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Chang-Koon Choit and Nam-Ho Lee?

Department of Civil Engineering, Korea Advanced Institute of Science and Technology,
Tagjon 305-701, Korea

Abstract. A new three-dimensional transition solid element was presented for the automated three-dimen-
sional adaptive A-refinement or the local mesh refinement where the steep stress gradient exists. The pro-
posed transition element was established by adding variable nodes(element nodes) to basic 8§-node for an ef-
fective connection between the refined region and the coarse region with minimum degrees of freedom possi-
ble. To be consistent in accuracy with 8-node solid element with nonconforming modes, this transition ele-
ment was also improved through the addition of the modified nonconforming modes. Numerical examples
show that the performance of the element and the applicability to 3D adaptations are satisfactory.
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1. Introduction

The eight-node hexahedron solid element has been frequently used in the three dimension-
al structural analysis due to its simplicity and easy availability. This element can be easily
found in most of element libraries of structural analysis computer programs and the modeling
of complicated 3D-structure by this element is relatively easier than by other brick elements.
Furthermore, when the behavior of element is improved by the addition of nonconforming
modes, structural analysis by this element provides reliable results with high accuracy. There-
fore, many massive structures, such as the internal shield wall of nuclear reactor building have
been modeled and analyzed by using this element. However, when a complicated structure
needs to be gradually refined locally and reanalyzed due to the existence of steep stress gradi-
ent and/or the singularity due to the concentrated local load, the overall mesh should be recon-
structed to be consistent with the local stress gradient. For such mesh gradation, the use of
eight-node solid elements often leads either to meshes with highly distorted elements or to
meshes with too many degrees-of-freedom which may exceed the economical limit of compu-
tation.

For the local mesh refinement, the adaptive %-refinement has been intensively used, in
particular for two-dimensional elastic problems. For three-dimensional problems, however,
only a few initial works have been reported in the current literature(Devloo 1991, Chang and
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Choi 1992). In 3D adpative mesh refinement, Devloo used the enforced compatibility be-
tween the refined region and the unrefined region through constraint conditions applied dur-
ing the formulation of 3D solid element stiffness while Chang used the distorted solid ele-
ments in his mesh refinement. However, in addition to the deficiency of the element itself, i.e.
too stiff against flexure, applying too many displacement constraints and/or using the highly
distorted mesh may cause some drawbacks in obtaining reliable analysis results irrespective of
the refinement strategy. Furthermore, the use of such constraints requires a lot of information
about element’s neighbors while formulating its stiffness matrix.

This paper presents a new transition element with a variable number of nodes that can be
effectively used in the adaptive mesh refinement by connecting the locally refined mesh to the
existing coarse mesh through a minimum mesh modification in transition zone. The behavior
of this variable-node element has been also improved through addition of modified
nonconforming modes to obtain more accurate solutions. This new transition elements enable
us to automatically refine any element without simultaneously modifying the adjacent ele-
ments to provide connections for any new nodes generated by subdivision of the element.
Also, the aforementioned problems due to the mesh distortion can be relieved since this type
of transition elements can keep the square or cubic shapes as required. Some numerical exam-
ples are presented to verify the behavior of the proposed transition element and to demon-
strate the applicability to 3D adaptive mesh refinement.

This paper is the first part of the study on the use of transition element for adaptive mesh
gradation, emphasizing the development of the transition element for mesh gradation. It will
be followed by the second paper which emphasizes the application of the transition element
into the adaptive mesh refinement scheme.

2. Three-dimensional solid transition elements
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by corner nodes
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(a) introduction of 3D transition element (b) use of constraints

Fig. 1 Connection of different mesh layers
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Fig.1 shows an example of the use of the transition element in comparison with the use of
constraints for mesh gradation. Fig.1(a) shows an easy connection between a variable-node el-
ement(13-node element) and four subdivided eight-node elements whereas the behavior of
five irregular nodes(nodes A, B, C, D, and E) should be constrained by those of regular nodes
(nodes 1, 2, 3, and 4) as shown in Fig.1(b). Here the irregular node is defined as a node which
is not directly connected to physical(regular) nodes.

In the element libraries of most computer programs for structural analysis, two types of
three-dimensional variable-node solid elements as shown in Fig.2 are frequently available.
However, these elements were not developed particularly for direct application to the three-di-
mensional %z-refinement and when used as a transition element in %-refinement, there are two
limitations: (7) The first limitation is associated with the treatment of the irregular nodes to be
located at the centroids of faces. The first element(Fig. 2(a)) which has variable number of
nodes from 8 to 20 do not have a node at the centroid of the face to be connect by irregular
nodes generated in the subdivided region and the second element(Fig. 2(b)) which is estab-
lished by adding upto 6 variable nodes to the 21-node element generate unnecessarily more
degrees-of freedom since all the nodes at mid-points of 12 edges of the hexahedron should be
defined even if only one or two irregular nodes at the centroid of faces are actually needed;
(77) The eight-node hexahedron element generally do not provide reasonably accurate solution
without an extensive mesh refining. Therefore, the eight-node hexahedron need to be im-
proved for practical use. One of the effective ways to achieve such improvement is through the
addition of nonconforming modes(Cook 1981, Zienkiewicz and Taylor 1989).

(a) Allowed mid-edge nodes to be introduced on  (b) Allowed mid-face nodes to be introduced on
any element edge with 8 basic corner nodes any element face along with 21 basic nodes

® variable node « basic node
Fig. 2 Two types of variable-node ¢lements

Configuration of 3D variable-node solid transition elements

To eliminate the aforementioned first shortcoming of the hexahedron, a new transition ele-
ment which can be put irregular nodes as needed at any of mid-points of 12 edges, center-
points of 6 faces, and a centroid of hexahedron is proposed. Based on the basic configuration
and the node numbering of element, a series of new solid transition elements which have up
to 27 nodes can be systematically established. Among these, 13-, 15-, 17-, 18-, 23-node ele-
ments are most frequently used in the practical problems. A brief description of the derived



64 Chang-Koon Choi and Nam-Ho Lee

shape functions for the element has been included in Appendix.

+ basic node
® variable node

Fig. 3 Transition element with variable nodes from 8 to 27

Addition of modified nonconforming modes

To avoid shear locking and also improve the general behavior of the brick type element,
the typical nonconforming modes 1-£% 1-7° and 1-{* have been added to the eight-node
isoparametric solid element with great success(Cook 1981). When the conventional variable-
node solid elements i.e. elements without additional nonconforming modes, is used together
with the eight-node hexahedron element with nonconforming modes in a mesh, there may be
a significant inconsistency in the accuracy and thus in the error indicator during the adapta-
tion process.

Therefore, to be consistent with the eight-node element with nonconforming modes in the
accuracy, the proposed solid transition elements should also be improved by the means of
addition of nonconforming displacement modes. In a similar way to the formulation for eight-
node element(Cook 1981), the general displacement approximations for variable-node element
with the modified nonconforming modes are of the form

Ue = lé]l N;(¢&, 7, Du"+i§1ﬁ"(5’77’§) 77:' "

where # is the number of nodes of the given element, /V; are the compatible interpolation fun-
ctions given in Appendix, and N, are the corresponding nonconforming modes as follows;

ﬁl2(1_52)—(&9+]’{711+&]3+Z’\}l5) (2'a)
Ny = (1=2% = (Wi + Nis + Nt + Nio) (2.b)
ﬁ3 = (l_é'z)—(]’\\/17+N13+]’\}19+[\\[20) (20)

in which &- are defined for different kinds of element types in Appendix and have nonzero
values only when the corresponding node is assigned. This implies that, for example, if nodes
9 and 13 are assigned in the element, only Ny and N3 need to be defined in Eq. (2.a) for N..
Thus the additional nonconforming displacement modes of variable-node elements are modi-
fied from those of the regular hexahedron element to consider the nature of variable nodes



Three dimensional transition solid elements for adaptive mesh gradation 65

that a transition element has.
The element strains € are then given as

n 3
€ El B; u; +i§=]1 G; u; 3)
where #; and z; are nodal displacements and nonconforming interpolation parameters, respe-
ctively, and strain-displacement matrices B and G are obtained by differentiating the displace-
ment shape functions N; and N, . Here, the following constraints should be imposed in order
that the characteristics of the derivatives of the terms in the second parenthesis of Eq.(2) are
consistent with those of the terms in the first parenthesis. For instance, as the derivatives of
the terms in the first parenthesis (1 —£&7%) with respect to # or { vanish, those of the second
terms with respect to 7 or ¢ should also vanish to eliminate the undesired effects. Thus

N _ N _ g N, _ 9N, _, N._ N,

on o 0§ o0& & 07
Then the strain energy of the proposed variable-node transition elements can be expressed by
combining two parts as:

=0 4

1

1
U_zfvaBudV+2

f o"BR AV (5)

Extending the approach proposed for 8-node solid element by Wilson & Ibrahimbegovic
(1990) to impose the requirement that under the state of constant stress, the srain energy asso-
ciated with the incompatible modes vanishes:

so' [ Gava=o0

(6)
Eq.(6) can be satisfied by adding a constant correction matrix G, to the matrix G such that
[,Gav={ G+Gaav =0, -
and by the fact that G, is a constant,
- _L
Ge= -7 [, Gav 8)

The correction matrix G. can be evaluated numerically before the element stifness matrices
are established. When element stiffnesses are evaluated, G is used in stead of G at each inte-
gration point and the final stiffness matrix of transition element K is constructed through the
static condensation of the parts related to the additional nonconforming modes(Choi and Park
1989).

Numerical integration rule for variable-node transition elements
Transition elements can be classified into two types: the first type is used for connection of
different order elements and the second is for connection of different layer patterns. While the
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stiffness of the former type of a transition element can be computed by a normal Gaussian
quadrature, the stiffness of the latter cannot be computed by applying the normal Gaussian in-
tegration rule over the entire domain (—1<¢&, 7, {>+1) due to slope discontinuities at loca-
tions of irregular nodes. Thus, the stiffness matrices of the 3D solid transition elements for
connection of different layer patterns can be obtained by the modified rule of Gaussian quad-
rature proposed by Gupta(1978) for 2D transition element which is applied independently to
the three directions of natural coordinates &, 7, and &.

3. Numerical tests for validation of the transition elements

Several numerical tests were carried out to evaluate the validity and performance of the
proposed three-dimensional solid transition elements for the local refinement of 3D problems.
Six different types of solid elements used for comparisons are designated as follows:

1. NC-V1 : the variable-node transition element with the modified nonconforming modes

for the connection of different order elements,

2. NC-V2 : the variable-node transition element with the modified nonconforming modes

for the connection of different layer patterns,

3. NC-8 : the regular eight-node solid element with the basic nonconforming modes and

4. C-V1, C-V2, and C-8 are elements corresponding to NC-V1, NC-V2 and NC-8 which

do not have any nonconforming modes, respectively.

Test-1 : Eigenvalue analysis

To identify the possible spurious mechanisms, eigenvalue analyses of the individual ele-
ment stiffness matrix were carried out for two types of transition solid elements with
nonconforming modes. Since there are only six zero eigenvalues associated with rigid-body
modes of a typical single unconstrained elements which are those with particular importance
in the local mesh refinement as shown in Fig. 4, no spurious mechanisms were expected to de-
velop in any of the transition solid elements presented in this study(see Table 1).

; i ;
. — j S i b — 1 .
/ J/ [ ] s P
/ R V4 Y
12-node 13-node 15-node
K E L
/b——-"—l e — U .
/ / R L / X .
17-node 18-node 23-node

Fig. 4 Examples for typical transition elements
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Table 1 Number of zero eigenvalues for single unconstrained transition elements
with associated nonconforming modes (NC-V1 & NC-V2)

Typical Number of Number of zero Number of spurious
Elements eigenvalues eigenvalues zero-energy modes
12-node 36 6 0

13-node 39 6 0

15-node 45 6 0

17-node 51 6 0

18-node 54 6 0

23-node 69 6 0

Test-2 : Patch test

In order to check whether the proposed solid transition elements(NC-V1 & NC-V2) are ca-
pable of representing constant strain states, the patch test was carried out. The typical test
model is shown in Fig. 5 which contains 12-node, 16-node and 17-node elements. Problem
was solved with the prediscribed displacement boundary conditions and the obtained results
which are identical with theoretical results for this problem are given in Table 2.

y
Note : Outer-dimensions are unit and coordi-
16 L S nates of mid-edges of each element are
o5 33 the average value of both end nodes’ co-
13 14 ordinates of the corresponding edge
12
24 1"
S
o1 t0 Coordinates of inner nodes
22 e /] node x y z
20
26 5 0320  0.186  0.643
6 0677 0305  0.683
! 18 7 7 0.826 0288  0.288
31 8 0249 0342 0.192
9 0.165 0745  0.702
4 S 6 \2% - x 10 0788 0693  0.644
75 11 0.850  0.649  0.263
1 30 2 12 0.273 0750  0.230
e
Z
E=1.0x10°
v =0.25

Fig. 5 Patch test model for 3D solid
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Table 2 Displacement boundary conditions and theoretical results

Boundary conditions Theoretical solutions
u=10°Qx+y+2)/2 Er = €y = €=V = Fyz =¥ = 107
v =10z + 2y + 2)/2 0y =0y =0, = 2000
w=103(x+y+2z)/2 [m:z'yzzz'u:400

Test-3 : Cantilever beam

To verify the performance of the new transition element and its applicability to the
adaptive mesh refinement, a cantilever beam acted upon by two load cases, i.e. shear forces
and pure bending at tip was tested (see Fig. 6). The test meshes which are composed of vari-
ous transition elements are shown in Fig. 7. The vertical displacement at A and the bending
stress at B for various combinations of transition elements are presented in Table 3 and 4
along with the exact solutions(Roark 1965) for the comparison. Here, it is shown that the pro-
posed nonconforming transition solid elements(NC-V1, NC-V2) give superior results over the
conventional element for regular mesh shapes. In cases of highly distorted meshes, the accura-
cies of results obtained by using elements with nonconforming modes are still markedly better
than those obtained by the conventional elements. It is noted through the numerical test
results for the case of distorted meshes that the mesh gradation by transition elements is need-
ed to maintain the mesh regularity which is greatly important for the accuracy of the results.

Test-4 : Boussinesq problem

This example is selected to demonstrate the effectiveness of transition element for local
mesh refinement. This is especially to show that when the transition elements are used in
modelling, the total degrees of freedom can be markedly reduced and the similar results to or
the superior results than those by a single 8-node element can be obtained. To model one
quadrant of the semi-infinite body of the Boussinesq problem(see Fig. 8), two kinds of meshes
are used. Fig. 8(c) shows the mesh which uses the proposed transition elements(NC-V2) at the
transition zones between fine elements and coarse elements. The mesh shown in Fig. 8(d) is
composed of 8-node solid elements only and solutions with this mesh are obtained by using
SAP90 program(Wilson, E.L. and Habibullah A. 1989).

By comparison of total degrees of fredom(DOF) of two models, the number of DOF of the
former mesh is 657 and that of the latter mesh is 931. A more refined mesh(Fig. 8(¢)) of 1062
DOF is additionally constructed to validate the effectiveness and applicability of the proposed
transition elements to the adaptive mesh refinement. The bottom surface is completely fixed.
Two Planes, x=0 and y=0, are constrained so as to properly represent the symmetry about x
=0 and y=0. The applied load is P=10,0001b. The results for each mesh are shown in Table
5 and Table 6 and the exact values are calculated by Boussinesq’s formular(Timoshenko and
Goodier 1970). It is especially noticed from analysis results for Mesh-3 that the mesh at the
area having the steep stress gradient can be efficiently graded by using the proposed transition
elements and with a minimum number of additional degrees of freedom, the superior results
at the detailed intrested area can be also obtained.
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Fig. 7 Test meshes of variable transition elememts
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Table 3(a) Vertical displacement at point A of regular meshes

Load Case 1 Load Case 2
Mesh type  C-V1 NC-V1 NC-V2 C-Vli NC-V1 NC-V2
Al 68.45 101.40 101.40 66.67 100.00 100.00
A2 70.10 100.96 100.67 68.86 99.43 99.09
A3 72.33 101.28 100.08 70.83 99.97 98.51
A4 78.48 100.27 98.99 77.86 98.07 97.00
Exact 102.60 100.0
Table 3(b) Stress ot at point B of regular meshes
Load Case 1 Load Case 2
Mesh type  C-V1 NC-V1 NC-V2 C-Vl1 NC-V1 NC-V2
Al -2972.0 -4050.0 -4050.0 -2200.0 -3000.0 -3000.0
A2 -2972.0 -4050.0 -4050.0 -2200.0 -3000.0 -3000.0
A3 -2936.0 -4063.0 -4063.0 -2167.0 -3005.0 -3007.0
Ad -3001.0 -3968.0 -3968.0 -2241.0 -2905.0 -2986.0
Exact -4050.0 -3000.0
Table 4(a) Vertical displacement at point A of general meshes
Load Case 1 Load Case 2
Mesh type  C-V1 NC-V1 NC-V2 C-Vl1 NC-V1 NC-Vv2
B1 49.33 89.89 89.89 44,38 87.45 87.45
B2 56.38 86.66 83.90 51.59 83.46 80.50
B3 64.61 89.57 78.84 58.42 86.03 75.85
B4 79.49 97.40 82.66 78.60 95.99 82.09
Exact 102.60 100.0
Table 4(b) Stress sxx at point B of general meshes
Load Case 1 Load Case 2
Mesh type  C-V1 NC-V1 NC-V2 C-Vi NC-Vi NC-V2
Bl -2415.0 -3097.0 -3097.0 -1736.0 -2262.0 -2262.0
B2 -2420.0 -3103.0 -3097.0 -1757.0 -2286.0 -2277.0
B3 -3129.0 -4018.0 -3622.0 -2300.0 -3002.0 -2672.0
B4 -3338.0 -3959.0 -3611.0 -2460.0 -2908.0 -2652.0
Exact -4050.0 -3000.0
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k\ %V

(e) Mesh-3 with transition elements
(total DOF = 1062)

¢

Fig. 8 One quadrant of semi-infinite body

Table 5 Z-direction displacements(in X 107)

Mesh along z-axis along x-axis
type A B C E G L M P R
Mesh-1  182.70 53.15 24.32 12.59 5.72 14.57 6.29 3.09 1.34
Mesh-2  183.31 53.60 24.64 12.97 6.20 15.41 6.90 3.18 1.41
Mesh-3  367.33 50.04 26.73 13.20 6.29 14.45 6.96 3.26 1.45
Exact 00 56.75 28.38 14.19 7.09 15.45 7.72 3.86 1.93
Table 6(a) Normal stress o, (psi) for Mesh-1
AB BC CE EG Gl
Mesh-1 -17940. -3291. -665.0 -185.9 ~40.9
Exact -24945, -2771. -692.9 -173.2 ~43.3
Table 6(b) Normal stress ¢, (psi) for Mesh-2
AB BC CD DE EF GH HI
Mesh-2 -17970. -3296. -789.6 -512.2 -238.4 -134.1 -62.0 -33.2
Exact -24945. -2771. -997.8 -509.1 -249.5 ~127.3 -62.4 -31.8
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Table 6(c) Normal stress o, (psi) for Mesh-3

AA’ A’'B BB’ B'C CD
Mesh-3 ~71840. -13130. -3181.0 -2037.0 -955.9
Exact -99780. -11078. -3989.4 -2035.7 -997.8
DE EF FG GH HI
Mesh-3 ~537.8 -246.1 -135.0 -62.1 -33.5
Exact -509.1 -249.5 -127.3 -62.4 -31.8

4. Conclusions

A new solid elements are established to be used effectively as transition elements in three-
dimensional modelling. A series of 3-D transition elements are systematically developed
through addition of variable nodes(irregular nodes) to the basic 8-node element as needed and
selection of the shape functions to connect the refined regions and unrefined regions. This ele-
ment was improved by the addition of the modified nonconforming modes.

From the numerical tests, it was verified that the proposed elements passed patch tests and
there are no zero energy mechanisms identified by the eigen value analysis in the elements.
The improvement achieved by the addition of the nonconforming modes associated with vari-
able nodes was significant making the use of this type of element in modelling transition zone
very effective and stable. It is also demonstrated from numerical tests that the proposed ele-
ments can be effectively used for local mesh refinement without imposing any displacement
constraints which are necessary to guarantee the interelement compatibility with the neigh-
bored eight-node elements generated by the subdivision. Furthermore, the introduction of the
transition elements makes it possible to construct meshes without distortions which may have
a negative effect on the accuracy of analysis results.
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Appendix

This appendix shows only the simple descriptions of shape functions for 8-to-27 variable-node solid tran-
sition elements. It is to be noted that the derived shape functions N; to Ny, have nonzero values only when
the corresponding middle nodes are assigned.

The shape functions for the eight corner nodes 1 through 8 are modified by the addition of irregular
nodes as follows :

N =N —1/2(Ns+ Nz + Niz) — 1/8 Noy — /ANy + Nos + Nag)
N, = N,—1/2(Ns + N+ Nig) — 1/8 Noy — 1/4(No, + Noy + Nig)
N3 = Ng'— 1/2(Nm +N11 +N19) - 1/8 N21 - 1/4(N23 + N24 + st)
N4 = N4_ 1/2(N11 +N12 +N20) - 1/8 Nzl - 1/4(N24 +N25 +N25)
Ns = Ns—1/12(Ns+ Nis + Niz) — 1/8 Noyy — 1/4(Nay + Nos + Niy)
Nﬁ = Ns- 1/2(N13 '?‘Nu +N1a) - 1/8 Nz) - 1/4(N22 + N23 + N27)
N7 = 1)\\’7—‘ 1/2(N14 -+ le + Nw) e 1/8 Nz[ - 1/4(N23 + N24 + Nz7)
Ny = Ns_ 1/2(N15 -+ N[s +N20) —1/8 N21 - 1/4(N14 + st + Nz7)

The shape functions for mid—edge nodes 9 through 20 are also modified by the addition of a centroid
node 21 and the mid-face nodes 22 through 27 as:

N;=N,—1/4 Nu+ I/2(N s+ N,) fori = 9to 20

Here, nodes a and b are those at centroid of two faces sharing node 7 respectively. That is, nodes a and b
based on the basic configuration shown in Fig. 2 are as :

a=1+13andb=26for; =9to12;a=:¢+9andb =27 for; = 13t016;a =22 and b = 26 for; =
17;a =i+4and b = :+5 for7 = 18 to 20.

The shape functions associated with node 21 at centroid of hexahedron and node 22 through 27 at center
of faces are constructed as follows :

Ny = 1’\}2l for node 21
N,=N,—1/2 N for node 22 through 27
where, for element NC-V2
N, = 1/8(1+EE) (1 +77.) (148 fori=1t08
N, = 1/4(1— [ £ 1) (L+77,) (1+E5) fori=9to15
Ni = VA(+EE) (1+ 1 7 1) (148 for i = 1010 16
Ni = Ua(1+E6) (L 472) A+ 1€ 1) for i = 17 to 20
No=(—1&D)U-171)d=1¢1) for i = 21
Ny =12(1= 1£1) (+g7,) (1= 1£1) for i = 22 to 24
N, = 120—&) (1~ 171) (- 1L 1) for i = 23 to 25
N, = 1/2(1— 1) (= 171) (1—L%) for i = 26 to 27
and for element NC-V1, | &1, |7 |,and |{]| in the above shape functions are just replaced to &7, 77

and {* respectively.





