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Abstract. A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete mem-
bers, especially columns, taking into account the interaction of axial load and bi-directional bending mo-
ment. The parameters of the model are determined on the basis of material properties and section geometry.
The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown
to agrce well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials.
The reliability of the model was also examined with respect to the test of reinforced concrete columns sub-
jected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with
the experiment.
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1. Introduction

The moment-curvature analysis of a reinforced concrete (RC) “section” under load rever-
sals i1s normally based on (a) an assumption, known as Bernoulli’s hypothesis, that a plane sec-
tion remains plane after deformation, (b) uni-axial stress-strain relations of materials and (c)
equilibrium of forces (e.g., Kent and Park 1971). The deformation of a member may be calcu-
lated by a double integration of curvature with respect to member length; however, the defor-
mation calculated underestimates that observed in a test (a) because the Bernoulli’s hypothesis
holds only in an approximate sense, and (b) because additional deformations caused by shear
cracking and by the pull-out of longitudinal reinforcement from the anchorage are neglected.
Therefore, in a nonlinear analysis of an RC building structure, many researchers simply as-
sumed all the inelastic deformation to concentrate at the member ends (Giberson 1967) and
used a member-end moment-rotation hysteresis relation. The method was shown to reasona-
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bly simulate the response observed in a full-scale test of an RC building under lateral load re-
versals to failure (Otani et al. 1985).

2. Interaction of resistances and deformations

The flexural behavior of an RC column section is influenced by existing axial load; the
phenomenon normally called as the interaction of axial force and bending moment. The inter-
action of axial deformation and curvature also exists; €.g., in an RC member under pure bend-
ing, the neutral axis of section shifts to compression side after cracking, which accompanies
the elongation at the centroid of the section although no tensile force is applied; i.e., pure
bending causes elongation of a member after cracking.

Furthermore, a column during a real earthquake motion is subjected to bi-directional shear
and bending. The bending capacity in a principal direction is influenced by an existing bend-
ing moment in the orthogonal direction, the phenomenon called the bi-directional bending in-
teraction. Takizawa and Aoyama (1976) used a plasticity theorem in constructing hysteresis
relation under bi-directional bending interaction. Fukuzawa et al. (1988) extended the
Takizawa’s work to include the tri-axial interaction of varying axial load and bi-directional
bending.

3. Multi-spring model

A multi-spring model was proposed by Lai et al. (1984) to simulate the flexural behavior
of RC columns under varying axial load and bi-directional lateral load reversals. A column
was idealized by an elastic element with two multi-spring elements of zero-length at the col-
umn ends (Fig.1); a multi-spring element consisted of 5 concrete and 4 steel longitudinal
springs. Spring parameters were so defined to approximate the axial force-bending moment in-
teraction curve at some selected axial force levels. This made the model difficult to use in the
analysis. Moreover, the interaction curve of the model deviated from the interaction curve due
to the use of fewer number of springs. Jiang and Saiidi (1990) proposed to combine the
hysteresis properties of concrete and steel springs in a corner to simplify the model. Li et al.
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Fig. 1 Column Idealized by Multi-Spring Model
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(1988) modified the hysteretic properties of concrete and steel springs, and demonstrated the
reliability of the model against column test resuits.

In this paper, the number of springs in a multi-spring element is increased. Note that the
simpler a model is, the more judgment is required to determine model properties. With an in-
crease in the number of springs in a multi-spring element, the simulation capability of the in-
teraction behavior is improved, and the determination of the stiffness properties of each
spring is simplified. On the other hand, a nonlinear earthquake response analysis of a large
three-dimensional frame under bi-directional earthquake excitation (Li et al., 1989) indicated
that the total computation time did not increase significantly because (a) the yielding of col-
umns takes place only at the base of first-story columns in a properly designed (weak-beam
strong-column) building, and (b) the number of degrees of freedom of a spring element can be
reduced to three (bi-directional rotations and axial elongation).

For a rectangular RC section, the use of 8 core concrete springs and 8 shell concrete
springs (16-concrete spring model) is proposed as shown in Fig.2(a); a concrete spring is locat-
ed at the centroid of a subdivided area. The stiffness properties of core and shell concrete
springs are made different to consider the confining effect by lateral reinforcement. A steel
spring may be located at a reinforcing bar; however, the spring may be placed at the center of
multiple reinforcing bars; a typical example using 9 steel springs is shown in Fig.2(b). Thus the
location of a spring is automatically determined without making use of an axial force-moment
interaction curve of the section.
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4. Stiffness properties of steel and concrete springs

The spring force is calculated as a product of the tributary area of the spring and a stress of
the material at the centroid of the area. The Bernoulli’s hypothesis was used to determine the
deformation distribution in a multi-spring element. An imaginary spring length 7 L, express-
ing plastic zone is assumed to calculate the deformation for a given strain, although the multi-
spring element was treated as zero-length. The plastic zone length was arbitrarily assumed to
be one half the member depth D; it should be determined considering (a) the variation of
strain within the plastic zone, (b) the deformation associated with concrete cracking beyond
the plastic zone and (c) the deformation caused by the pull-out of reinforcement from the an-
chorage zone. A trilinear force-deformation relationship (Fig.3) is assumed for a steel spring
and for a concrete spring under compression.
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Fig. 3 Spring Force-Displacement Relationships

The flexural deformation in the middle part of a member increases with a shear-span-to-
depth ratio, whereas the contribution of shear deformation decreases with the ratio. The
amount of pull-out deformation may be calculated if the bond stress-slip relation is given.
However, these additional deformations could not be defined by theoretical calculation at
present. An empirical parameter « is introduced to approximate the additional deformations,;
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Fig. 4 Assumption of Curvaturc Distribution
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hu/D—1.0
LO + =555 (h/D>1.0) (1)

{ 1.0 (h/D<1.0)

/{ =

where, /D =shear span-to-depth ratio of a member. Equation (1) was derived on the basis of
column test data (Li, et al. 1985) and for a flexural curvature distribution as given in Fig.4.
The same parameters of 7 L, and « are used for both steel and concrete springs.

Concrete Spring: The force-deformation relationship for a concrete spring is assumed iden-
tical for core and shell concrete until maximum resistance, f.,, is attained at concrete com-
pressive strength o5. The deformation at the maximum resistance is calculated to be xd.y,
where d., = €5 * 7Ly (e5 is the strain at the strength o). The elastic stiffness of the concrete
spring was changed at resistance 0.5/., and deformation 0.3d., to approximate the stress-
strain curve of concrete. The descending branch of the force-deformation relationship is made
different for core and shell concrete taking the effect of confinement into consideration; i.e.,
the displacement J, at null resistance is defined as d,= uxd .y, where, #=¢,/ 5. Note that €,
was calculated by the equations (Park et al. 1982) shown in Fig.5 for shell concrete and for
core concrete allowing for confining effect. The same initial stiffness is assumed in tension.

Steel Spring: Displacement d g, of a steel spring is determined by yielding strain &4, and the
plastic zone length 7 Lo, i.e., dsy =€y * 7Ly . The yielding resistance of steel spring develops
at the displacement of «ds,. The elastic stiffness is changed at 0.54, . A finite stiffness is
assumed after yielding for the purpose of stabilizing the numerical computation rather than
for the effect of strain hardening. The force-deformation relation of a steel spring is symmet-
ric in tension and compression.

_ 3+0.295, ;
1/Zy= 2(m+ 0.7505/R" 1S, — 0.002K),

K= 1+p040,,/05, 0 : confining steel bar ratio,
Oy Yielding strength of confining steel bar,
o A h' : core concrete size, S, : space of transverse bar.
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Fig. 5 Concrete Stress-Strain Curves
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5. Stiffness of elastic element

The total bending flexibility of a simply supported member under uni-directional bending
moment at the two ends can be expressed as

Lo —Lo ¥ mLo +8 ~1L

3El 6EI | _ | 3E] m 6El

—1, Lo - —~Ly Y mlo +5 (2)
6EI 3E] 6ET 3ET m

where, E=Young’s modulus, /=inertia moment of the section, L,=the length of elastic ele-
ment, y,= a reduction factor for the initial flexibility of elastic element. &,, = the initial flexi-
bility of multi-spring element. The factor 7, was introduced to account for the initial flexi-
bility &, of the multi-spring elements. J ,, can be expressed as

— 7 Ly 7 Lo 3
o YEAY? T 09EI (3)

where, F; A; =i-th spring stiffness, Y =i-th spring location. The moment of inertia of a
multi-spring model is approximately 0.9/ (/=BD*/12) for a rectangular member section with
16 concrete springs. Hence, the reduction factor y ,, can be calculated as

ym=10—7/0.3 4)

~
~

)

Similarly, a reduction factor y,=1.0—27 is used for the initial axial flexibility of the elastic
element. Inelastic stiffness can be used for the axial and shear stiffness of the elastic element.

6. Examination of the multi-spring model

An earthquake response of a structure is sensitive to the lateral resistance; hence, it is im-
portant to accurately estimate the resistance of constituent members. The reliability of the
multi-spring model is studied about axial load-moment interaction curves. Three RC sections
are used for the examination; Sections S1 to S3. The geometry of the sections is shown in Fig.
6. Note that Section S3 is not symmetric.

The stress-strain relation is assumed to be elastic-perfectly plastic for the steel, and that
for concrete is shown in Fig.5 for confined and shell concrete. The material properties and
model parameters are listed in Tables 1 and 2. The confining factor K was assumed for each
section as listed in Table 1. For the proposed model, 9 steel springs are used for Sections S1
and S2, and the area of reinforcing bars not at the spring location is distributed to 4 middle
springs by linear interpolation. Steel springs are assigned at each reinforcing bar for Section
S3. Relative values of d.y, dsy of concrete and steel spring deformation (d.,/dsy = €5/€5y) are
used in the calculation. The parameters of the original multi-spring model with 5-spring are
determined for an axial force-bending moment interaction curve at axial load level equal to
0.2BDoy. The N-M,.-M, curves by integration method are calculated using the Bernoulli’s
hypothesis, stress-strain relations of the materials, and equilibrium of forces. Concrete tensile
strength is considered in calculating cracking moment. A yield moment is calculated for the
first yielding of a reinforcing bar.
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Fig. 6 RC Column Sections S1 to S3(Unit in mm)

Table 1 Material Properties of Sections S1 to S3

Section St S2,S3

Type D10 D25 D32 D41
Steel Area(mm?) 71 507 794 1340
Bar os(MPa) 324 362 417 417

Es(10°MPa) 1.87 1.81 2.1 2.1

K 1.25 1.2
Concrete oz(MPa) 27.5 30.7

€B 0.002 0.0022

6+(MPa) 2.6 2.65
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Table 2 Multi-Spring Parameters for Sections S1 to S3

Model Steel Spring No.: fg,(kN) Concrete Spring No.: f.4(kN)
5-SS, 5-CS* 1~4:69.2; 5:184 1~4:218; 5:316
3 9-88S, 16-CS 1~4:30.8; 5~8:38.5; 9:184 1~8:110; 9~12:44; 13~16:55
S2 9-SS, 16-CS 1~4:874; 5~8:1330; 9:136 1~8:2260; 9~12:54; 13~16:62
S3 8-8S, 16-CS 1~8:331 1~8:1510; 9:442; 10:626;

11;442; 12:626; 13~16:645

# SS: Steel Spring; CS: Concrete Spring

The interaction curves of bi-directional maximum bending moments are calculated for Sec-
tion S1 at different axial load levels; i.e., a maximum bending moment is calculated under a
constant axial force and monotonically increasing curvature in a given direction. The axial
force is normalized by the sectional area and concrete compressive strength, and called an axi-
al stress ratio. The curves calculated by the original multi-spring model and the proposed
model are compared with the exact curves in Fig.7, in which the curves are shown separately
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Fig. 7 Comparison of N-M ,-M, Curves of Section SI by Models (Solid) and Integration Method(Dash)



for compression failure and tensile failure zones (axial stress ratios above 0.5 and below 0.4).
The original model using only five concrete springs does not favorably simulate the exact in-
teraction curves, particularly in a 45-degree diagonal direction from a principal axis of the sec-
tion. In contrast, the proposed model with 9-steel and 16-concrete springs showed a satisfacto-

Multi-spring model for 3-dimensional analysis

ry agreement with the exact analysis.

Axial force-bending moment interaction curves of Section S2 and S3 are calculated and
shown in Fig.8. The moments of cracking M., yielding M, and ultimate M,,,, are under load-
ing in a 45-degree direction from a principal section axis. The curves by the proposed model

agree favorably with the exact curves.

Axial Load (N/BDop)

Fig. 8 N-M., N-M,, N-M,,, Curves of Sections S2, S3 by Proposed Model(Solid) and Integration Method
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Table 3 Material Properties of Column Specimens(mm? MPa)

Specimen B8-2 P3-C HB2
Type D6 D10 ?4 D10 D25 @5 D13
Steel Area 32 71 13 71 507 20 127
Bar Osy 386 417 482 324 362 980 637
E(10°) - 2.1 - 1.87 1.81 - 1.88
K 1.2 1.25 1.25
Concrete o5 30.7 27.5 67.0
Ep 0.0022 0.002 0.0026
o, 2.65 2.6 2.92
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Fig. 9 RC Column Test Specimens(Unit in mm)
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Table 4 Multi-Spring Parameters for Column Specimens

Specimen B§-2 P3-C HB2
Model 8-SS, 16-CS  9-SS, 16-CS  8-SS, 16-CS

7 Lo(mm) 100 100 125

P 1.67 1.67 1.50

SS *|~4 29.7 30.8 108

fey 5~8 29.7 38.5 135
«kN) 9 184

d sy (mm) 0.20 0.17 0.42

) *|~8 118 110 419

foy 9~12 49.2 44.0 168

(kN) 13~16 61.4 55.0 210

dey *1~8 0.26 0.25 0.41

(mm) 9~16 0.22 0.20 0.33

* Spring Number

7. Comparison of model with RC column test data

Three columns were tested under axial load and bi-directional bending; i.e., specimen B§-
2 (Li et al. 1987), specimen P3-C (Tatsumi et al. 1990), and specimens HB2 (Kabeyasawa
1991). The dimensions of the specimens are shown in Fig.9, and the material properties listed
in Table 3. The parameters of the proposed model are listed in Table 4.

For the analysis of a specimen under load reversals, hysteresis rules are assumed for a con-
crete and steel spring as shown in Fig.10. A degrading unloading stiffness is used for both steel
and concrete springs. The resistance of a concrete spring during unloading after maximum
compression resistance and after tension cracking, shown in Fig.10(b) in steps, is kept con-
stant at each step for numerical stability, and the error is corrected in the next loading step.
All specimens showed predominantly flexural behavior, therefore, the shear stiffness is as-
sumed to remain elastic in the analysis. The axial load and lateral displacements observed at
the column top are used to calculate column moments and axial deformation.
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Fig. 10 Spring Hysteresis Rules

The axial load of specimen B8-2 was varied between -0.06 to 0.19 times BDop, propor-
tional to lateral resistances, while a constant axial load at 0.3BDo; was applied to specimen
P3-C. The analysis results are comparable with the tested results as shown in Figs.11 and 12.
The model can also reproduce the experimental results of high strength reinforced concrete
columns. Specimens HB2 was tested under anti-symmetrical biaxial moments and a varying
axial load between -0.1 and 0.6BDo. The calculated response by the model is compared with
the observed response in Fig.13, in which a reasonable agreement can be observed.
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Fig. 11 Comparison of Analysis and Observed Results of B8-2
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Fig. 13 Comparison of Analysis and Observed Results of High Strength RC Columns

The proposed model is implemented in Program CANNY for the analysis of a three-di-
mensional reinforced concrete frame structure under static and dynamic loading (Li 1992).

8. Conclusions

A multi-spring model is modified to increase the number of springs. The model is applica-
ble to an RC member with arbitrary section shape. The reliability of the model is examined
with respect to test data. The analysis results predicted by the model agreed well with the ex-
perimental results of both normal and high strength reinforced concrete columns under bi-di-
rectional bending reversals and varying axial loads.
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