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Abstract.  The optimum design of liquid column dampers in seismic vibration control considering system 

parameter uncertainty is usually performed by minimizing the unconditional response of a structure without 

any consideration to the variation of damper performance due to uncertainty. However, the system so 

designed may be sensitive to the variations of input system parameters due to uncertainty. The present study 

is concerned with robust design optimization (RDO) of liquid column vibration absorber (LCVA) 

considering random system parameters characterizing the primary structure and ground motion model. The 

RDO is obtained by minimizing the weighted sum of the mean value of the root mean square displacement 

of the primary structure as well as its standard deviation. A numerical study elucidates the importance of the 

RDO procedure for design of LCVA system by comparing the RDO results with the results obtained by the 

conventional stochastic structural optimization procedure and the unconditional response based 

optimization. 
 

Keywords:  seismic vibration control; liquid column vibration absorber; random system parameters; robust 

optimization 

 
 
1. Introduction 
 

With the use of high-strength materials and advanced construction techniques, high rise 

buildings are becoming integral part of modern urban infrastructure. These structures are relatively 

lighter, flexible and lightly damped. The effects of vibrations caused by the environmental hazards 

such as earthquake, wind etc. are consequently much more in the present day’s structures. The 

traditional structural design approach has limited capacity of load resistance and energy 

dissipation. To circumvent these limitations, the uses of practical, effective and cost saving devices 

for suppression of vibration effects of structures have gain a momentum in the recent past. In fact, 

it has opened up a new area of research in the last decades. The applications of passive vibration 

control devices are widely accepted and have frequently been implemented to civil engineering 

structures in last three decades due to their advantages of low maintenance requirements leading to 
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overall economy. Extensive research works have been done in the area of passive vibration control 
to mitigate the vibration effect of structures with particular emphasis on alleviation of wind and 
seismic effects. Amongst several alternatives, the Liquid Column Damper (LCD) was widely 
employed in the past for mitigating both the wind and earthquake induced vibration of structures. 
The present article deals with the passive vibration control using LCD. To be specific, the 
optimum performance of a special form of such system termed as liquid column vibration absorber 
(LCVA) is studied which allows better efficiency, versatility and architectural adaptability as the 
natural frequency is obtained not only by the length of the liquid column, but also by the area ratio 
of the horizontal and vertical columns.  

From its inception (Sakai et al. 1991, Balendra et al. 1995), the effectiveness of LCDs to 
mitigate the effect of wind and seismic induced vibration effect has attracted considerable attention 
to the vibration control research community (Xu et al. 1992, Won et al. 1996, Balendra et al. 1999, 
Shum 2009, Lee et al. 2011). In fact, the optimum design procedure for LCDs in passive vibration 
control is proposed in the literature (Gao et al. 1997, Yalla and Kareem 2000). The damper 
parameters are usually obtained by minimizing the mean square responses of structure in the 
random vibration framework assuming deterministic system parameters i.e., the so called 
stochastic structural optimization (SSO) approach. A major limitation of such deterministic 
approach is that the uncertainty information about the decision variables cannot be used in the 
optimization process. But, the complete information about a dynamical system is rarely available. 
Therefore, the design of LCD system by SSO procedure may fail to create a control system that 
provides satisfactory performance. The efficiency of the system may reduce if the parameters are 
not tuned to the vibrating mode it is designed to suppress due to unavoidable presence of 
uncertainty and sometimes poor tuning may even amplify the vibration. Hence, for efficient design 
of LCD system, various uncertainties associated with the input excitation as well as mechanical 
model of the system should be explicitly taken into account. Thereby, the problem of vibration 
control of structure considering uncertain system parameters has attracted a great deal of interest in 
the recent past. Such studies based on minimizing the unconditional expected value of the mean 
square responses have found substantially different optimum TMD configuration (Jensen et al. 
1992, Papadimitriou et al. 1997, May and Beck 1998, Ferrara and Giacomini 2009, Chakraborty 
and Roy 2011) and LCD (Taflanidis et al. 2007, Debbarma et al. 2010a, b). The optimum design 
of damper system to consider the effect of parameter uncertainty as mentioned above primarily 
apply the total probability theory to obtain the unconditional system response which is 
subsequently used as the performance index. However, such design approach does not consider the 
possible dispersion of the system performance and the damper parameters so designed may be 
sensitive to the variations of the input system parameters due to uncertainty. But, it is desirable to 
achieve a damper system which will not only yield optimum performance with regard to reduction 
of vibration level of structures but also assure less sensitivity with respect to the variations of 
system parameters due to uncertainty. To achieve this, the dispersion of the performance index 
from its nominal value is required to be introduced in the optimization process (Huang and Du 
2007) which can be achieved by robust design optimization (RDO).  

The developments on RDO in different scientific disciplines in the recent past are noteworthy 
(Zang et al. 2004, Park et al. 2006, Beyer and Sendhoff 2007). However, there have been a few 
applications of RDO with respect to reduction of vibration levels of structures (Hwang et al. 2001, 
Son and Savage 2007). The RDO in seismic vibration control were studied in recent past for TMD 
system (Marano et al. 2008, 2010). But, unlike TMDs, the governing equation of LCD motion is 
nonlinear due to the drag-type forces induced by the orifice. In the design of LCDs, there will be a 
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dependence of the optimum head-loss coefficient on the excitation intensity (Papadimitriou et al. 
1997, Yalla and Kareem 2000). As a consequence, the tuning may not be optimal for intensities 
different than the nominal one used in the design and may affect the optimum performance of the 
system. Thus, the nonlinearity of the system should be considered by including the excitation 
intensity as an uncertain parameter. Keeping this in view; the robust optimum design of LCVA to 
mitigate seismic vibration effect considering random system parameters is investigated so that an 
LCVA configuration is possible to achieve in which the final response reduction capability of the 
system will be less sensitive. The RDO is obtained by minimizing the weighted sum of the mean 
value of the performance index and its standard deviation. The maximum root mean square 
displacement (rmsd) of the primary structure is considered as the performance index. The SSO 
assuming deterministic system parameters and usually adopted unconditional response based 
optimization procedure under system parameter uncertainty in the framework of total probability 
theory are also performed to demonstrate the relevance and importance of the proposed RDO 
approach. A numerical study illustrate the effectiveness of the proposed RDO of LCVA system by 
comparing the RDO results with the results obtained by the SSO and unconditional response based 
optimization procedures. 
 
 
2. Stochastic response of LCVA- structure system 

 
The basic mechanical model of LCVA is represented by a single degree of freedom (SDOF) 

system with properties in accordance with the specified mode of vibration intended to control. The 
structure-damper system is subjected to base motion due to earthquake. If x(t) and y(t) represents 
the horizontal displacement of the SDOF system relative to the ground and the displacement of the 
liquid surface, respectively under base acceleration ( )bz t due to earthquake motion, the equation of 

motion of the liquid column can be approximated as 

                      1
2

2
        h ee h h h h bA L y t A y t y t gA y t A B x t z t               (1) 

Where, Ah, Av, Bh and ρ represent the horizontal and vertical cross sectional area, length of the 
horizontal portion of the liquid tube and density of the liquid mass, respectively. Following 
notations are further introduced in the formulation: damper mass ml=(ρAhBh+2ρhAv), mass ratio, 
μ=ml/m0, area ratio, r=Av/Ah, liquid column length, Le=(2h+Bh), length ratio, p=Bh/Le, frequency of 

the  structure, 000 / mk , m0 is the mass and k0 is the stiffness of the structure, liquid 

frequency, ee= 2g/Ll , ( ) [1 ( -1)]ee h e h eL B r L B L p r     and tuning ratio: γ=ωl/ω0. The 

damping constant ξ is the coefficient of head loss controlled by the opening ratio of the orifice.  
The equation of motion of the liquid column as described by Eq. (1) is non-linear in nature due 

to the drag-type forces induced by the orifice as indicated by the second term of the left hand side 
of Eq. (1). Using equivalent linearization techniques, it can be approximated as (Iwan and Yang 
1972) 

                      2 2h ee h p h h h bA L y t A C y t A gy t A B x t z t                         (2) 

In the above, Cp 
represents the damping co-efficient of the equivalent linear system. It is  
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Fig. 1 The liquid column vibration absorbers model 

 

 

determined by minimizing the mean square value of the damping force, ∈=(1/2)ρAhrξ|ẏ|y 
−2ρAhCpẏ. Assuming ẏ is a zero mean stationary Gaussian process, the value can be obtained as: 

2 / 2p yC r    , y  is the standard deviation of liquid velocity. It can be noted that Cp depends 

on σẏ 
which is not known a priori and required an iterative solution procedure to obtain it.  

Normalizing Eq. (2) with respect to the liquid mass in the container (ρAhLee) yields 

                      
2 2p e e

b
ee ee ee ee

C g L L
y t y t y t p x t p z t

L L L L
                     (3) 

The vibrating SDOF system has the mass of m0, stiffness of k0 and structural damping of c0 
(damping ratio of ξ0) as shown in Fig. 1. The normalized (with respect to m0) equation of motion 
of the primary structure attached with LCVA can be written as 

                    2
0 0 01 2   /  1e em bx t x t x pL L y t z t                           (4) 

Where, Lem=(Bh/r+2h). Now, rewriting Eq. (3) and (4) in matrix form yields 

                   ( ) ( ) ( ) bt t t z  MY CY KY Mr                 (5) 

In which M, C and K represent the mass, damping and stiffness of the combined system 
defined as 

        2
0 0 0

1 / 2 / 0 2 / 0
, and

/ 1 0 2 0
e ee p ee ee

e em

pL L C L g L

pL L    
     

            
M K C        (6) 

And Y=[y, x]T is the relative displacement vector and [0 1] Tr . Introducing the state space 
vector, YS=(y, x, ẏ, ẋ)T, Eq. (6) can be written in the state space form as (Lutes and Sarkani 1997)

0k

0c

0m

hB

x(t)

bz (t)

( )y t

Le
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                     s s bz t sY Α Y r                                (7) 

Where, 
k c

s

 
  
 

0 Ι
Α

Η Η
is the structural system matrix having, Hk=M-1K, Hc=M-1C, I is 2×2 unit 

matrix and 0 is a null matrix, respectively and r=[0, 0, 1, 1]T. 
The primary structure is excited at base due to seismic acceleration, )(tzb . The well-known 

Kanai-Tajimi stochastic load model (Tajimi 1960) which can characterize the input frequency 
content for a wide range of practical situations is adopted in the present study to represent the 
stochastic earthquake process. The process of excitation at the base can be described as 

                   2( ) 2 ( )f f f f f fx t x x t                            (8) 

                  2( ) ( ) ( ) 2f f f f f fz t x t t x x                               (9) 

Where, ω(t) is a stationary Gaussian zero mean white noise representing the excitation at the 
bed rock, ωf is the base filter frequency and ξf

 
is the filter or ground damping. Introducing the 

global state space vector, [ , , , , , ]T
f fy x x y x xZ    , Eq. (6) and (9) leads to the following Lyapunov 

equation (Lutes and Sarkani 1997) 

                             0  TΑR RΑ Β                              (10) 

Where, the state space matrix A involves the properties of structure, damper and load model 
parameter. All terms in the B matrix is zero except, B(6,6)=2πS0. The space state covariance matrix 
R is obtained as the solution of the above Lyapunov equation. The covariance matrix is 
represented by the sub-matrices zz zz zz zz, , andR R R R   . The rmsd of the structure can be readily 
obtained as 

                         (2,2)Rzzx                                (11) 

 
 
3. LCVA parameters optimization: conventional SSO approach   

 
The optimization of LCD system of protection requires determination of tuning ratio and 

coefficient of linear equivalent damping. The conventional optimization problem for system 
subject to stochastic load is transformed into a standard nonlinear programming problem. The 
optimum design variables are obtained by minimizing the rmsd of the structure for a known mass 
ratio and deterministic system properties i.e. the so called SSO problem is defined as 

                     Find   to minimize: T
xb f                    (12) 

The above SSO problem intuitively assumes that the parameters characterizing the structure 
and earthquake load are completely known. However, the uncertainty in these parameters may lead 
to an unexpected excursion of responses affecting the desired safety of structure (Zhao et al. 1999, 
Chaudhuri and Chakraborty 2006). The sources of uncertainty in seismic response analysis include 
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both the structural system and the seismic actions. The frequency of the mechanical model 
representing the stiffness and mass distribution may be afflicted by significant variation during the 
service life of a structure. It is often difficult to predict the frequency accurately. In modelling of 
dynamic system, the proper characterization of energy dissipation of a system is very difficult and 
depends on various interacting complex parameters. One would always expect to consider the 
presence of uncertainty in the damping properties of a structure. Thus, these two parameters 
describing the mechanical model of the primary structure are considered to be uncertain. On the 
contrary, the stochastic spectra are traditionally used to consider the effect of random nature of 
seismic motion. The load model parameters i.e., S0, ωf 

and ξf are normally derived from few 
analyses on specific accelerograms which were subsequently generalized to a generic class of 
soils, such as rigid, medium and soft, simply referred to a single studied seismic event. But, in 
practical applications, the operators usually apply lexical and formal criteria for their 
identification. It can be reasonably affirmed that proper evaluation of these parameters and the 
related uncertainty is indeed an essential topic for professional engineers. So, these three 
parameters describing the stochastic load model are also taken as uncertain. Therefore, the 
uncertainties considered in the system parameter in the present study are in ω0, ξ0, ωf, ξf 

and S0 are 
denoted by a vector u. 
 
 
4. RDO of LCVA parameters under uncertainty  
 

The response of LCVA system of protection depends on the various parameters as mentioned in 
the previous section as the matrix A and B are functions of those parameters. Thus, evaluation of 
stochastic response using Eq. (11) and subsequent solution of the optimization problem i.e., Eq. 
(12) to obtain LCVA parameters are conditional i.e., the system parameters are deterministic. But, 
apart from the stochastic nature of earthquake load, the uncertainties with regard to these 
parameters are expected to have considerable influences. To estimate the unconditional stochastic 
response of structures, one needs to perform sensitivity analysis of stochastic dynamic system 
(Bhattachrayya and Chakraborty 2002, Chaudhuri and Chakraborty 2004, Jensen 2005). To obtain 
the sensitivities of responses, the first and second order derivatives of basic Lyapunov equation 
can be obtained by differentiating Eq. (10) with respect to these parameters as 

             , , 1 1 , ,0, where ( )T

u u u ui i i i
iu


     


TAR R Α B Β A R RA B           (13a) 

     , , 2 2 , , , , , ,0,where 2[ ] [ ]T T T

u u u u u u u u u u u ui j i j i i i i i j i j
      ΑR R A Β Β Α R R Α Α R RΑ

   
(13b) 

The sensitivity of the response (the rmsd as considered herein) can be obtained directly by 
differentiating Eq. (11) with respect to the i-th random variable ui as following 

                      , (2,2)1
. . , 2 (2,2)

uii ex x uiui
 




R

R
             (14) 

In which, R,ui (2, 2) is obtained by solving Eq. (13a). The second order sensitivity of the rmsd 
can be further obtained by differentiating Eq. (14) with respect to the j-th random variable uj as 
following 
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[ , (2,2) , (2,2)]
1 1

, , (2,2)
2 (2,2)2 (2,2)

u ui j
x u u u ui j i j


 
   
 
 

R R

R
RR

               15) 

The random responses of structure under stochastic earthquake load depend on the system 
parameters can be expanded in the Taylor series about the mean value of the random system 
parameter (with the assumptions that the random variation is small). The i-th such parameter ui can 
be viewed as the superposition of the deterministic mean component (ūi) with a zero mean 
deviatoric component (Δui). The Taylor series expansion of the rmsd of the primary structure about 
the mean values of the random system parameters can be expressed as 

           
1 1

1
.........., ,21  

        


nv nv
x i i ji i i ji j

nv
u u ux u x u x u u

i
       (16) 

In the above, nv is the total number of random variables involve in the problem, σx(ūi) is the 
mean part of the rmsd of the structure. The unconditional expected value of the rmsd can be 
obtained by the quadratic approximation of Eq. (16) assuming uncorrelated random variables 

 

 

1 1

2

1
{ } { }, ,21

1
. . ,2 1

nv nv
x i i ji i i j

i j

x ui i i i

nv
E u E u ux u x u x u u

i

nv
i e x u x u u

i

  

  

 
     



  


 

     (17) 

Where, 
iu is the standard deviation (SD) of the i-th random parameter. The linear  

approximation of Eq. (16) furnishes the variance of the rmsd as following 

                   
2 2

,Var.( )
1

x x u ui i

nv

i
      


                         (18) 

In the total probability theorem, the LCVA parameters optimization problem as defined by Eq. 
(12) is redefined by considering the unconditional rmsd of the primary structure obtained by Eq. 
(14). Thus, the optimization problem considering the effect of random system parameters is 
defined as following 

           21
Find b=( , ) to minimize: ,2

 
1

T
x ui i i i

nv
f x u x u u

i
       


         (19) 

The minimization of unconditional rmsd of the structure by the total probability theorem to 
consider the effect of system parameters uncertainty as described above do not consider the 
possible dispersion of the design performance with respect to the variations of the system 
parameters due to uncertainty. As already discussed, the objective of an ideal design is to achieve 
the optimum performance as well as its’ less sensitivity with respect to the variations of the system 
parameters. This necessitates minimizing the performance function as well as its dispersion. The 
two design criteria often conflicts with each other. In the context of RDO, it is dealt as a multi-
objective optimization problem, where the conventional objective function and its standard 
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deviation are the two objective functions that need to be optimized. This leads to a two-criterion 
optimization problem. The problem can be stated as finding the design vector to minimize {f(ū), 
σf(u)}, in which the mean part of the objective function, f(ū)=σx(ū) and its SD can be obtained as 

                
2 2

,( ) Var.( )
1 i i

f x x u u

nv

i
         

u            (20) 

Finally, the dual criteria performance objective function is transformed to an equivalent single 
objective function as 

                
 

* *
( )

minimize (1 )
f

f

f

f


  


  

uu
              (21) 

Where, λ is a weighting factor in the bi-objective optimization problem, *f and *
f are the two 

ideal optimal solutions correspond λ=0.0 (optimum solution is obtained simply by minimizing the 
standard deviation) and λ=1.0 (optimization without any consideration for robustness). Larger the 
value of λ implies that the designer puts more significance on the mean value of the performance 
function over its dispersion. The multi-objective optimization strategy for creation of Pareto front 
as presented here is the so called Weighted Sum Method (WSM). However, various other 
approaches are also applied for solving such problems e.g., Compromise Programming method, 
Physical Programming method and the genetic algorithm (GA). The standard gradient based 
MATLAB optimization routine is used here to solve the problem. However, for more complex 
configuration, GA based technique are robust choice for solving the associated optimization 
problem as the approach is independent from the choice of an initial point and does not require any 
information regarding the gradient of the objective function. Moreover, GA can be utilized to 
directly obtain the global convex or non-convex Pareto front for multi-objective optimization 
problems without converting it to an equivalent single objective function. However, the GA is 
computationally expensive than the other methods, especially for large scale practical problems. 
More details may be seen in an excellent state-of-the-art review on multi-objective optimization 
procedure in Marler and Arora (2004). 
 
 
5. Numerical study 
 

A SDOF structure with an attached LCVA as shown in Fig. 1 is undertaken to elucidate the 
proposed RDO of LCVA system for seismic vibration control of structures considering random 
system parameters. Unless specifically mentioned, the following nominal values are assumed in 
the present numerical study: T=2sec, ξ0=1%, µ=3%, p=0.7, r=1.5, ωf=9π rad/sec, ξf=0.6, 
S0=2.361×10-3 m2/sec3, coefficient of variation (cov) of each random parameter =0.1. The rmsd of 
the unprotected system i.e. without LCVA is found to be 11.08 cm.  

The rmsd of the structures with attached LCVA is optimized by the proposed RDO procedure as 
described by Eq. (21). The optimum rmsd of the structure versus mass ratio is plotted in Fig. 2 for 
different degree of robustness imposed on the design by different weight factors λ. The rmsd 
values are normalized with respect to the rmsd of the unprotected structure (11.08 cm) for 
convenient to study the nature of variation of the performance and the efficiency of the LCVA by 
the proposed RDO approach with reference to SSO and unconditional response based optimization  
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Fig. 2 The variation of the mean value of the rmsd 
of the primary structure with increasing mass ratio 

Fig. 3 The variation of the SD of the rmsd of the 
primary structure with increasing mass ratio 
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Fig. 5 The optimum head loss coefficient with 
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approach. The associated dispersions i.e., the SD of rmsd of the structure are shown in Fig. 3. The 
SD of rmsd values are also normalized. The corresponding optimum tuning ratio and head loss 
coefficient are shown in Figs. 4 and 5, respectively. The results obtained by solving the 
conventional SSO defined by Eq. (12) and by minimizing the unconditional rmsd to consider the 
effect of system parameter uncertainty as described by Eq. (16) are also obtained. The results are 
shown in the same plot for ease in comparison with the present RDO results. The conventional 
SSO results are denoted by deterministic and the unconditional rmsd based results are denoted as 
RBDO in all such plots. It can be readily observed from the plots that though the efficiency of 
vibration reduction is not completely eliminated with respect to that of SSO, the efficiency of the 
LCVA reduced in case of unconditional rmsd based optimization approach. There is a further 
marginal reduction in the efficiency of the LCVA performance for various RDO cases as obtained 
for different settings of λ. However, the dispersion of the designs performance i.e., the SD of the 
rmsd is less in RDO approach than the SD of rmsd obtained by usually adopted unconditional  
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rmsd based optimization procedure. Fig. 4 shows that the tuning ratio is not sensitive for different 
robust design for a fixed mass ratio. However, the optimum head loss coefficients as shown in Fig. 
5 changes notably to achieve various RDO solutions for different setting of weight factor λ. The 
RDO solutions show the tendency of greater damping values requirements in comparison to those 
required by the conventional SSO or unconditional rmsd based optimization approach. The 
tendencies are more marked when λ decreases which is obvious as lower λ values correspond to 
more importance to the performance variation to achieve more robustness in the design.  

The normalized mean value of the rmsd of the structure versus the weight factor λ is plotted in 
Fig. 6 for different mass ratio. The associated normalized SD of rmsd is shown in Fig. 7. It can be 
readily observed from the plots that the rate of increase in the rmsd is much less than the rate of 
decrease in its SD for all values of λ. This clearly indicates that by a marginal sacrifice of the  
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Fig. 13 The variation of the SD of the rmsd of 
the primary structure with varying time period 

 
 

performance of LCVA, a reasonable improved robustness in its performance is possible to achieve. 
The variations of the optimum damper parameters with varying λ values are shown in Figs. 8 and 
9. As earlier, it is observed that the optimum tuning ratios do not changes but the head loss 
coefficients get adjusted to yield improvement to the robustness of the performance of the system.  

The sensitivities of robust solution of LCVA with respect to various parameters involved are 
further studied. The normalized mean value of the rmsd of the structure and its’ associated SD with 
different values of weight factor for increasing damping ratios of the structure are studied in 
Figs. 10 and 11, respectively. The normalized mean and SD of the rmsd with varying time period 
of the structure are plotted in Figs. 12 and 13, respectively for different values of λ. The reduction 
of efficiency of the LCVA system by the unconditional rmsd based optimization and the RDO with 
respect to the efficiency achieved by the conventional SSO approach as shown in Figs. 10 and 12 
is obvious as it does not consider the effect of system parameter uncertainty. However, the  
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Fig. 15 The variation of the SD of the rmsd of 
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Fig. 17 The variation of the SD of the rmsd of 
the primary structure with varying area ratio 

 
 

reduction in the SD of rmsd indicating more robustness in the design by the proposed RDO 
approach is clearly observed over a wide range of damping ratio and time period of the structure.  

Similar results are developed for varying length ratio and area ratio of the LCVA. The results 
are shown in Figs. 14 and 15 for varying length ratio and in Figs. 16 and 17 for varying area ratio. 
The results show that the trends of RDO results remain same over wide range of length ratio and 
area ratio. 

The trade-off scenario between the performance objective and its robustness, the typical 
characteristics of any multi-objective optimization procedure is studied further in term of Pareto 
front, in Fig. 18 for different mass ratio. The optimum rmsd of the structure and its associated SD 
as obtained by the unconditional rmsd based optimization procedure is also shown in the figure 
(same symbol, but inside not filled). It is clear from the figure that more robustness is achieved at 
the cost of sacrificing the optimum performance. It can be observed that though the unconditional  
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rmsd based optimization yields better performance in terms of reduction of vibration level; but the 
SD of the rmsd is also quite high. It may be further noted that the SD obtained by the usually 
adopted unconditional rmsd based optimization to allow system parameter uncertainty is a fixed 
value and the designers have no control over it. Whereas, in case of proposed RDO procedure for 
LCVA system of protection, the designer has the necessary flexibility to reduce the SD of the rmsd 
of the structure reasonably by marginally sacrificing the efficiency.  
 
 
6. Conclusions 
 

The effectiveness of applying RDO procedure compare to the conventional unconditional rmsd 
based optimization procedure for design of LCVA system to mitigate the seismic vibration of 
structures under system parameter uncertainty is presented. It is generally observed that the 
efficiency of the LCVA system of protection is marginally less by the proposed RDO approach 
compare to that of the unconditional rmsd based optimization. However, the dispersion of the 
design i.e., the SD of rmsd is reasonably reduced compare to the SD of rmsd as obtained by the 
unconditional rmsd based optimization approach. It is important to note that it is possible to 
achieve a desired level of performance efficiency and associated dispersion by RDO procedure 
under uncertain parameters through suitable choice of parameters λ. Thus, the proposed approach 
can provide for more realistic and cost-effective trade-offs between the control performance and its 
robustness with due importance to the unavoidable presence of system parameter uncertainty. 
Moreover, in many real life problems, the mini-max criteria may provide a range of variations 
indicating the implications of the presence of uncertainty. These estimates, though unsuitable for 
unconditional rmsd based optimization, can be integrated into a RDO process. However, these 
need further studies. It is to be noted here that the proposed RDO approach estimates the 
robustness measure following linear perturbation based approximation of functions around the 
mean values of the uncertain system parameter. Thus, the approach is applicable so long the level 
of uncertainty is small and for comparatively larger levels of uncertainty, other alternative 
approaches to the linear perturbation analysis e.g., stochastic simulation should be applied. The 
present study is based on stationary stochastic earthquake load model. For more realistic non-
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stationary earthquake model will require to deal with time dependent response statistics evaluation 
and performance function in the optimization procedure. This of course needs further study. 
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