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Abstract.  This study presents optimizing structural topology patterns using regularization of Heaviside 

function. The present method needs not filtering process to typical SIMP method. Using the penalty 

formulation of the SIMP approach, a topology optimization problem is formulated in co-operation, i.e., 

couple-signals, with design variable values of discrete elements and a regularized Heaviside step function. 

The regularization of discontinuous material distributions is a key scheme in order to improve the numerical 

problems of material topology optimization with 0 (void)-1 (solid) solutions. The weak forms of an 

equilibrium equation are expressed using a coupled regularized Heaviside function to evaluate sensitivity 

analysis. Numerical results show that the incorporation of the regularized Heaviside function and the SIMP 

leads to convergent solutions. This method is tested using several examples of a linear elastostatic structure. 

It demonstrates that improved optimal solutions can be obtained without the additional use of sensitivity 

filtering to improve the discontinuous 0-1 solutions, which have generally been used in material topology 

optimization problems. 
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1. Introduction 
 

Nowadays, topology optimization is being extensively studied and used in the engineering field 

to solve problems in areas such as aeronautics, automobiles, microstructure systems and 

mechanism design. Topology optimization generates the optimal shape of a mechanical structure 

(Rozvany 2001, Lee et al. 2015a, 2015b, 2015c, Bendsoe and Kikuchi 1988). The structural shape 

is generated within a pre-defined design space. In addition, the user provides structural supports 

and loads. Without further decisions and guidance from the user, the method will form the 

structural shape, thus providing a first idea of an efficient geometry. Therefore, topology 

optimization is a much more flexible design tool than conventional structural shape optimization 

(Zienkiewicz 1973), where only a selected part of the boundary is varied without any chance to 

generate a lightness hole. The goal of topology optimization is to seek an optimal material 

distribution (for example, the density distribution), within a design domain that minimizes a given 
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objective function and satisfies constraint conditions. Here the design domain is defined by a 
continuum discretized by finite elements. The optimization algorithm assigns a design variable to 
each finite element. These design variables of discrete elements range continuously from 0 to 1 
thus from voids and solids. 

Kohn and Strang (1986) stated that the main difficulty in topology optimization is its ill-posed 
problems. Therefore, the 0-1 formulation with a discrete finite element form is mesh-dependent 
and its solution may be singular. In this context, Sigmund and Petersson (1998) proved that 
solutions to topology optimization problems often create numerical instability, i.e., singularities of 
the solutions associated with mesh-dependence, checkerboards, and local minima (Diaz and 
Sigmund 1995). 

To overcome these problems and obtain the desired material distributions, a well-known 
approach is available for solving well-posed problems. It is based on homogenization theory (Fujii 
et al. 2001) as devised by Bendsøe and Kikuchi (1988) in which a material model with 
micro-scale voids is introduced and the topology optimization problem is defined by searching for 
the optimal porosity as introduced by Bendsøe and Haber (1993), Bendsøe (1989), Eschenauer et 
al. (1994), Rozvany et al. (1992). Many approaches to this homogenization method have been 
investigated; for example, the so-called “Solid Isotropic Microstructure with Penalization” (SIMP) 
approach by Sigmund (2001), Patnaik et al. (2005), Diaz and Bendsøe (1992), Bendsøe and 
Sigmund (1999), Lee et al. (2014a), Bourdin (2001). The SIMP approach has both a simple 
structural analysis and optimization, selectively suppresses the porous regions by adjusting the 
penalty, and handles a variety of design conditions, i.e., combinations of deflections, stresses, 
natural frequencies and stability constraints for several load conditions. However, the remaining 
major physical difficulty is the weak relationship between design variables and Young’s modulus 
for realistic requirements. The level set method (Wang et al. 2003, Wang et al. 2004, Osher and 
Fedkiw 2001, Zhu et al. 2015) which reduces, as mentioned, “the weak relationship between 
design variables and Young’s” by eliminating gray regions (density between 0 and 1) without 
filtering technique. 

The approach introduced in this paper addresses nonlinear the decreasing stiffness difference 
for each finite element. We propose that in addition to the penalty formulation in the SIMP 
approach, a regularized Heaviside function be used that is dependent on a design variable of 
design domain. This element-based coupled value is then assigned as a constant value onto each 
finite element. This simple change, coupled with an appropriate regularized Heaviside function, 
appears to yield mesh independent and checkerboard-free solutions. These benefits are realized 
without using any additional filter methods in the SIMP approach. 

Using a design variable dependent, regularized Heaviside function in the topology optimization 
is not a new idea. Belytschko et al. (2003), Guest et al. (2004), Kawamoto et al. (2011) reported 
success using the regularized Heaviside function, which was introduced by Wang et al. (2003, 
2004), Osher and Fedkiw (2001), and implicit functions to describe the topology. The approach 
presented here differs from theirs in that the regularized Heaviside function is also used as another 
multiplied penalty function in the SIMP approach, for instance, as couple-signals. During the 
topology optimization procedures, the 0-1 solutions in the design domain are signal sets of a 
typical Heaviside function, as shown in Fig. 1. The regularized Heaviside function has been 
expressed using diverse versions by Belytschko et al. (2003), Berthelsen (2002), and Moog (2000) 
and has smoothed values ranging from 0.5 to 1.0 based on the density values of the material 
phases of design domain. This is shown in Figs. 2 and 3. This function is used to solve the 
equilibrium equation and applied to the sensitivity analysis (or derivatives of the objective 

1158



 
 
 
 
 
 

Optimizing structural topology patterns using regularization of Heaviside function 

functions and constraints) of the topology optimization algorithm. 
The layout of this study is as follows. In Section 2, the goal and intuitive idea of this study is 

discussed, including its theoretical and numerical aspects. Through this conceptional 
representation of a couple-signal of the design domain, formulations of the well-known two-phase 
material topology optimization problem are evolved in Section 3. In Section 4, a sensitivity 
analysis of the objective function of the proposed method is introduced using the adjoint method 
of Lagrangian multiplier. Section 4 also includes a discretization of the continuous design domain. 
In Section 5, numerical interactions of the couple-signal approach are presented in the design 
domain. The couple-signal method using the SIMP approach is applied to numerical sample 
problems in Section 6 and conclusions are given in Section 7. 
 
 
2. Goal and intuitive idea 

 
In continuous formulations of the material topology optimization problem, the design is given  

by a continuous scalar function, Φ, from the fixed design domain, n
x  ( n =2 or 3), to the  

allowed material density, 0≤Φ≤1. After the discretization processes such as the finite element 
analysis of the continuous domain, the material density, Φi, is assigned to each finite element and 
is defined by applying a penalty contour to the design variable field, as in the so-called “power 
law approach” or SIMP approach. 

According to this approach, the material density distribution affects the element stiffness. Thus, 
the stiffness-density relation may be expressed in terms of Young’s modulus, E, i.e., Ei is given by 
the updated density, Φi, of each finite element and is defined as 

    elementsofnumbertotal11
0

0 










 n,n,,i, 


i
ii EE          (1) 

where E0 and Φ0 are the nominal values of Young’s modulus and material density, respectively. 
The penalty parameter, β, penalizes the intermediate material. For example, an isotropic material 
model with a plane stress (such as a wall structure) has been used without loosing generality, so 
that 
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where Ci is a material tensor of each finite element, i, and includes the updated term of Young’s 
modulus, Ei, given by the updated element density, Φi. v is Poisson’s ratio. Here, the minimal 
strain energy on a linear elastostatic structure has been used as an objective function of topology 
optimization and is generally defined as 

                 x

x

i dfMinimize 


 εCεT

2

1
            (3) 

Within each element of the structure, material property distributions such as densities remain 
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Fig. 1 Heaviside function with 0-1 formulation and its expression in design domain 
 
 

constant values of 0≤Φi≤1. The material tensor, Ci, includes an indication function as a 
“self-existing signal” of 0 or 1 in the SIMP approach. That is, if material density exists in a design 
domain with discretized finite elements, part of the design domain is characterized by 1, 
otherwise, 0. Therefore, additional signals are not normally used in the same design domain. 
Therefore, Eq. (3) can be rewritten as including generalized Heaviside function 

                  x

x

ii dHfMinimize 


 εCεT

2

1
            (4) 

where due to the fixed ranges of element material density, −1≤ρ(=2Φi−1)≤1, the generalized 
Heaviside function is defined as follows 
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The Heaviside function with a 0-1 formulation and its expression in the design domain are 
shown in Fig. 1. However, when solving the topology optimization formulations numerically, 
large jumps in density, Φi, across the interface (for example, at the boundary) may cause 
numerical instabilities, such as singularities. Moreover, the first derivative of the objective, Eq. 
(4), would make it unworkable since the derivative of the Heaviside function is the Dirac delta 
function. Special care must, therefore, be taken. 

In order to prevent these numerical difficulties, Berthelsen (2002) popularized the practice of 
introducing an interface thickness to smooth the density at the interface. This can be done by  
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Fig. 2 Regularized Heaviside function with 0-1 formulation and smoothed density distributions in a 
design domain 
 

Fig. 3 SIMP isotropic material model multiplied by regularized Heaviside function-couple signals 
 
 

replacing the Heaviside function introduced above by a smoothed, regularized Heaviside function, 
Hr(Φi), defined as follows 
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Here, the regularized Heaviside function of Eq. (6) was introduced by Wang et al. (2004); 
furthermore, in numerical calculations, it is assumed that the interface thickness should be set at 
α=1.0 since the maximal value of material densities in the design domain is 1.0. The conceptional 
expression of the regularization of a Heaviside function is shown in Fig. 2. 

Consequently, this regularized Heaviside function is smoothed over the interface thickness. To 
perform the sensitivity analysis of the topology optimization problem, a derivative of the 
regularized Heaviside function must be introduced here. The regularized Dirac delta function, 
δr(Φi), at a fixed range of 0≤Φi≤1 is defined as follows 
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Finally, by using the regularized Heaviside function of Eq. (6), the objective function of Eq. (4) 
can be rewritten as follows 

  x

x

iirr dHfMinimize 


 εCεT

2

1
            (9) 

where the renewal objective function, fr, is defined by the regularization of a Heaviside function. 
The scalar strain energy of Eq. (9) takes heavier values than the objective function value of Eq. (3) 
of the typical SIMP approach. This requirement is because the relative stiffness of finite elements 
decreases as the relative displacement increases. Compared to the conventional SIMP approach of 
self-existing signals, the regularized Heaviside function with couple-signals and the relationship 
of the density-stiffness of the SIMP approach are shown in Fig. 3. 

The key result of the regularized SIMP approach with couple-signals is that the relative 
difference of each element stiffness decreases during the optimization processes. Therefore, the 
regularized SIMP approach eliminates the singularities that would otherwise arise in the finite 
element analysis when regions of low density material, Φi→0, appear in the optimization 
processes. The higher value of the elastic strain energy is converged and poses no computational 
problems in the presence of low density elements for most topology optimization problems, i.e., 
structures with small deformations. 
 
 
3. Two-Phase material topology optimization problem: displacement approach as a 
minimization of total potential energy 

 
In this study, a linear elastostatic structure was used in order to describe the problem of the  

structural two-phase material topology optimization. Let n
x  ( n =2 or 3) be a design domain  

occupied by isotropic material. The boundary condition of Ωx is composed of three parts, i.e., 

utxx   : the Neumann boundary condition on Γt; the Dirichlet condition on Γu; and  
the traction free boundary segment on Γx. The first and second parts are written as follows 

    ton0tt            (10) 

    uon0uu            (11) 

where t0 and u0 are given traction forces (or surface loads) and displacement fields, respectively. 
The field condition of Ωx consists of balanced, constitutive and kinematic conditions, and they are 
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expressed as respectively 

    0 bσdiv          (12) 

    Cεσ                (13) 

    Luε         (14) 

where b  is a body force and it is assumed that the stress σ depends only on actual deformation. 
In linear elastic isotropic structures, the material tensor, C, is symmetric after a discretized 
process; therefore, the continuous displacement field, u, in Ωx is a unique solution. 

The schematic of the two-phase material topology optimization of a solid structure with 
specified field and boundary conditions is shown in Fig. 4. 

The principle of virtual displacements uses an ensured satisfaction of equilibrium conditions 
within the weak form. The virtual work principle can be written as follows if the virtual quantities 
δu and δε are considered as variations (or differentials) of the real quantities. 

             x
l

xu
ai HV,,,,,,,   uuuuuuuu 0  (15)

where δωi and δωa denote virtual internal and virtual external work, respectively. Ф is a property 
of material densities. The virtual internal work, δωi, is expressed by virtual strains, δε, stresses, σ, 
and a free-selected regularized Heaviside function, Hr, depending on the material density as 
follows 

           

x

xr
i dH



 σεT             (16) 

where it is assumed that the material density is independent of external forces, i.e., body and 
traction forces. The traction forces are conservative (or independent of displacement fields). 

Therefore, without the expression of a free-selected Heaviside function, the virtual external 
work, δωa, is given by body forces, b , traction forces, t , and virtual displacement fields, δu, as 
follows 

                 

t

t

x

x
a dd



 tubu TT            (17) 

Using Eq. (16) and (17), the equilibrium conditions of Eq. (15) can be rewritten as 

         

t

t

x

x

x

xr dddH



 tubuσε TTT    (18) 

Eq. (15) indicates that for equilibrium to be ensured the total potential energy must be 
stationary for variations of admissible displacements. It can be shown that in stable elastic 
situations the total potential energy is not only stationary but is a minimum. 

The weak form of the equilibrium can be differentiated by the principle of minimum potential 
energy as follows 
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Fig. 4 Schematic of two-phase material topology optimization of a solid structure with specified 
field and boundary conditions 
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l

xu HV,,,,Minimize   uuuu 0        (19) 

Please note that by the principle of minimum potential energy, the objective function can be 
written as 

      ,,, ai uuu   
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         

x

xr dH



 CεεT

2

1
     (20) 

where the continuous material tensor, C, depends on the relationship of material density-stiffness 
of the typical SIMP approach according to the numerical application that a continuous design 
domain is discretized into finite numbers of elements. The discontinuous Heaviside function is 
regularized as a smoothed form. For this purpose, the discretization of the continuous form of the 
objective function of Eq. (20) can be defined as Eq. (9). 

The inequality optimization condition is 0≤Φ≤1, and an equality constraint describes the limit 
on the required amount of materials in terms of the constant mass Mref of the design domain as 
follows 

            

x

refx Md



 0            (21) 

The general problem of structural topology optimization is specified by the objective function 
and constraints. The objective function is expressed as Eq. (20) and the constraint conditions are 
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the linear elastic equilibrium of Eq. (18) written in a weak form satisfying the field and boundary 
conditions and mass constraints of Eq. (21). 
 
 
4. Analytical sensitivity analysis using variational method 

 
In general, the sensitivity of optimization problems such as objective functions or constraints 

can be calculated by analytical or numerical analyses. In terms of numerical errors of the 
sensitivity calculations, when compared with the exact solutions, analytical method is better. This 
method is classified as variational and discrete methods. The variational method is more efficient 
numerically than the discrete method in case definitions of optimization problems and design 
variables are fixed. Therefore, the variational method has been used here. 

Since continuous displacement fields depend on the design variables, s, (for instance, material 
densities), the total derivative of the objective function consists of parts of an explicit partial 
derivative and implicit partial derivative, and the formulation is defined by Haftka and Guerdal 
(1992), Haug et al. (1986) as follows 

                   usu
ex
ss fff  T                    (22) 

According to the general sensitivity formulation of Eq. (22), the total partial derivative of the 
objective function associated with a regularized Heaviside function with respect to design 
variables is written as follows 

       
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             
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x

x

sru dH 


  uεCεT

2

1
      (23) 

By using a derivative of an equilibrium equation of Eq. (18) satisfying field and boundary 
conditions, the term of a derivative of continuous displacement fields, su, with respect to design 
variables can be written as 

     

t

tsxsxsr dddH



 tubuuLCLu TTTT

xx
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        x
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x

rs ddH 


  rLuCLuLuCLu TTTT    (24) 
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In order to calculate a derivative of continuous displacement fields, su, an adjoint method is 
used here. The adjoint method does not directly calculate derivatives of continuous displacement 
fields serving a large number of computational costs. According to the adjoint method, a new 
objective function is defined as follows 

  













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where the renewed objective function, rf
~

, has an additional 0-term (for example, static 
equilibrium), which is multiplied by a Lagrangian multiplier, λ. 

The derivative of the Lagrangian multiplier disappears because of the 0-term. Therefore the 
derivative of Eq. (25) is written as 
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       

t
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x

xs dd
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Lagrangian multipliers, λ, have arbitrary values. We can select a specific Lagrangian multiplier 
value in Eq. (26) in order to remove a derivative of the continuous displacement fields, which is 
numerically very expensive. Therefore, a specific equation (a)=0 in Eq. (26) is produced, 
including the specific Lagrangian multiplier value. 

After discretization of a continuous design domain, the specific equation with a satisfactory 
Lagrangian multiplier is expressed as 

    0TTTT   uJCBBuuJCBBu ˆdHˆˆdHˆ srsr 







       (27) 

Through Eq. (27), a required Lagrangian multiplier value is written as follows 

          1TT 
 uu ˆˆ               (28) 

Through the use of Eq. (27) and (28), in a discretized design domain, a total partial derivative 
of the objective function by the design variable is finally written as follows 
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        uJBCBuuJBCBu ˆdˆˆdHˆf
~

rsrs 







   TTTT

2

1

2

1

 

           









  uJBCBuJBCBuJBCBu ˆdHˆdHˆdHˆ rsrsrs 











 TTTT  

   









  











 dGdˆd essr tNJbNuJBCB TTT   (29)

 

Under the assumptions that external forces b , t , differential matrix, L, and a Jacobi matrix, J, 
are independent of the design variables, the total partial derivative of the objective function can be 
simply written as follows 

      uJBBuuJBCBu ˆdCˆˆdHˆf
~

rrsrs 







   TTTT

2

1

2

1
      (30) 

 
 

5. Finite element stiffness and structural behaviors in regularization 
 
The couple-signal method using the regularized Heaviside function involves significant 

reductions in element stiffness. The integral of the discretized design domain with a material 
phase takes the value 0.8125, not 1, when Eq. (6) is regularization and used in the design domain. 
The area (in 2D) loss (for example, the smoothed boundary value at each element domain), results 
in the loss of stiffness or updated Young’s modulus. At the same time, this numerical phenomenon 
includes especially important decreases in relative stiffness differences between each neighboring 

 
 
 

Fig. 5 Relative stiffness of each neighboring element in original SIMP and regularized SIMP 
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Table 1 Relative stiffness of each neighboring element in original SIMP and regularized SIMP 

 Em En error 

Original SIMP 2125050.588 5855950.820 3730900.232 
Regularized SIMP 1666039.661 5246931.935 3580892.274 

 
 

Fig. 6 Optimization procedures affected by some stiffness loss in regularized SIMP 
 
 

Fig. 7 Problem types-2D wall structures 
 
 

element. Therefore, during the optimization procedures, an updated structure's behavior validates 
numerical stabilities. The results of a numerically experimental test to prove these characteristics 
are shown in Figs. 5 and 6 and Table 1. 
 
 
6. Numerical applications and discussion 

 
As test examples, the elastostatic 2D wall structures as shown in Fig. 7 are considered to 

validate the proposed method. All examples were solved using eight-node square structured 
meshes with quadratic shape functions of a serendipity family. For numerical integration of the  
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Fig. 8 Optimal density distributions of Fig. 7(a)- (a) Original SIMP (b) Filtered SIMP 
(c) Regularized SIMP (d) Filtered and Regularized SIMP 

 
 

discretized elements of the design domain, a 2×2 Gauss quadrature was used.  
The material properties are Young’s module E=2.1×107 kN/m2 and Poisson's ratio v=0.3. Plane 

stress is assumed in 2D and the loading is in a concentrated load of P=1.0 kN. The exponent, 
k=2.5, and updated material density, 0≤Φi≤1, are used in the SIMP method in all cases. The initial 
values of the density variables are set to be Φ0=0.3 for all elements. The filter exponent β=2.2 and 
a radius r=max(Δx, Δy)+γ (in example 6.1 (a): γ=10-3, otherwise, γ=10-2. γ is a fine parameter and 
is chosen for the Filter method (Sigmund 1994). The Δx and Δy are mesh sizes of x-direction and 
y-direction, respectively. 30% constraint mass is used for the constraint condition. 

 
6.1 Two-Phase material topology optimization of 2D wall structures 
 
The problem of material topology optimization shown in Fig. 7 includes diving boards, an 

airplane wing, posts, poles, masts, trees, and branches. A 48×30 mesh is used in problem (a), and 
a 30×60 mesh in problem (b). The final results of the topology optimization problem of Fig. 7 are 
shown in Figs. 8 and 9, respectively. In Figs. 8 and 9, (a) is a solution for the original SIMP, (b) a 
solution for a SIMP using filtering, (c) a solution for a SIMP using couple-signals, the so-called 
“regularized” SIMP, and (d) a solution for a SIMP using filtering and couple-signals. 

As can be seen, the use of a regularized Heaviside function for couple-signals as shown in (c) 
and (d) of Figs. 8 and 9 results in improved optimal solutions with the best minimums of 
converged objective function values and numerical stabilities. 

 
6.2 Various types of regularized heaviside function for regularized SIMP 
 
To calculate example 6.1, transcendental and first polynomial regularized Heaviside functions  

(a)  f = 1.768E-06 (b)  f = 1.614E-06 

(c)  f = 1.513E-06 (d)  f = 1.310E-06 
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Fig. 9 Optimal density distributions of Fig. 7 (b) - (a) Original SIMP (b) Filtered SIMP 
(c) Regularized SIMP (d) Filtered and Regularized SIMP 

 
 

were solved for the proposed regularized SIMP approach. Cases 2~5 were introduced in recent 
literature, including Case 1 of Eqs. (6) and (8). The regularized Heaviside function and its Dirac 
delta function of Case 2 introduced by Osher and Paragios (2003) are defined as follows, 
respectively. 
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The regularized Heaviside function and Dirac delta function of Case 3 introduced by 
Berthelsen (2002) and Moog (2000) are defined as follows, respectively. 
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(a)  f = 1.632E-06 (b)  f = 1.596E-06 

(c)  f = 1.437E-06 (d)  f = 1.302E-06 
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The regularized Heaviside function and Dirac delta function of Case 4 introduced by 
Belytschko et al. (2003) are defined as follows, respectively. 
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The first polynomial regularized Heaviside function and Dirac delta function of Case 5 
introduced in this study are defined as follows, respectively. 
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Fig. 10 Curves of regularized Heaviside function and Dirac delta function of Case 1~5: (a) Regularized 
Heaviside function (b) Regularized Dirac delta function 
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Fig. 11 Optimal density distributions of Fig. 7 (a): (a), (b)-Case 2 (c), (d)-Case 3 (e), (f)-Case 4 (g), 
(h)-Case 5 (a), (c), (e), (g)-regularized SIMP (b), (d), (f), (h)-Filtered and Regularized SIMP 

 
 

The curves of the regularized Heaviside function and Dirac delta function of Cases 1~5 are 
shown in Fig. 10. The optimal structures by SIMP using regularization in Cases 2~5 are shown in 
Figs. 11 and 12. As can be seen, the use of a regularized Heaviside function for couple-signals 
results in improved optimal solutions with the best minimums of converged objective function 
values and numerical stabilities. In this study, optimality criteria method was used for updating 

(a)  f = 3.558E-06 (b)  f = 3.227E-06 

(c)  f = 1.895E-06 (d)  f = 1.626E-06 

(e)  f = 1.985E-06 (f)  f = 1.837E-06 

(g)  f = 1.887E-06 (h)  f = 1.626E-06 
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Fig. 12 Optimal density distributions of Fig.7 (b): (a), (b)-Case 2 (c), (d)-Case 3 (e), (f)-Case 4 (g), 
(h)-Case 5 (a), (c), (e), (g)-regularized SIMP (b), (d), (f), (h)-Filtered and Regularized SIMP 

 
 

design variables. As can be seen, the optimality criteria for general application were found to be 
satisfactory for problems with few active constraints or with small numbers of design variables. 
For problems with large numbers of behavior constraints and design variables, the method would 
appear to follow a subset of active constraints that can result in a heavier design (Patnaik et al. 
2005) 

(a)  f = 3.165E-06 (b)  f = 2.926E-06 

(c)  f = 1.889E-06 (d)  f = 1.673E-06 

(e)  f = 1.865E-06 (f)  f = 1.712E-06 

(g)  f = 1.677E-06 (h)  f = 1.479E-06 
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7. Conclusions 
 

In this study, an improved approach based on regularization with couple-signals was proposed 
for a two-phase material topology optimization of the SIMP approach. The key point of this study 
is to use a regularized Heaviside function in optimization procedures for the SIMP, i.e., for a 
structural analysis, a sensitivity analysis, and an optimality criteria analysis. Basically, the 
Heaviside function uses a signal which determines if an element material exists or not. In the 
SIMP formulation, a material matrix also includes such an indication. In order to produce 
well-posed material topology optimization solutions and avoid numerical instabilities in design 
solutions, the SIMP approach with couple-signals, which combine design variable values with a 
regularized Heaviside function, is proposed instead of using filtering in SIMP. 

Preliminarily, the regularized SIMP method has the same purpose as a sensitivity filtering 
method. The proposed approach has one similarity compared with the method introduced by 
Belytschko et al. (2003), which used an implicit function as a design variable to describe the 
topology of structures. The similarity is that both methods regularize the Heaviside function to 
achieve 0-1 solutions. However, the method employed by Belytschko et al. used nodal values as 
the design variable (to be precise, a nodal-based design), and projects those values onto the 
element domain. Therefore, the convergence rate may be very slow. Here, the proposed method 
seeks improved solutions in the field of the conventional SIMP formulation, i.e., an element-based 
design and offers direct control over material stiffness terms. 

Because the material stiffness terms are multiplied by a regularized Heaviside function, each 
element looses stiffness during the optimization iterations. Therefore, differences of the relative 
stiffness and displacements naturally decrease continuously. The numerical phenomenon gives 
rise to improved 0-1 convergence solutions. The regularization formulation of the objective 
function such as Eq. (4) is not only suitable for Eq. (6), but is also suitable for other regularized 
Heaviside functions. Usable regularized Heaviside functions which have been introduced in other 
research literatures and optimal results for them have been shown in Section 6.2. 
The new method, one regularized heaviside function is another thing to be topologically optimized 
as several alternatives. The use of the regularized heaviside function provides the best solution 
with respect to the converged objective function such as stiffness. 
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