
Steel and Composite Structures, Vol. 9, No. 5 (2009) 473-497 473
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Abstract. For the spatially coupled free vibration analysis of composite box beams resting on elastic
foundation under the axial force, the exact solutions are presented by using the power series method based on
the homogeneous form of simultaneous ordinary differential equations. The general vibrational theory for the
composite box beam with arbitrary lamination is developed by introducing Vlasov°Øs assumption. Next, the
equations of motion and force-displacement relationships are derived from the energy principle and explicit
expressions for displacement parameters are presented based on power series expansions of displacement components.
Finally, the dynamic stiffness matrix is calculated using force-displacement relationships. In addition, the
finite element model based on the classical Hermitian interpolation polynomial is presented. To show the
performances of the proposed dynamic stiffness matrix of composite box beam, the numerical solutions are
presented and compared with the finite element solutions using the Hermitian beam elements and the results
from other researchers. Particularly, the effects of the fiber orientation, the axial force, the elastic foundation,
and the boundary condition on the vibrational behavior of composite box beam are investigated parametrically.
Also the emphasis is given in showing the phenomenon of vibration mode change.
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1. Introduction

Advanced composite materials have been increasingly used over the past few decades as their high

ratio of stiffness and strength to weight. Other advantages that motivate some applications are corrosion

resistance, magnetic transparency, low thermal expansion, and excellent fatigue characteristics in the

direction of the fibers. Recently, Walker (2007) described a methodology to design symmetrically

laminated fiber-reinforced structures under transverse loads for minimum weight, with manufacturing

uncertainty in the ply angle. For any structure that may be subjected to dynamic loads, the determination

of the natural frequencies and its mode shapes is critical in the design process. It is usually the first step

in a dynamic analysis since a great deal may be deduced concerning the structural behavior and integrity

from the knowledge of its natural frequencies and mode shapes.

Up to the present, considerable research efforts to obtain analytical solutions for the vibration analysis

of composite beams have been made by many researchers. Matsunaga (2001) derived a set of fundamental

dynamic equations of one-dimensional higher-order theory for laminated composite beams through

Hamilton’s principle by using the method of power series expansion of displacement components. Qin
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and Librescu (2002) investigated the non-classical effects on the natural frequencies using the extended

Galerkin’s method within the framework of an existing anisotropic thin-walled beam model. Song and

Librescu (1997) performed an analytical study devoted to the mathematical modeling of spinning

anisotropic thin-walled beams. Also Song and Librescu (1993) presented the formulation of the dynamic

problem of laminated composite thick- and thin-walled, single-cell beams of arbitrary cross-section.

The structural model considered the exotic properties characterizing the advanced composite material

structures such as the anisotropy and the heterogeneity. The free vibration solution of stepped laminated

composite beams of rectangular cross-section using a simple higher- order theory which assumes a cubic

distribution for the displacement field through the thickness was studied by Song and Waas (1997).

They used a method of separation of variables to governing equations and obtained 12 homogenous linear

algebraic equations by applying appropriate boundary conditions. Armanios and Badir (1995) investigated

the dynamic response of thin-walled box composite beams using the asymptotic variational approach.

The analysis is applied for two lay-up configurations, namely the circumferentially uniform stiffness

(CUS) and the circumferentially antisymmetric stiffness (CAS). Dancila and Armanios (1998) used the

governing equations provided by Armanios and Badir (1995) to develop a simple quasi-decoupled solution

procedure that provides accurate predictions of natural frequencies with little computational effort.

As an alternative approach, the transfer matrix method has been used to calculate the natural

frequency of composite beam. Yildirim, et al. (1999) studied in-plane and out-of-plane free vibration

problems of symmetric cross-ply laminated composite beams using the transfer matrix method. As a

continuation of Yildirim, et al. (1999), Yildirim and Kiral (2000) performed the out-of-plane bending

and torsional free vibration analysis of symmetric cross-ply laminated composite beams. The relative

difference between the first six non-dimensional frequencies obtained by the Bernoulli-Euler and

Timoshenko beam theories was presented for different length to thickness ratios, thickness to width

ratios, and different types of boundary conditions. 

On the other hand, the finite element method has been widely used because of its versatility and a

large amount of work was devoted to the improvement of composite finite elements in order to obtain

the acceptable results. La, et al. (2007) investigated the effects of randomness in material properties and

foundation stiffness parameters on the free vibration response of laminated composite plate resting on

an elastic foundation using a Co finite element method. Kisa and Gurel (2005) studied the modal

analysis of cracked cantilever composite beams, made of graphite-fibre reinforced polyamide using the

finite element and component mode synthesis method. Lee and Kim (2000, 2002) developed a displacement

based one-dimensional finite element model to predict natural frequencies and corresponding vibration

modes for a thin-walled composite I- and channel-beams. The displacements expressed over each element

as a linear combination of the one-dimensional Lagrange interpolation function and Hermite-cubic

interpolation function. Through numerical results, they addressed the effects of fiber angle, modulus

ratio, height-to-thickness ratio, and boundary conditions on the vibration frequencies of composite

beam. Thereafter, Vo and Lee (2008) studied the free vibration analysis of a thin-walled laminated

composite beam with box section using the finite element developed by Lee and Kim (2000, 2002). Shi

and Lam (1999) presented the derivation of the variational consistent stiffness and mass matrices for the

finite element modeling of a composite beam. The two-noded higher-order composite beam element

possessed a linear bending strain as opposed to the constant bending strain in the existing higher-order

composite beam elements with the same number of nodal degrees of freedom. The free vibration

characteristics of laminated composite beams using the finite element analysis and the higher-order

plate theory were studied by Chandrashekhara and Bangera (1992). They incorporated a Poisson effect,

which was often neglected in one-dimensional laminated beam analysis, in the formulation of the beam
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constitutive equation. Marur and Kant (1996) proposed three higher-order displacement models for free

vibration analysis of composite beams with various boundary conditions and aspect ratios using the

finite element modeling based on isoparametric formulations and Wu and Sun (1990) developed a two-

noded, 10 degrees of freedom per node, laminated composite thin-walled beam finite element for

vibration analysis based on modified assumptions of classical isotropic thin-walled beam theory. Also

Ashour (2003) employed a finite strip transition matrix technique to obtain the natural frequencies of

symmetric cross-ply laminated composite plates with edges elastically restrained against both translation

and rotaion.

The exact element method based on the solutions of the ordinary differential equations was used as an

effective method solving the dynamic problem of isotropic and composite beams. The method of

solution by power series that yields the exact dynamic stiffness matrix was first introduced by Eisenberger

(1990). Since then it was used by the same author for many problems of beams including the higher

order models (Eisenberger 2003a, 2003b) and the torsional vibration of open and variable cross-sections

(Eisenberger 1995, 1997). Also Eisenberger (1994) evaluated the exact vibration frequencies of beam

resting on variable one- and two-parameter elastic foundation using the dynamic stiffness matrix of

beam. Eisenberger and Abramovich (1997), Eisenberger, et al. (1995), and Abramovich, et al. (1995, 1996)

applied the exact element method presented by Eisenberger (1990) to calculate the natural frequencies

and the mode shapes of laminated composite beams. Banerjee and Williams (1995, 1996) have developed

the dynamic stiffness matrices of a composite beam in order to investigate their free vibration

characteristics. The associated theories accounted for the effect of the material coupling between the

bending and torsional modes of deformation which is usually present in composite beams, such as

aircraft wings. And an explicit analytical expression for each of elements of the dynamic stiffness was

derived by rigorous use of the symbolic computing package. Thereafter, Banerjee (1998) extended the

earlier theories of Banerjee and Williams (1995, 1996) by including the effect of an axial force.

However, the above-mentioned works considered only the dynamic stiffness of composite beam with

rectangular cross-section.

The existing literature reveals that, even though a significant amount of research has been conducted

on development of the free vibration analysis of thin-walled composite beam, there still has been no

study of the exact dynamic stiffness of a composite box beams with arbitrary lamination in the literature.

Also investigation into the influence of the axial force, the foundation, and the boundary condition on

the coupled or decoupled vibrational behavior of composite box beam, and the vibration mode change

phenomenon do not appear to have been reported.

The purpose of this study is to present the dynamic stiffness matrix that can be used in performing the

free vibration analysis of box beams made from fiber-reinforced laminates with symmetric and arbitrary

laminations. The present approach advocates the use of direct evaluation schemes using symbolic

manipulation, rather than using a discrete integration scheme or a method based on energy principles

which may perform poorly for stiff systems.

2. Vibration theory of composite box beam

For the vibration analysis of thin-walled composite box beam, following assumptions are adopted.

1. The composite box beam is slender and prismatic. 

2. The Kirchhoff-Love assumption in classical theory is valid for thin-walled composite beams.

3. The cross-section is assumed to maintain its shape during deformation, so that there is no distortion.
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4. Each laminate is thin and perfectly bonded.

5. The normal stress σs in the contour direction s is small compared to the axial stress σx.

For the theoretical developments presented in this study, the geometry and three sets of coordinate

systems which are mutually interrelated are presented in Figs. 1 and 2, respectively. The first coordinate

system is the orthogonal Cartesian coordinate system (x1, x2, x3) and the second coordinate system is the

local plate coordinate ( , s, x1) wherein the  axis is normal to the middle surface of a plate element,

the s axis is tangent to the middle surface and is directed along the contour line of the cross-section. The

third one is the contour coordinate S along the profile of the section with its origin at any point O on the

profile section. The point P is called the pole axis.

The mid-plane displacement components u, v, and w of an arbitrary point in the contour coordinate

system can be expressed according to the assumption 3 as follows:

n n

Fig. 1 Geometry and coordinate system of a composite box beam

Fig. 2 Pictorial definitions of coordinates in thin-walled section
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(1a)

(1b)

(1c)

where Ux, Uy, and Uz are the rigid body translations with respect to x1, x2, and x3 axes, respectively,

and θ is the twisting angle. The angle ψ defines the relative orientation of the (x1, x2, x3) and ( , s,

x1) coordinate systems, and is equal to the angle between x2 and s direction at G. The prime denotes

the differentiation with respect to x1 and φ is the normalized warping function at the pole point and

given by

(2)

where Fs(s) and t(s) are the St. Venant shear flow and the wall thickness, respectively; c(s) is the

segment of the contour lying between the origin and the arbitrary point. The general constitutive

relations between the membrane forces and the bending and torsional moments and their strains and

curvatures for the arbitrary laminate are as follows:

(3)

where the laminate resultant forces and moments are

(4a,b)

and the laminate strains and curvatures are

(5a,b)

In Eq. (3), the expressions for the stiffness submatrices [A], [B], and [D] are defined by Jones (1975).

And εx and γxs indicate the axial and shear strains, respectively, and κx and κxs are the axial and twist

curvatures, respectively, of the middle surface and are expressed as follows:
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(6a)

(6b)

(6c)

(6d)

The appropriate assumptions for constitutive relations are essential for a refined composite beam

theory since the pile in the laminated composites behave in a highly two-dimensional manner due to the

Poisson’s effect (Smith and Chopra 1991). In this regard, the zero hoop stress assumption is employed

in this study. Assuming zero hoop stress leads to Ns = Ms = 0, and then the hoop strain, εs and the

tangential curvature, κs can be expressed from Eq. (3) as follows:

(7a)

(7a)

Substituting Eqs. (7a) and (7b) into Eq. (3) gives the reduced constitutive relation as follows:

(8)

Recently, for the static analysis of thin-walled composite beam with open-section, Shin, et al. (2007)

derived the elastic strain energy, by using the transformation relationships developed by Gjelsvik
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(1981) between the beam stress resultants and the plate ones, and the constitutive relations between the

beam stress resultants and the displacements, as follows:

(9)

where l denotes the length of beam and the detailed expressions of sectional quantities in Eq. (9) are

presented in Appendix A. The potential energy  due to the initial axial force  can be represented as

(10)

where  denotes the geometrical characteristics considering the Wagner effect which reflects the effect of

normal stress and section properties on the twisting behavior and is defined as (Bauld and Tzeng 1984)

(11)

 Also, the kinetic energy  of the beam considering the rotary inertia effect is given by

(12)

where ρ is the density and substitution of displacement components into Eq. (12) leads to

(13) 

where ω is the frequency of harmonic vibration; A*, I *
2 , and I *

3  are the cross sectional area, the second

moment of inertia about x2 and x3 axes, respectively; I *
o  and I *

φ are the polar moment of inertia and the

warping moment of inertia due to the normalized warping, respectively. These section properties are

defined as follows:

(14a-e)
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(15a)

(15b)

 Now, we consider the composite beam resting on elastic foundation as shown in Fig. 3, in which the

kx, ky and kz are the Winkler foundation moduli indicating the first type of foundation parameters for the

axial and transverse translations at the point (hy, hz) and kθ  is the rotational parameter for rotation of the

cross-section. And gy and gz denote the second type of foundation parameters i.e., Vlasov, Pasternak and

Filonenko-Borodich foundation moduli at the point (hy, hz). Dube and Dumir (1996) presented the

energy expression corresponding to the elastic foundation based on the classical beam theory for the

free vibration analysis of isotropic thin-walled beam as follows: 

(16)

Then, we consider the extended Hamilton’s principle which can be expressed in the form

(17)

where  is the external work corresponding to the element nodal forces and δ is the variational operator.

Finally, substitution of Eqs. (9), (10), (13), and (16) into Eq. (17) and performing the variational

operations give the following equations of motion and the force-displacement relationships as
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Fig. 3 Cross-section of beam on elastic foundation
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(18b)

(18c)

  

(18d)

where

(19a-h)

and force-displacement relationships are as follows:
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Ĩ3Uy″″ Ĩ23Uz″″ H̃sθ ″′ Ĩφ3θ ″″
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S2kx

A
--------- U ′x– F

o

1Uz″ kz Uz hy yp–( )θ+{ }+–++

gy Uz″ hy yp–( )θ ″+{ }– ρω
2 A

*

A
----- S2U′x A

*
Uz– I2

*
Uz″ A

*
– y yp–( )θ++ 0=
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(20e)

(20f)

(20g)

3. Evaluation of dynamic stiffness matrix of composite box beam

3.1 Evaluation of displacement function

For the dynamic stiffness matrix of composite box beam, it is necessary to evaluate the displacement

function of beam. For this, we consider the following displacement state vector consisting of 14

displacement parameters defined by

 (21)

The solutions of four displacements are taken as the following infinite power series.

(22a-d)

Next, substituting Eq. (22) into Eq. (18) and shifting the index of power of xn, the equations of motion

are expressed as power series expansions of displacement components and presented in Appendix B. Also

these equations can be expressed compactly in a matrix form as follows:

= (23)

Then, we consider the initial integration constant vector a as follows:
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From Eq. (23), the following relation is obtained.
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where

(26)

In Eq. (25), the terms for  and converge to zero as i → . The displacement

state vector in Eq. (21) is expressed with respect to the initial integration constant vector a by using Eqs. (22)

and (25) as follows:

(27)

where Xn denotes the 14 × 14 matrix function with the coefficients of Ux, Uy, Uz and θ. Let Ue be the

nodal generalized displacement of 14 degrees of freedom at the two ends of the composite box beam as

follows:

,

(28)

By substituting the coordinates at the ends of member into Eq. (27) and accounting for Eq. (28), the

nodal displacement vector Ue can be expressed as

Ue = Ha (29)

The displacement state vector consisting of 14 displacement components is evaluated from Eqs. (27)

and (29) as follows:

d = XnH
−1
Ue (30)

It should be mentioned that XnH
−1 in Eq. (30) is the exact interpolation matrix not an approximate one.

For evaluation of the displacement state vector, the calculation of the coefficients by the recursive

relations is continued, using a technical computing program Mathematica (Wolfram 1991), until the

contribution of the next coefficient is less than an arbitrary small number.

3.2 Evaluation of dynamic stiffness matrix

The dynamic stiffness matrix of composite box beam is evaluated from the displacement state vector

of the beam derived in previous section. For this purpose, we consider the force-displacement

relationships in Eq. (20) of composite box beam which are expressed in a matrix form as follows:

f = Sd (31)

Zi Ai

1–
Bi=

ai 2+ bi 4+ ci 4+   and   di 4+, , , ∞

d Xna=

U
p

Ux 0( ) Uy 0( ) Uz 0( ) θ 0( ) U ′z 0( ) U ′y 0( ) θ ′ 0( )–, ,–, , , ,〈=

Ux l( ) Uy l( ) Uz l( ) θ,,, l( ) U ′z l( ) U ′y l( ) θ ′ l( )–,,–, 〉T
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where the force vector f are given by

(32)

Substituting Eq. (30) into Eq. (31), the nodal forces at the two ends of element are expressed with

respect to the nodal displacements as follows:

(33a)

(33b)

Finally, the dynamic stiffness matrix of composite box beam is evaluated based on the linear relation

between the nodal displacement parameters and the member forces as follows:

(34)

where

(35)

Here, the calculation of the dynamic stiffness matrix K is stopped according to a preset criteria: it could

be until the relative difference of elements  is less than an arbitrary small value 10-10. Where a

typical element in the i th row and i th column of K is identified as Kij. The natural frequencies of

vibration for the member are the values of ω that cause the dynamic stiffness matrix for the beam

element to become singular as in Eq. (36). A search procedure is employed to find these values up to

the desired accuracy. In this study, the Regular-Falsi method (Wendroff 1966) is applied to ensure that

none of the natural frequencies is missed.

(36)

It should be noted that the dynamic stiffness matrix in Eq. (35) is formed by frequency dependent shape

functions which are exact solutions of the governing differential equations. Therefore, it eliminates

discretization errors and is capable of predicting an infinite number of natural frequencies by means of

a finite number of coordinates.

4. FInite element formulation

For comparison, the finite element model for the composite box beam is presented. The generalized

f F1 F2 F3 M1 M2 M3 Mφ, , , , , ,〈 〉T
=

F
p

f 0( )– SXn 0( )H 1–
Ue–= =

F
q

   f l( )    SXn l( )H 1–
Ue= =

Fe KUe=

K
SXn 0( )H 1–

–

  SXn l( )H 1–

=

Kij Kji–

det K ω( ) 0=
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displacements are expressed over each element as a cubic Hermintian interpolation function and

substituting these displacements into Eqs. (9), (10), (13), and (16) and integrating along the element

length, the total potential energy of a composite box beam are obtained in a matrix form as

(37)

where Ke and Kg are the element elastic and geometric stiffness matrices, respectively, in a local

coordinate. And Me and Kf are the mass matrix and the stiffness matrix considering the foundation effect,

respectively. In this study, the stiffness and mass matrices are evaluated using the Gauss numerical

integration scheme and the assembly of element stiffness and mass matrices for the entire structure based

on the coordinate transformation leads to the matrix equation in a global coordinate system.

5. Numerical examples

To demonstrate accuracy and validity of the present method developed by this study, the decoupled

and coupled free vibration analyses of composite box beams considering the effects of the initial axial

force and the elastic foundation are performed and compared with the finite element solutions using the

Hermitian beam elements and the available results from other researchers.

5.1 Beams with symmetric laminations

For verification purpose, the composite box beam, as shown in Fig. 1, with symmetric laminations is

considered. First, the beam is supported simply (S-S) at two ends and it is assumed that b = 0.3 m and

h = 0.6 m. The length of beam is 12m and the total thicknesses of flanges and webs are 0.03m. The

graphite-epoxy is used for the beam with its material properties: E1 = 144 GPa, E2 = E3 = 9.66 GPa,

G12 = G13 = 4.14 GPa, G23 = 3.45 GPa, ν12 = ν13 = 0.3, ν23 = 0.5, ρ = 1389 kg/m3. Subscripts ‘1’ and ‘2’

correspond to directions parallel and perpendicular to fibers, respectively. All constituent flanges and

webs are assumed to be symmetrically laminated with respect to its mid-plane and the considered

laminate schemes are: (a) [0/0/0/0], (b) [0/90/90/0], (c) [45/-45/-45/45].

The lowest four lateral and vertical natural frequencies obtained from the present dynamic stiffness

matrix method (DSMM) are presented in Tables 1 and 2, respectively, with different stacking

sequences. For comparison, the results from FE analysis using 30 Hermitian beam elements and the

analytical solutions by Roberts (1987) are presented together. From Tables 1 and 2, it can be found that

the solutions from this DSMM using only a single element coincide with those from FE analysis and

are in an excellent agreement with those from the analytical solutions for the lamination stacking

sequences under consideration. It should be noted that the present numerical solutions are exact for the

higher vibrational modes as well as the lower ones because the displacement state vector in Eq. (30)

satisfies the homogeneous form of the equations of motion in Eqs. (18a-d). Whereas, a large number of

Hermitian beam elements are required to achieve sufficient accuracy for the higher modes due to the

use of the approximate interpolation polynomials as a shape function.

 Next, in Table 3, the lowest four vertical natural frequencies for S-S beams with [45/-45/-45/45]

angle-ply lamination under the constant axial force by this study are given and compared with the FE

ΠT
1

2
---Ũe

T
Ke Kg ω

2
Me– Kf+ +( )Ũe Ũe

T
F̃e–=
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Table 1 Lateral natural frequencies (Hz) of S-S beam with different stacking sequences

Stacking
sequence

Methods
Mode

1 2 3 4

[0/0/0/0]
DSMM

FE analysis
Roberts (1987)

14.71
14.71
14.71

58.71
58.72
58.86

131.72
131.72
132.43

233.20
233.20
235.42

[0/90/90/0]
DSMM

FE analysis
Roberts (1987)

10.78
10.78
10.78

43.03
43.03
43.13

96.52
96.52
97.04

170.88
170.89
172.51

[45/-45/-45/45]
DSMM

FE analysis
Roberts (1987)

4.75
4.75
4.75

18.96
18.96
19.00

42.53
42.53
42.75

75.29
75.29
76.01

Table 2 Vertical natural frequencies (Hz) of S-S beam with different stacking sequences

Stacking sequence Methods
Mode

1 2 3 4

[0/0/0/0]
DSMM

FE analysis
Roberts (1987)

24.80
24.80
24.84

98.69
98.69
99.37

220.20
220.21
223.57

387.00
387.01
397.46

[0/90/90/0]
DSMM

FE analysis
Roberts (1987)

18.16
18.16
18.19

72.27
72.27
72.76

161.24
161.24
163.71

283.37
283.38
291.03

[45/-45/-45/45]
DSMM

FE analysis
Roberts (1987)

8.01
8.01
8.02

31.86
31.86
32.08

71.10
71.10
72.18

124.95
124.95
128.33

Table 3 Vertical natural frequencies (Hz) of [45/-45/-45/45] laminated S-S beam under the axial force, (F1cr =
974967 N)

Mode
Number of Hermitian beam elements

DSMM
5 10 15 20 30

1
(7.2715)
8.0075

[8.6813]

(7.2707)
8.0067

[8.6806]

(7.2706)
8.0067

[8.6805]

(7.2706)
8.0067

[8.6805]

(7.2706)
8.0067

[8.6805]

(7.2706)
8.0067

[8.6805]

2
(31.211)
31.917

[32.607]

(31.161)
31.867

[32.558]

(31.158)
31.864

[32.556]

(31.158)
31.864

[32.555]

(31.157)
31.864

[32.555]

(31.157)
31.864

[32.555]

3
(70.967)
71.659

[72.344]

(70.437)
71.133

[71.822]

(70.407)
71.103

[71.792]

(70.401)
71.098

[71.787]

(70.399)
71.096

[71.785]

(70.399)
71.095

[71.785]

4
(127.14)
127.81

[128.48]

(124.47)
125.15

[125.83]

(124.30)
124.99

[125.67]

(124.27)
124.96

[125.64]

(124.26)
124.95

[125.63]

(124.26)
124.95

[125.63]

Note: ( ) natural frequency with an initial compressive force which is a half buckling load 
        [ ] natural frequency with an initial tensile force which is a half buckling load
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solutions obtained from various numbers of Hermitian beam elements. The magnitude of the initial

compressive and tensile forces applied is a half of buckling load of beam. From Table 3, it can be found

that the FE solutions from at least 30 Hermitian beam elements yield the reasonably good results in the

higher vibrational modes when compared with the results from DSMM using a single element. 

 To investigate the influence of initial axial force on the natural frequencies of composite box beams,

the relative difference of the lowest four vertical frequencies for beams with various boundary conditions

under the tensile force is presented in Fig. 4. The considered boundary conditions are: the clamped-free

(C-F), simply- simply (S-S), clamped-simply (C-S), and clamped-clamped (C-C) boundary conditions.

And ωT denotes the frequency of beam under the tensile force. As can be seen in Fig. 4, the influence of

tensile force on the natural frequencies is predominant in the first few modes. Also the effect of axial

force is the highest for S-S beam, followed by C-S, C-C, and C-F beams for the 1st mode. However, for

the other modes, its effect is the highest for C-C beam. 

5.2 Beams with non-symmetric laminations

The non-symmetrically laminated box beam with the length l = 0.8445 m, the width b = 23.438 × 10-3m,

the height h = 12.838 × 10-3m, and the thickness t = 0.762 × 10-3m is considered. The material of beam

is the graphite-epoxy and its properties are as follows: E1 = 142 GPa, E2 = E3 = 9.8 GPa, G12= G13 =

6.0 GPa, G23= 4.83 GPa, ν12= ν13= 0.42, ν23= 0.5, ρ = 1445 kg/m3. Two particular configurations, corresponding

to specific choices of lay-up have been adopted. The first one, designated circumferentially uniform

stiffness (CUS), consists of a lay-up that produces the same membrane stiffness coefficients with

respect to the local coordinate system. This can be described in the local coordinate system as [ψ]n

along the entire circumference of the cross-section. In this case, all coupling stiffnesses are zero except

Fig. 4 Relative difference of the vertical natural frequencies for [45/-45/-45/45] laminated beams due to the
tensile force
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for Sφ. Accordingly, two flexural vibration modes are uncoupled, whereas the axial mode and the torsional

one are coupled. The second lay-up is designated circumferentially antisymmetric stiffness (CAS). It is

characterized by membrane shear coupling stiffness terms that are antisymmetric with respect to the local

coordinate system, with all other membrane stiffness terms being symmetric. The laminate composite lay-

up for this case consists of [ψ]n  in the top flange, [−ψ]n in the bottom flange and [ψ / −ψ]n/2 in the vertical

webs. In this case, the coupling stiffnesses Sφ and Hc do not vanish. Accordingly, the lateral response is

uncoupled, whereas the vertical and axial responses are coupled with the torsional one.

In Table 4, for C-F beam with CUS lay-ups, the vertical natural frequencies by the present DSMM are

compared with results from FE analysis using 30 Hermitian beam elements and the several numbers of

displacement based finite beam elements by Vo and Lee (2008) and the results from the extended

Galerkin’s method by Qin and Librescu (2002). It is seen that the frequencies by DSMM using one

element are in greatly agreement with results from FE analysis and in good agreement with those from

other researchers. Also for C-F beam with CAS lay-ups, the lateral frequencies are presented and

compared with previously available results in Table 5. Here, Armanios and Badir (1995) used the

analytical method to predict the natural frequency of composite box beam. It can be found from Table 5

that the excellent agreement between results by this DSMM and other available methods is evident. 

To study the influence of compressive force on frequencies corresponding to the higher modes and on

the mode shift, the variation of the 3rd flexural frequencies and the 1st axial-torsional frequency of S-S

beam with CUS [ψ]6 lay-up are plotted in Fig. 5 with respect to fiber angle change. The letters Y and Z

in this figure refer to the frequencies corresponding to the lateral and vertical modes, respectively. Also

AT means the axially-torsionally coupled frequency. The number in parenthesis indicates the mode number

for associated vibration modes. It can be found from Fig. 5 that the flexural frequencies decrease as the

fiber angle increases but the axially-torsionally coupled frequency is the maximum around ψ = 45o.

This is due to the fact that the stiffness components A66 and D66 in flanges and webs play an important

role in torsional vibration of composite beam with closed cross-section since it affects the torsional

rigidity JG. Thus aligning the fiber angle around 45o leads to considerable increase of the axial-torsional

frequency. It is interesting to observe that the influence of compressive force on the higher flexural

frequencies is not significant. While the compressive force leads to considerable reduce on the axial-

torsional frequency even though this coupled mode is an enough high mode on the whole. Also the

phenomenon of mode shift between the flexural mode and axial-torsional one can be observed from

Fig. 5 with the change of fiber orientation. For beam without axial force, the 1st axial-torsional

frequency AT(1), which is smaller than the 3rd flexural frequencies, becomes larger than these flexural

Table 4 Fundamental vertical natural frequencies (Hz) of C-F beam with CUS lay-ups

Stacking sequence Vo and Lee (2008)
Qin and Librescu 

(2002)

This study

FE analysis DSMM

[0/30]3 35.53 34.58 36.71 36.71

[0/45]3 32.52 32.64 33.35 33.35

Table 5 Fundamental lateral natural frequencies (Hz) of C-F beam with CAS lay-ups

Stacking sequence Vo and Lee (2008)
Armanios and Badir 

(1995)

This study

FE analysis DSMM

[30]6 41.46 37.62 41.78 41.78

[45]6 26.18 25.13 26.38 26.38



Dynamic stiffness matrix of composite box beams 489

ones through the mode shift at fiber angle ψ = 15o and ψ = 30o for the vertical and lateral modes,

respectively. The value of fiber angle occurred the mode shift is increased with increase of axial force.

For C-F beam with CAS [ψ]6 lay-up, the variation of the lowest three lateral and vertical-torsional

frequencies is presented in Fig. 6 with respect to fiber angle change. From Fig. 6, it can be found that

Fig. 5 Variation of the 3rd flexural frequencies Y(3), Z(3), and the 1st axial-torsional frequency AT(1) for S-S
beam with CUS [Ψ ]6 lay-up under the compressive force

Fig. 6 Variation of the lateral and vertical-torsional frequencies for C-F beam with CAS [Ψ ]6 lay-up
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the vertical-torsional frequencies as well as the lateral frequencies decrease as the fiber angle increases

since the mode is dominated by vertical mode rather than torsional mode as shown in Fig. 7. 

5.3 Beams on elastic foundation

In our final example, we consider the symmetrically laminated box beam resting on two-types of

elastic foundation. The sectional and material properties used are the same as the example 5.1 and the

Fig. 7 Mode shapes corresponding to the 1st vertical-torsional frequency ZT(1) of C-F beam with CAS lay-ups
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foundation is modeled at the middle point of the bottom flange of the cross-section. In evaluation of the

foundation parameters, the analytical method studied by Vallabhan and Das (1991) based on the

modified 2-D Vlasov model is applied. This method uses experimentally determined values for the soil

modulus of elasticity Es and the Poisson ratio ν. If the soil is loose sand with Es = 175 × 105N/m2 and

ν = 0.28, the application of the Vallabhan-Das method produces the coefficient of sub-grade reaction Ks

= 994,610 N/m3 and gz = 14,918,520N. For a beam width bB = 0.3 m and height hB = 0.6 m, the Winkler

foundation modulus is kz = KsbB = 298,383 N/m2. 

In Table 6, the lowest four vertical natural frequencies of the [45/-45/-45/45] laminated S-S box beam

on elastic foundation by DSMM are presented and compared with the results from various numbers of

Hermitian beam elements. It can be found from Table 6 that the finite element solutions from at least 30

Hermitian beam elements yield the reasonably good results in the higher vibrational modes. Fig. 8

shows the effect of foundation on the vertical frequencies of box beam for various boundary conditions.

From Fig. 8, it can be found that the foundation effect decreases with increase of the vibration mode.

Also contrary to Fig. 4 which shows the effect of tensile force on vertical frequency, the effect of

foundation is the highest for C-F beam, followed by C-S and S-S beams. And for C-C beam, it is the lowest.

Fig. 8 Relative difference of the vertical natural frequencies for [45/-45/-45/45] laminated beams due to the
foundation effects

Table 6 Vertical natural frequencies (Hz) of [45/-45/-45/45] laminated S-S beam on elastic foundation

Mode
Number of Hermitian beam elements

DSMM
5 10 15 20 30

1 22.554 (0.99996) 22.553 22.553 22.553 22.553 22.553

2 49.807 (0.99930) 49.774 49.773 49.772 49.772 49.772

3 90.832 (0.99494) 90.402 90.378 90.373 90.372 90.372

4 147.27 (0.98268) 144.90 144.76 144.73 144.73 144.72

Note: ( ) relative frequency ratio with respect to DSMM
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To investigate the effect of the foundation parameters on the vertical response of box beam, for C-F

beam with [ψ / −ψ / −ψ / ψ]lay-up, the 1st vertical natural frequency and the relative difference of this

frequency due to the consideration of foundation effect are plotted in Figs. 9 and 10, respectively, with

respect to the fiber angle change. These figures show that the Winkler type of foundation parameter kz

Fig. 10 Relative difference of the 1st vertical frequency Z(1) for [ψ / −ψ / −ψ / ψ] laminated C-F beam due to
the foundation effects

Fig. 9 Variation of the 1st vertical frequency Z(1) for C-F beam on elastic foundation with [ψ / −ψ / −ψ /ψ] lay-up
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and the second type of one gz increase the flexural stiffness of the composite box beam and the effect of

gz is seen to be more larger than the effect of kz.

6. Conclusion

The dynamic stiffness matrix is newly derived based on the power series expansion of displacement

components to analyze the coupled and decoupled vibrational behavior of composite box beam resting

on elastic foundation under the initial axial force. This dynamic stiffness matrix method uses the exact

shape functions of the beam. Using these shape functions, the solution can be obtained with any desired

accuracy yielding the exact one. An advantage, which is often overlooked but may be more important,

is that the present method can provide benchmark results when compared with other results obtained by

the finite element or other approximate methods. Through numerical examples, the decoupled and

coupled free vibration analyses of composite box beam under the axial force with and without foundation

effect are performed. The influence of the fiber orientation, the axial force, the elastic foundation, and

the boundary condition on the vibrational behavior of composite box beam is parametrically investigated.

The conclusions drawn from this study are as follows:

1) The natural frequencies from the present dynamic stiffness matrix method coincide with those

from a large number of Hermitian beam elements and are in an excellent agreement with the analytical

and finite element solutions by other researchers.

2) The influence of compressive and tensile forces on the natural frequencies is predominant in the

first few modes. 

3) For the CUS laminated beams, the phenomenon of mode shift between the flexural mode and

axial-torsional one can be observed with the change of fiber orientation. 

4) For the CUS laminated beams, the compressive force leads to considerable reduce on the axial-

torsional frequency even though this coupled mode is an enough high mode on the whole.

5) For the CAS laminated beams, the vertical-torsional frequencies decrease with increase of the fiber

angle since this mode is dominated by vertical mode rather than torsional mode.

6) Contrary to the effect of tensile force on vertical frequency, the effect of foundation is the highest

for C-F beam, followed by C-S, S-S, and C-C beams. Also the Winkler type of foundation parameter kz

and the second type of one gz increase the flexural stiffness of the composite box beam.
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Appendix A.

The detailed expressions of the sectional quantities in Eq. (9)

(A-1a)

(A-1b)

(A-1c)

(A-1d)

(A-1e)

(A-1f)

(A-1g)

(A-1h)

(A-1i)

(A-1j)

(A-1k)

(A-1l)

(A-1m)

(A-1n)

(A-1o)

A A11

*
sd

C

 

∫=

S2 A11

*
x3 B11

*
cosψ+( ) sd

C

 

∫=

S3 A11

*
x2 B11

*
– sinψ( ) sd

C

 

∫=

Sw A11

*
φ B11

*
q+( ) sd

C

 

∫=

Sφ A16

* Fs

t
----- 2B16

*
–⎝ ⎠

⎛ ⎞ sd
C

 

∫=

Hc A– 16

* Fs

t
-----x3 2B16

*
x3 B̃16

* Fs

t
-----cosψ– 2D16

*
cosψ+ +⎝ ⎠

⎛ ⎞ sd
C

 

∫=

Hs A16

* Fs

t
-----x2 2– B16

*
x2 B̃16

* Fs

t
-----sinψ– 2D16

*
sinψ+⎝ ⎠

⎛ ⎞ sd
C

 

∫=

Hq A– 16

* Fs

t
-----φ 2B16

*
φ B̃16

* Fs

t
-----q– 2D16

*
q+ +⎝ ⎠

⎛ ⎞ sd
C

 

∫=

I2 A11

*
x3

2
2B11

*
x3cosψ D11

*
cos

2
ψ+ +( ) sd

C

 

∫=

I3 A11

*
x2

2
2– B11

*
x2sinψ D11

*
sin

2
ψ+( ) sd

C

 

∫=

I23 A11

*
x2x3 B11

*
x2cosψ x3sinψ–( ) D11

*
– sinψ cosψ+{ } sd

C

 

∫=

Iφ A11

*
φ

2
2B11

*
qφ D11

*
q

2
+ +( ) sd

C

 

∫=

Iφ2 A11

*
x3φ B11

*
x3q φcosψ+( ) D11

*
qcosψ+ +{ } sd

C

 

∫=

Iφ3 A11

*
x2φ B11

*
x2q φ– sinψ( ) D11

*
– qsinψ+{ } sd

C

 

∫=

JG A66

* Fs

t
-----⎝ ⎠

⎛ ⎞
2

4B66

* Fs

t
----- 4D66

*
+–

⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
C

 

∫=
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Appendix B.

Equations of motion of box beam based on power series expansions of displacement components

(A-2)

 

(A-3)

(A-4)

(A-5)

[A n 2+( ) n 1+( )an 2+ S3– n 3+( ) n 2+( ) n 1+( )bn 3+ S2 n 3+( ) n 2+( ) n 1+( )cn 3+–
n 0=

∞

∑

 Sφ n 2+( ) n 1+( )dn 2+ Sw n 3+( ) n 2+( ) n 1+( )dn 3+– kxan ρω
2
A

*
an]x

n
+–+ 0=

[Ĩ3 n 4+( ) n 3+( ) n 2+( ) n 1+( )bn 4+ Ĩ23 n 4+( ) n 3+( ) n 2+( ) n 1+( )cn 4+ H̃s n 3+( ) n 2+( ) n 1+( )dn 3+–+
n 0=

∞

∑

Ĩφ3 n 4+( ) n 3+( ) n 2+( ) n 1+( )dn 4+

S3kx

A
--------- n 1+( )an 1+– F

o

1 n 2+( ) n 1+( )bn 2+– kybn ky hz zp–( )dn–+ +

gy n 2+( ) n 1+( )bn 2+– gy hz zp–( ) n 2+( ) n 1+( )dn 2+ ρω
2 A*

A
-----S3 n 1+( )an 1+ A

*
bn–

⎩
⎨
⎧

+ +

I3

*
n 2+( ) n 1+( )bn 2+ A

*
z zp–( )dn}]x

n
+ + 0=

[Ĩ23 n 4+( ) n 3+( ) n 2+( ) n 1+( )bn 4+ Ĩ2 n 4+( ) n 3+( ) n 2+( ) n 1+( )cn 4+ H̃c n 3+( ) n 2+( ) n 1+( )dn 3+–+
n 0=

∞

∑

Ĩφ2 n 4+( ) n 3+( ) n 2+( ) n 1+( )dn 4+

S2kx

A
--------- n 1+( )an 1+– F

o

1 n 2+( ) n 1+( )cn 2+– kzcn kz hy yp–( )dn+ + +

gz n 2+( ) n 1+( )cn 2+– gz– hy yp–( ) n 2+( ) n 1+( )dn 2+ ρω
2 A*

A
-----S2 n 1+( )an 1+ A

*
bn–

⎩
⎨
⎧

+

I2

*
n 2+( ) n 1+( )cn 2+ A

*
– y yp–( )dn}]x

n
+ 0=

[ Sφ– n 2+( ) n 1+( )an 2+ Hs n 3+( ) n 2+( ) n 1+( )bn 3+ Ĩφ 3 n 4+( ) n 3+( ) n 2+( ) n 1+( )bn 4+–+
n 0=

∞

∑

Hc n 3+( )– n 2+( ) n 1+( )cn 3+ Ĩφ2 n 4+( ) n 3+( ) n 2+( ) n 2+( ) n 1+( )cn 4+ JG n 2+( ) n 1+( )dn 2+–+

SφSw

A
----------- n 3+( ) n 2+( ) n 1+( )dn 3+ Ĩφ n 4+( ) n 3+( ) n 2+( ) n 1+( )dn 4+ F

o

1Rp

2
n 2+( ) n 1+( )dn 2+–++

ky hz zp–( )bn kz+ hy yp–( )cn– ky hz zp–( )2 kz hy yp–( )2 kθ+ +{ }dn gy hz zp–( ) n 2+( ) n 1+( )bn 2+++

gz hy yp–( ) n 2+( ) n 1+( )cn 2+– gy hz zp–( )2
gz hy yp–( )2} n 2+( ) n 1+( )dn 2++{–

ρω
2 A

*

A
-----Sw n 1+( )an 1+ A* z zp–( )bn A* y yp–( )cn Io

*
– dn Iφ

*
n 2+( ) n 1+( )dn 2++( )–+

⎩ ⎭
⎨ ⎬
⎧ ⎫

x
n

+ 0=




