', 0)
2.2.3 w @, 0)=w" (@, 0)
2.2.4 w (r,0)=cosfw’' (', 0)

2 = due to unit load in x’ -directipn, etc.

2.5. Underlying half space

Results for a large spherical radial coordinate R inside the underlying half space of a
multilayered 3-D space can be obtained easily by setting, in the second fundamental prob-
lems, the £’ -axis of another coordinate system (x’, ¥’, 2’) to coincide with a certain R-direc-
tion. Since such results happen to be at z' =0, they can be readily taken from Section 2.3. Dis-
placement components for each problem number (Section 1.3) are listed in Table 7.

Table 7 3-D problems for large R.

Problems Displacements, »' = R
235 ur (R, 4,0) = cos ¢u,, (', 0, 0)
us (R, ,6) = —sin ¢u,. (', 0, 0)
2.3.6 ur (R, $,6) = cos 0 sin du,. (', 0, 0)

us (R, ¢,0) = cos 6 cos m:l) *’,0,0)

(0]

uﬂ (R9 ¢, 6) = —Sin ¢u0r (7,’ 09 0)
237 us (R, $,0) = sin ¢u,. (', 0,0)
@ = due to unit load in z’-direction, etc.
¢ = an angular spherical coordinate.

3. Infinite elements and solution scheme
3.1. Infinite element shape functions

The far-field displacement function of the three fundamental problems obtained in Sec-
tions 2.3 and 2.5 are used as the shape functions of infinite element nodal lines as indicated
in Fig. 1 (a); i.e. the first fundamental problem is used at the surface of the half space, the sec-
ond in the interior of any homogenious domain, and the third at the interface between two do-
mains of different properties.

Only the case of 3-D problems will be presented here to illustrate the proposed algorithm.
In accordance with the definition of natural coordinates (s, t) as in Fig. 1 (b), we can write, for
HE as,
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- =S, .
y =g + s, z JZJ(t)zJ (18a, b)

and for RE as,

R=ry+s, =2L; @)

: =L ()¢ (19, b)
where L, (¢) is the Languagian polynomial corresponding to the nodal line 7, and 7, is the
radius of the near field finite element mesh as shown in Fig. 1 (b). Adopting three nodes for
each infinite element, the expression of any displacement component y is in terms of the natu-
ral coordinates as follows

3 Sm
y(s, t) = nglngl Lm(t) fmn(s) Amn (20)
where S,, is number of waves at the node m, fn, is the shape function for the wave » at the
node m, and a,, are unknown variables to be determined.
To couple infinite element with the conventional finite elements, it is necessary to find the
relationship between the nodal displacements y,, and a,, of each infinite element. In view of
equation (20), ¥, can be expressed as

Y= glfm‘i amny (m=1,2, 3) Q1)
where
1 =90, —1), 92=y(0,0), ys=y(0,1), [ =Snn(0) (22a-d)

Solving equation (21) for a,, leads to
0 n o
am = Ua) " [vm— Zfnama], m=1,2,3) (23)
Substituting the equation above into equation (20) yields

3 Sm
¥ = 2 Lol f Ga) n+ 3 Unn = Fm Ga) o 1mn |

24)
or
Y500 = 2 3 Lalt) Fanl) Gnn 03
where
Foun = fra(F o) (n=1) (26a)
=S m U e (F D) (26b)
Amn = Ym, @=1) (26¢)

= Qmn, (F1) (26d)
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Rewriting equation (25) in a more common form,

u=NU (27)
where N is a matrix of interpolation functions,
N = []_Vu_]\/lz '.;NISI—NZ_I N22-'_"N_2_32 ]-\{31 N3_2 "’N3S3] (28a)
U = [a11 a1z ais, G21 Q22" Azs, A31 Q32 """ A3sy] (28b)
in which
Numn = LnFpn (29)
In view of equation (26), we can get,
Nan(0, =) =1,  (m,n=1) (30a)
=0, (m, n+1) (30b)
Nun(0,0) =1, (m=2,n=1) (30c)
=0, (m=+2, n+1) (30d)
Nmn(0,1) =1, (m=3,n=1) (30e)
=0, (m=+3, n+1) (30f)

Functions of a displacement component of an infinite element along its nodal lines where m =
1 and 3 are, respectively,

S _ °3 -
y (s == 2D Fia(s) ain (s, 1) = B F5,(5) aan

(31a,b)
At any point inside an HE, the displacements are
u=NU (32)
where
u=[u uu], N=[N, N, Ns] (33a, b)
T

U=[a, an as a2 23z 8p a3 8z &) (330)

in which

L.F,.cos0 0 0
N, = 0 LiF o cos 0 0 (34)
0 0 L.Fopsin 6

At any point inside an RE, the displacements are symbolically the same as in equation (32),
but

u=1[up o ug I’ (35a)

T
U =[ag: ap; 8p1 8rz Bpz Qs 8rz Ap3 g3 ] (35b)
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L,Fg,cos8 0 0 (350)
Nk = 0 Lk F¢k cos @ 0 ¢
0 0 Ly.Fq.sin 8

In the equations above, which are valid only for certain asymmetric problems, a certain form
of displacements as functions of § is assumed. For axisymmetric problems, #,=0, all func-
tions involved are independent of &, so these equations should be modified accordingly. Be-
side such asymmetric and axisymmetric problems, the algorithm should be modified such that
there are element nodes at various values of 6.

3.2. Integration schemes for mass and stiffness matrices

The mass and stiffness matrices of infinite elements involve the infinite integrals, with
respect to » and R, in the form

[T exn (-t ar (36)

o

where v =% or » +1/2 (» is a positive integer).

For viscoelasticity, { is complex with R (§)=7 >0 and J ({)=&, where h and J denote
real and imaginary parts, respectively, of a complex quantity. For v #0, integrating by parts
successively yields

(Gra)™™
R _ _ exp (=&ro) §r
[ exo conar = BB 14 G5+ 4 o )
+ (1—0)(2-—1)"; T —0) fw ¥™ 7 exp (—¢r) dr (37)

For v =#x, we may stop the successive integration by parts when the remaining integrand is
»~texp (—&r) dr, and use

f r~exp (—&r) dr = Ey(rol) (38)
7o
where E, is an exponential intégral (Abramowitz and Stegun 1964), i.e.
VR SRS T ot ) (i 4
Ei(2) = —y —logz— 2 = -5 (39)

in which y =0.5772156649--- is the Euler’s constant. For v =# + 1/2, we may stop the integra-
tion by parts at the step when the remaining integrand is »~'?exp(—&»)dr, then note the fol-
lowing identities;

[Trttexp () dr=F .8~ [ +Vexp(-tndr  (40a)
o ’ ' - 2 2\1/2 1/2 2 21/2 1/2
F0.8= [ rVexp (<o) dr=| 5 CEHSHL]T L QEOLZI T )
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where F.(7, €) is a Fourier transform (Erdelyi, Magnus, Oberhettinger and Tricomi 1954). The
improper integrals over a finite interval in equation (40a), i.e.

T T

0
fo r~ 1% exp (—7r) cosérdr, fo rY2exp (—77) sinérdr (41a, b)

can be transformed into proper ones by the transformation 2=, then can be evaluated by a
standard numerical method such as the Simpson’s rule. For v =0, the integral, equation (36),
becomes

fm exp (—=&r)dr = & lexp(—&r) (42)

0!

For elasticity, N ()=7 =0 and J()={=+0. For v =0, equation (36) becomes

o

[" exp (—igndr = f: Her) exp(—iér)dr — fo exp(—i&r)dr (43a)
= (i) 'exp(—ién) (43b)

where the Fourier transform of the Heaviside step function H(r),
| Hoexp(=igndr = 5z+ 286) (44)

(Hsu 1970) has been applied. Note that equation (43b) is a special case of equation (42). For
v =#n, we must stop the successive integration by parts in equation (37) when the remaining
integrand is » ' exp(—1i&r)dr, and use the results

o0

fm r-1 cosérdr = —Ci(ro€), f r-1sinérdr = —si(% &) (45a, b)

o Ty

where Ci(n&) and si(n&) are cosine and sine integrals (Abramowitz and Stegun 1964),
respectively. For v =% +1/2, we must stop the integration at the step when the remaining inte-
grand is » % exp(—i&r)dr, then employ equations (40, 41) with » =0.

An overflow in computing £\(z)from equation (39) may arise before its convergence can be
realized, especially for large z. It is more practical to adopt the following scheme,

Edz) = J’ T -1 exp(—zr)dr

b 1
= f y-1 (e — ) —Wrd?’ + f r-1 e—lyrdr _ fo r-1 (e—xr_l)e—indr

1
= log —7{7 —iZarctan +i—Ci)+i si@)— [ r-e-xr—De-wrdr (46)

where z=x+1y, and the remaining integral on the right-hand side of the last equation is
proper. Rational approximations are available for Ci(y) and si(y), for 1 <y <o, as follow,

Ci(y) = f(y)sin y—gy)cos y, si(y)=—f(y)cos y—gly)sin y (47a, b)
where

(_z/ +alg/ +a,

D S N
Yy tasy tay

W + €2(v) (47c, d)

) +ei1(y), &)= »

fw) =
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in which @, =7.241163, a,=2.463936, 23=9.068580, a,=7.157433, | ei(y) | <2x107*, b,
=7.547478, b, =1.564072, b3=15.723606,b, =12.723684, and | €, (¥) | <10* . More accu-
rate approximations than these are also available. For y<1, one should use the following inte-
grals.

v _ . Y ool
Ci(y)=y +log y+ fo —Ci’—s;r——l—dr, si(y)= fo E’l—rrll-dr—% (48a, b)

which are proper.
3.3. Solution scheme for complex simultaneous equations

The stiffness equation of an element can be written as
K*e (0) U° (o) = P* (w) (49)
where
K*e () = K° (0) — ®M° () (50)

K¢ M? U° and P° are stiffness matrix, mass matrix, general nodal displacement vector and
equivalent nodal force vector, respectively, of an element. Decomposing every term in equa-
tion (49) into its real and imaginary parts leads to

¥e *e e e e  ...e
K, +iK,) (U +iU% = (P +iP?) (51)

where subscripts » and ; denote real and imaginary parts, respectively. Equating the real and
imaginary parts of the equation above, the following set of real equations are obtained

*e_ e *e_ e e ¥e e Ye e e
K, U -K U, =P, K, U +K U =P, (52a, b)
or
*e e e
K, (0) U w) = P (v) (53)
where
*g *e
*e Kr —Ki e U: e P:
K, (0) = [ *, %o ] U o) = { ue } P (o) = { _Pe} (543, b, ¢)
-K, —K, : i ‘

*e
Since K, (w) is symmetric, equation (53) can be solved efficiently by any standard algorithm

for solving a set of real simultaneous equations.
4. Comparison of results

This paper has been based in parts upon the dissertation of the second author (Liu 1992),
whose results for both 2-D and 3-D cases agreed closely with the existing results obtained by
others; i.e. Luco and Westmann (1971, 1972), Veletsos and Wei (1971), Veletsos and Verbic
(1973), Veletsos and Nair (1974), Keer, Jabali and Chuntaramungkorn (1974), Luco (1974,



116 P. Karasudhi and Y.C. Liu

an example of the accuracy of the proposed algorithm, the case of a rigid cylindrical founda-
tion embedded in a layered soil deposit is to be considered. The discretization of the material
domains into finite and infinite elements is as shown in Fig. 3. The foundation, assumed to be
in welded contact with the surrounding soil, had radius ¢ = 40ft and length %, = 16ft. The
properties of the soil deposit, consisting of two parallel viscoelastic layers overlying a uniform
viscoelastic half space, are listed in Table 8. The foundation is subjected to a force @, exp (iwt)

is in x-direction, and a moment M, exp (iwt) in the opposite direction to the y-axis. The hor-
izontal, rocking and coupling impedance functions, referred to the center of the base of the
foundation, are shown in Fig. 4, agreeing closely with those by Mita and Luco (1987). In
addition to those defined in equations (11), new symbols are introduced as the following: % is
layer thickness, a subnumeral (:) denotes the ¢th layer, A, is the amplitude of the displace-
ment in the x-direction due to the force @y, ¢y the rocking angle due to the moment My, Ay,
the displacement due to the moment M,, and ¢, the angle due to the force Q.

17
Rigid cylindrical body @ ]

Uy Ay Py
Mo Ay P2 s

Ha, Ay Py —

z

Fig. 3 Element mesh for 3-D problems of a rigid cylindrical body embedded in a visoelastic multilayered
half space.

Table. 8 Material properties for layered soil model.

Laver Cs Cp 0 Bsl2 B2 Thickness
Number ft/sec ft/sec 1b/ft? % % h, ft
1 980 2400 133 . 0.5 0.25 16
2 1270 2540 133 0.5 0.25 16
3 1380 2760 133 0.333 0.167 o

Notes: 1ft = 0.305m, 11b = 4.448N.
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Mita and Luco (1987)
} Present study

N,y =aw/c,

Fig. 4 Horizontal impedance ko+z'77;; co= Qo /(am, 4); rocking impedance kM+i778’: en = Mola®n, du);

and coupling impedance kMa+i7/s’: cma=Mol (@51 dy) = kw+177;; car=Q/ (2110

5. Conclusions

The proposed infinite elements are capable of transmitting all surface and body waves; and
satisfy the compatibility, completeness, finiteness and attenuation conditions. An efficient
scheme to integrate numerically the stiffness and mass matrices of the elements is presented.
With such infinite elements in the far field, the size of the near field being discretized into
conventional finite elements can be kept small, the problems have relatively fewer degrees of
freedom, and an analyst is provided with an inexpensive solution scheme. The compliance
and/or impedance functions obtained by the present algorithm are found to agree closely with
analytical results obtained by others.
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