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Abstract. The long-term behaviour of simply supported composite steel-concrete beams with deformable
connectors subjected to skew bending and torsion is presented. The problem is dealt with by recurring to the
displacement method, assuming the bending and torsional curvatures and the longitudinal deformations of
each sectional part as unknowns and obtaining a system of differential and integro-differential equations.
Some solving methods are presented, in order to obtain exact and approximate solutions and evaluate the
precision of the approximate ones. A case study is then presented. For the sake of clearness, the responses of
the composite beam under loads applied in different directions are studied separately, in order to correctly
evaluate the effects of each load condition.

Keywords : creep; composite steel-concrete beams; deformable connectors; skew bending; torsion;
thin-walled section.

1. Introduction

In the last decades, many interesting works regarding the long-term behaviour of composite steel-

concrete beams with flexible shear connectors have been performed, referring to straight structural

elements subjected to uniaxial bending. In order to correctly take into account the slip between concrete

slab and steel beam, composite beams are generally studied recurring to the force method, taking the

interaction forces developing at steel-concrete interface as unknowns, as it was firstly introduced in the

elastic domain by Newmark, et al. in 1951 and successively extended to the viscoelastic domain (Bradford

and Gilbert 1992, Mola 1994, Mola and Gatti 1996, Amadio and Fragiacomo 1997, Mola and Giussani

2003, Giussani 2004, Ayoub 2005). In the last years, the finite elements method has been largely

employed in this field. In particular, Ayoub and Filippou (2000) proposed an inelastic beam element for

the analysis of steel-concrete girders with partial composite action derived from a two-field mixed

formulation; Kwak and Seo (2002) formulated a numerical model based on continuous analytical solutions

of force equilibrium equations and strain compatibility conditions at each node, with an assumption of

piecewise linear distribution of the bending moment; Limkatanyu and Spacone (2002) presented three

reinforced concrete frame elements with bond slip between the reinforcing bars and the concrete, for
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the displacement-based, the force-based, and the Hellinger–Reissner mixed formulations; Dall’Asta

and Zona (2004) developed a three-field mixed beam element for the non-linear analysis of composite

beams with deformable shear connection; Virtuoso and Vieira (2004) proposed a finite element model

based on the internal forces approximation, considering the non-linear behaviour of the connection

between the steel girder and the concrete flange, the non-linear behaviour of concrete subjected to

cracking in the zones of negative moment and the viscoelastic behaviour of concrete. In similar way, the

uniaxial finite element model proposed by Fragiacomo, et al. (2004) includes connection flexibility, rheological

phenomena of concrete and nonlinear behaviour of component materials. 

Anyhow, in modern bridge design, composite steel-concrete beams present very different typologies

of structural forms (Nakamura, et al. 2002) and are frequently used in the presence of complex static or

geometrical schemes, such as continuous, curved beams or beams with non-symmetric sections. In

these cases, the beams are subjected to skew bending and torsion. Many studies have been performed

regarding the elastic behaviour of composite box girder bridges under torsional actions. Chapman, et al.

(1971) investigated the structural behaviour of composite box girders by means of the theory of the

torsion of un-deforming sections, the beam on elastic foundation analogy for deforming sections and

the finite element method, by neglecting any buckling and inelasticity phenomenon. De Miranda

(1961) presented a wide description of torsional behaviour of composite steel-concrete bridge beams,

considering open thin-walled sections, with or without diaphragms, and box girders. Some interesting

experimental campaigns have been carried out on eccentrically loaded straight multi-cell box bridges

by Ng, et al. (1993). Referring to beams subjected to bi-axial bending, a model that calculates both

short- and long-term behaviour of reinforced, prestressed and composite beams was proposed by

Rodriguez-Gutierrez and Aristizabal-Ochoa (2007), by assuming perfect bond between the sectional

elements.

A number of interesting works has been devoted to the study of the elastic and ultimate behaviour of

curved composite steel-concrete bridges: Colville (1973) performed some experimental tests on simply

supported curved composite beams, giving suggestions about the design of shear connectors. Some years

later, by means of a parametric analysis performed with three-dimensional finite elements, Turkstra and

Fam (1978) demonstrated the importance of warping and distorsional stresses in relation to the longitudinal

normal bending stresses derived from curved beam theory. Simo and Vu-Quoc (1991) developed a non-

linear 3D model incorporating shear and torsion-warping deformation; Sennah and Kennedy (1999)

investigated on multi-cell box bridges, while Thevendran, et al. (2000) focused their attention on curved

bridge decks incorporating an I girder collaborating with a concrete slab subjected to a concentrated

load at mid-span; this in order to test the accuracy of finite element programs in describing the elastic

behaviour of these structural arrangements, such as the one developed in Thevendran, et al. (1999).

Topkaya and Williamson (2003) and Kim and Yoo (2006a) performed finite element analyses on curved

steel girders before the construction of the concrete deck able to form a closed section. The ultimate

strengths of composite box girders subjected to bending and torsion has been investigated by Kim and

Yoo (2006b) by means of three-dimensional finite element analyses.

As presented in Giussani and Mola (2009), referring to continuous composite beams subjected to

uniaxial bending, and in Giussani (2004), the need of extending the analysis to the viscoelastic domain

and the need of describing the effects due to connector deformability make it more feasible to investigate

the long-term behaviour of composite beams subjected to skew bending and torsion by means of the

displacement method, assuming the bending and torsional curvatures and the longitudinal deformations

of each sectional part as unknown. In this way, the problem leads to a system of integro-differential

equations. Furthermore, regarding the kinematic aspects, the hypotheses concerning Vlasov’s theory
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(Vlasov 1962) of open thin-walled sections are assumed, taking also the relative longitudinal slip developing

at the steel-concrete interface into account. The assumption of rigid transverse sections allows to

express the geometrical law governing the longitudinal strains by means of four parameters of generalised

sectional deformations, to which ns parameters related to the longitudinal deformations of the ns steel

parts mutually connected to the concrete slab by means of deformable steel studs have to be added.

If adequate boundary conditions are provided, the solution can be obtained by means of the Fourier

series expansion, by splitting the problem in two sub-problems, the first related to space variables and

the second involving the time evolution. In a more general way, the use of the finite difference method

as regards the space domain and of numerical methods, such as the rule of trapezia, for treating the time

integrals can be adopted when more complex arrangements of boundary conditions have to be dealt

with. In any case, interesting approximate solutions can be obtained, by introducing an algebraic law

for the long-term behaviour of concrete.

2. The formulation of the problem

Let us consider the composite structure with the transverse section represented in Fig. 1. The structure

is assumed as prismatic and the section consists in the concrete element “c” interacting with any

number ns of steel elements “si”, connected by ns elastic connection devices. The considered structure

can be subjected to static loads, generically distributed along the beam axis, and imposed sectional

deformations, such as shrinkage or thermal actions.

The torsional behaviour of composite steel–concrete beams can be investigated by adopting Vlasov’s

theory of open thin-walled sections and assuming the following hypotheses which allow to identify the

sections with their mean profiles

- the transverse section is rigid in its plane;

- the shear deformation of the mean surface can be neglected.

Furthermore, it is assumed that

- shear connections between the slab and the beams are smeared along the length of the beams and

Fig. 1 Transverse section
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allow only a longitudinal slip at the interface between steel and concrete elements;

- the distributions of strains throughout the depth of the slab and the beams are linear;

- the section is open.

Steel beams and steel connectors have linear elastic behaviours, while a linear visco-elastic law is

adopted for concrete slab, according to Mc Henry superposition principle (McHenry 1943), as indicated in

the following relationships 

(1)

(2)

(3)

where l  is the abscissa along the mean profile of the section, Es is the elastic modulus of steel beam,

, Ec0, R(t,t’) are respectively the reference elastic modulus and the

relaxation function of concrete slab, ,  are the deformations imposed respectively in

steel beam and concrete slab.  is the elastic stiffness of the i-th connector,  and q(i) are respectively

the slip and the shear flow at the i-th steel-concrete interface.

Referring to the cross section represented in Fig. 1 and neglecting the shear deformation of the mean

surface (Vlasov 1962, Kolbrunner and Basler 1969), the longitudinal deformations of the concrete slab and

of the steel beams can be expressed as

(4)

where coordinates x, y are expressed with respect to the reference axes origin, ω is the sectorial area of

the section evaluated with respect to the shear centre D and having its origin in the pole P0; Ψ1c, 

are the longitudinal strains of the concrete slab and of the i-th steel element, evaluated in the origin of

the axes, Ψ2, Ψ3 are the flexural curvatures of the section respectively in the z-x and x-y planes and Ψ4

is the torsional curvature of the section.

The compatibility conditions at the i-th connection point can be expressed according to the following

equation

(5)

where εc(l i,z,t), εs(l i,z,t) are the strains of the concrete and steel fibres corresponding to the i-th

connection, while (z, t) is the strain of the i-th connection device, which can be expressed as a

function of the shear flow

(6)
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The shear flow can be evaluated from the equilibrium of the infinitesimal element having height dl

and length dz, as shown in Fig. 2.

Neglecting the infinitesimal terms of second order, the equilibrium condition requires that

(7)

Consequently, the shear flow   at abscissa l can be expressed as 

(8)

where C = 0 as the shear flow vanishes at l = l inf.

By introducing the constitutive law (1) of the steel beams and the second of Eq. (4) in Eq. (8),

referring to the i-th steel beam, we derive

(9)
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Fig. 2 Shear flow
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in which rj is the j-th component of coordinate vector r
 T(l ) = [1 x(l ) y(l ) ω(l )]. Eq. (9) allows to

determine the shear flow acting in the i-th steel element of the section at the abscissa l . Hence, the shear

flow at the i-th steel-concrete interface can be immediately obtained by evaluating Eq. (9) at l (i) = ,

as represented in Fig. 3. Eq. (6) becomes

(11)

where  are respectively the area and the static moments of

the i-th steel element,  and represents the whole profile of the i-th steel beam.

Introducing Eqs. (4), (11) in Eq. (5), we derive

(12)

Eq. (12) represents a system of ns compatibility equations involving ns+ 4 unknowns, i.e. the ns + 1

longitudinal deformations Ψ1c, , the two flexural curvatures Ψ2, Ψ3 and the torsional curvature Ψ4.
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Fig. 3 Shear flow at the i-th connection device



Thin-walled composite steel-concrete beams subjected to skew bending and torsion 281

Thus, compatibility Eq. (12)  can be written in the matrix form

(14)

Introducing the vector of internal actions QT(z,t) = [N(z,t) – Mx(z,t) My(z,t) Mω(z,t)], as represented

in Fig. 4, equilibrium equations assume the following expression

(15)

where lc represents the whole profile of concrete slab.

Introducing the constitutive laws (1), (2)  and the kinematic relationships (4) in Eq. (15), and integrating

over the whole profiles of concrete slab and steel beams, the equilibrium equations can be expressed in

the following matrix form
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steel beam, according to the following relationships

(18)

Eq. (16) represents the time relationship between the normal components of internal actions and the

related generalised sectional deformations. In order to take the pure torsion De Saint Venant capacity

into account, the following matrices are introduced

(19)

in which Gc0IcD and GsIsD are the De Saint Venant elastic stiffness of concrete slab and steel girder, Gc0,

Gs are respectively the reference shear modulus of concrete and the shear modulus of steel and  the

diagonal matrix

(20)

Assuming that the Poisson ratio keeps constant in time and introducing internal action vector 
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Venant capacity results
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(22)

The equilibrium conditions on an infinitesimal strip dz imply

(23)
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(27)

Eq. (27) can be inverted by introducing the non-dimensional creep function β(t,t' ) = J(t,t' ) / Ec0, in

order to obtain

(28)

The problem can be completely solved by means of the system of 4 integro-differential Eq. (28) and the

one of ns differential Eq. (14).

Regarding the boundary conditions necessary to solve the second order differential Eq. (14), assuming that

no axial forces or bending moments are present at the extreme sections of the composite beams, the

following relationships have to be satisfied
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where z0 represents the abscissa of the initial and final sections. Hence, from Eq. (16) we obtain
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(34)

Introducing Eq. (34) in the second, third and fourth equations of system (30), the boundary values of

Ψ2, Ψ3, Ψ4 can be finally obtained.

Regarding the initial conditions, substituting ρ(t0,t0) = 1 in Eq. (27), or β(t0,t0) = 1 in Eq. (28), the equilibrium

equations become

(35)

and the compatibility Eq. (14) results

(36)

to which the boundary conditions (34), (30), evaluated at t = t0, have to be assigned.

3. The solution of the problem

In the following some solving methods will be discussed. In particular, three different procedures able

to solve the problem in the elastic domain will be associated to an equal number of procedures which

can be employed in the long-term analyses. In particular, the elastic closed form solution (CFS) reveals

useful when adopting the Age Adjusted Effective Modulus Method (AAEMM) in the viscoelastic

domain, the Fourier Series Expansion Method (FSEM) allows to adopt the Reduced Relaxation

Function Method (RRFM) and finally the Finite Difference Method (FDM) is useful when solving

Volterra integral equations by means of numerical procedures (GM), such as the trapezia rule.

3.1 The elastic solution methods

3.1.1 Closed form solution (CFS)

The closed form solution in the elastic domain can by obtained by solving the following system of ns
second order differential equations in the ns unknowns 
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3.1.2 Fourier Series Expansion Method (FSEM)

As dealing with simply supported beams, the use of the Fourier Series Expansion Method (Tolstov,

1976) is quite profitable. By expanding the imposed deformations, which are constant along the z axis,

in Fourier series as follows

(39)

where κp = pπ/L, with L span length of the beam, and δ(p)=[1 − (− 1)p]/2, and assuming that the end

sections are unloaded, it results

(40)

Thus, the two vectors of sectional deformations and their derivatives with respect to z can be

expanded in sine series, as follows
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In a similar way, the equilibrium Eq. (35) becomes

                      (44)

where the load vector q has been expressed in Fourier series as follows

(45)
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For p = 1,…, ∞ it results

(46)

Introducing Eq. (43) in Eq. (46), we obtain

(47)

with

(48)

Eq. (47) represents ∞ systems of 4 equations, from which Ψp(t0) can be immediately derived. The

elastic solution Ψ(t0), Ψ1s(t0) can be finally evaluated, according to Eqs. (43), (41).

3.1.3 Finite difference method

When more complex structural schemes or more general load conditions have to be dealt with,

numerical solutions of the integro-differential systems have to be performed. For this, let us subdivide

the beam axis in m parts ∆zi= zi − zi-1. In this way, referring to the i-th section, the compatibility Eq.

(36) and the equilibrium Eq. (35) can be written as follows

(49)

(50)

where . By writing eqs. (49), (50) for each section,

together with the associated boundary conditions, the elastic solution can be obtained.

3.2. The Viscoelastic solution methods

The long-term behaviour of continuous composite steel–concrete elements subjected to skew bending

and torsion can be obtained only by means of numerical algorithms. On the contrary, when dealing with

simply supported beams, the general solution of the visco-elastic problem can be derived even by

means of Reduced Relaxation Function Method (Mola 1981, 1982, 1986), when previously uncoupled

the space problem by means of the Fourier Series Expansion Method. Finally, the closed form solution

which can be achieved in the elastic domain can be adopted when approximate constitutive concrete

laws are used.

Bc0 Bs
*+[ ]κp

2
Ψp t0( ) Csκp

2
Ψls p, t0( ) BcD0 BsD+[ ]Ψp t0( )+ + q

p
t0( )–=

BpΨp t0( ) q
p
t0( )  ,  p– 1 … ∞, ,= =

Bp Bc0 Bs

*
+[ ]κp

2
κp

2
Cs I κp

2
λ+[ ]

1–
µ κp

2
ν–[ ] BcD0 BsD+[ ]++=

ν
Ψi 1–

l( )
2Ψi

l( )
– Ψi 1+

l( )
+

zi
2

∆
------------------------------------------------ µΨi

1( )
+ λ

Ψls i 1–,

l( )
2Ψls i,

l( )
– Ψls i 1+,

l( )
+

zi
2

∆
----------------------------------------------------------- Ψls i,

l( )
+–=

Bc0 Bs

*
+[ ]

Ψi 1–

l( )
2Ψi

l( )
– Ψi 1+

l( )
+

zi
2

∆
------------------------------------------------ Cs

Ψls i 1–,

l( )
2Ψls i,

l( )
– Ψls i 1+,

l( )
+

zi
2

∆
----------------------------------------------------------- BcD0 BsD+[ ]Ψi

l( )
–+ q

i

l( )
=

Ψi

l( )
Ψ zi t0,( ), Ψls i,

l( )
Ψls zi t0,( ), q

i

l( )
q zi t0,( )= = =



Thin-walled composite steel-concrete beams subjected to skew bending and torsion 287

3.2.1 Reduced relaxation functions method

As illustrated at §3.1.2. for the elastic domain, sectional deformations can be expanded in Fourier series at

each time t, as the boundary conditions  do not vary in time. Introducing Eq. (41). expressed for a

generic time t in the compatibility Eq. (14), for p = 1,…, ∞ it results

(t) (51)

and the equilibrium Eq. (28)  assumes the form

                     

(52)

Introducing Eq. (51) in Eq. (52), we obtain

                    = 

                    = (53)

Eq. (53) represents ∞ systems of 4 integral equations. By introducing in Eq. (53).  the coupling matrix

  defined as

(54)

with  defined in Eq. (48), it results

(55)

where

(56)

It is now possible to uncouple the equation systems (55) by performing the following linear transformation

(57)

Multiplying Eq. (55) on the left side by  and introducing the spectral matrix ,

Eq. (55) becomes
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By defining the matrix of the non-dimensional Varied Creep Functions related to the p-th Fourier series as

(59)

Eq. (58) can be written in the following form

(60)

Eq. (60) can be inverted by recurring to the non-dimensional Reduced Relaxation Function matrix, related

to the Varied Creep Function one by means of the following integral equation

(61)

obtaining

(62)

The unknown vector Ψp can now be derived by remembering Eq. (57)

(63)

Introducing Eq. (63) in Eq. (51), it is possible to determine the vector of the longitudinal deformations of

the steel beams, related to the p-th terms of the Fourier series. Finally the unknown vectors Ψ and Ψ1s

have to be evaluated by means of Eq. (41).

This way of proceeding is quite profitable when only constant in time loads act on the structure. In

fact, by observing Eq. (63), it appears immediately that in the presence of variable loads the evaluation

of the term on the right side needs the previous calculation of the Reduced Relaxation Function matrix

for each reference time t and for each loading time t'  such that t0 ≤ t' < t. On the contrary, when the

applied loads are constant in time, Eq. (63) assumes the form

(64)

i.e. the Reduced Relaxation Function matrix has to be determined only referring to loading time t0.

3.2.2 General method

When more complex structural schemes or more general load conditions have to be dealt with,

numerical solutions of the integro-differential systems have to be performed (Bažant 1975, Chiorino, et

al. 1984). For this, let us subdivide the time domain into n intervals ∆tj= tj − tj-1 and let us refer to the

beam axis subdivision ∆zi = zi − zi-1 introduced at §3.1.3. In this way, referring to the time t = tn and to

the i-th section, the equilibrium Eq. (28) can be written as follows
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(65)

with

(66)

Referring to the time interval ∆tn, the compatibility Eq. (14)  assumes the form

(67)

By introducing in Eq. (67)  the expression of the variation  of the unknown vector  at time

t = tn, obtained from Eq. (65)  for every section i = 1, …, m as a function of , the solving system in the

unknown vector  is obtained. The boundary conditions related to vector  have to be assigned

referring to the 1st and the m-th sections, making the vectors ,  known terms. Introducing

in Eq. (65) the obtained value of , vector  can be determined. Finally, by means of Eq. (66),

,  can be obtained and the problem is completely solved.

3.2.3 Algebraic method

The solution of the viscoelastic problem can be obtained with a good approximation by adopting the

Age Adjusted Effective Modulus Method (AAEMM) as superposition of elastic solutions (Trost 1967,

Bažant 1972, Mola and Gatti 1996). In particular, referring to  §3.1.1, let us indicate by Ψ1s,0(z,t0), Ψ0(z,t0) the

solution of Eqs. (37),(38) and by Ψ1s,1(z,t), Ψ1(z,t), Ψ1s,10(z,t), Ψ10(z,t) the solutions of the same

equations, referred to the reduced modulus E'c = Ec/[1 + χ(t,t0) ϕ(t,t0)], with χ(t,t0), ϕ(t,t0) respectively

ageing and creep coefficients, and related to loads at time t and at time t0, respectively. Introducing the

coupling factor µ(t,t0) = –[1 – χ(t,t0)] / χ(t,t0), the final solution can be achieved by means of the

following relationship

Ψ1s(z,t) = Ψ1s,1(z,t) + µ(t,t0) [Ψ1s,0(z,t0) − Ψ1s,10(z,t)] ; Ψ(z,t) = Ψ1(z,t) + µ(t,t0) [Ψ0(z,t0) − Ψ10(z,t)] (68)

or, in case of constant loads

Ψ1s(t) = Ψ1s,1(t) [1 − µ(t,t0)] + µ(t,t0) Ψ1s,0  ; Ψ(t) = Ψ1(t) [1 − µ(t,t0)] + µ(t,t0) Ψ0 (69)

4. Case Study

Let us consider the simply supported structure represented in Fig. 5, having the symmetric composite
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section of Fig. 6. The structure is subjected to uniform distributed loads, constant in time, acting along

the reference axes from t0= 28 days.

The material properties are the following: for the steel beams an elastic modulus Es= 210000 MPa is

considered, while for the concrete slab a cylindrical characteristic strength fck = 30MPa is assumed. The

elastic modulus and the creep function are evaluated according to the CEB MC 90 (1993), assuming

RH = 70% as environmental humidity. According to the previous assumptions, the concrete elastic modulus

at loading age results Ec0= 31977 MPa, while the ageing and the creep coefficients evaluated at t
∞
=

30000 days are respectively χ(t
∞
, t0) = 0.865, ϕ(t∞ , t0) = 2.068, from which the coupling factor results µ(t∞ ,t0) =

−0.156. Finally the effective modulus results

The notional thickness can be evaluated from the geometrical data of Fig. 6, resulting h0= 155 mm.

Regarding the shear connection between the beams and the slab, three different values of the stiffness

are considered, namely kch =∞, kch = 3.105 kN/m2, kch=1.10
5 kN/m2.

The following load conditions will be presented
■ Vertical load qy = 14 kN/m, acting on the symmetry axis;
■ Transverse load qx = 50 kN/m, acting in the shear centre of the transformed section (13.9 cm above

Ec0
′ t∞ t0,( )

Ec0

1 χ t∞ t0,( )ϕ t∞ t0,( )+
------------------------------------------------- 11464 MPa= =

Fig. 5 Structural arrangement

Fig. 6 Transverse section in [cm]
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the slab centroid);
■ Torque qω = 20 kNm/m.

The solution will be evaluated both according to the RRFM, associated to the FSEM, and by adopting

the approximate AAEM Method, associated to the closed form elastic solution.

In the next paragraphs, the diagrams representing the solution of the problem will adopt the following

representation

and the stresses in the concrete slab will be multiplied by 10.

4.1. Structure subjected to vertical uniform distributed load qy

The time evolutions of the Reduced Relaxation Functions are shown in Fig. 7 for the different connections

and for the related stiffness ratios ωm. In case of rigid connectors, the functions are independent on the

Fourier series index, while they present increasing values towards the unitary value by increasing both

the connector deformability and the series index.

From the elastic solutions, the stiffness parameters ωm and the Reduced Relaxation Functions, the

final values of the axial deformation of the concrete slab can be determined for each term of the series.

The initial and final solutions can then be easily obtained by evaluating the Fourier series, e. g. at mid-

span the axial strains of the concrete slab are reported in the first columns of Table 1.

From the axial deformation of the slab it is possible to derive the remaining unknowns of the

problem: axial deformations  of the beams and curvature Ψ3 of the composite section

(Ψ2 = Ψ4= 0). In particular, at z = L/2 the results are reported in Table 1. The differences between the

numerical solutions obtained by the RRF and the AAEM Methods are smaller than 5% for all the

considered cases.

It is worth noting that the time evolutions of  and Ψ3 can be determined with the RRFM only

by solving the integral equation  which implies the previous evaluation of the relaxation

functions at time t for every time t'∈ [t0,t].

From the results of Table 1, the state of strain and stress of the composite section can be evaluated.

They are reported in Fig. 8, Fig. 9, Fig. 10 respectively for kch=∞, kch= 3×105 kN/m2, kch= 1×105 kN/

m2. Regarding the elastic deformations, by decreasing the connector stiffness, the slips between the slab

and the beams are bigger, producing smaller deformations in the slab but higher strains in the beams,

both at the upper and at the lower fibres. The strains increase in time, in a lower extent when increasing

the connector deformability, inducing the neutral axis to move downward, producing axial deformations

even in the section with rigid connection. It appears worth noting that at initial time the neutral axis

coincides with the transformed section centroidal axis, indicated in the diagrams with the dotted line,

only in presence of non-deformable connectors. Only in this case the flexural and axial problems result

uncoupled.

Regarding the stresses, the connector deformability plays an outstanding role especially in the initial

values at the lower fibre of the slab and at the upper fibres of the beams. The marked differences

become smaller moving towards the lower beam fibres and the final times.

The deflection diagrams reported in Fig. 11 show the significant influence of the connection system,

Ψls
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Ψls

2( )
Ψls= =

Ψls

l( )
Ψls

2( )
,

ρ t t′,( )dΨ1c t′( )
0

 t

∫



292 Francesca Giussani and Franco Mola

to which an increase of the displacements of more than 50% is related, when considering the extreme

stiffness values. According to the previous results, the time increases move from 55% in the case of

rigid connection to 30% when considering the connector deformability.

4.2 Structure subjected to horizontal uniform distributed load qx through the shear centre

The time evolutions of the Reduced Relaxation Functions are represented in Fig. 12.

Fig. 7 Reduced Relaxation Functions by varying the connector stiffness
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In case of rigid connection, the Reduced Relaxation Function is lower than the one related to vertical

loads, indicating greater creep effects. This fact is due to the greater stiffness of the steel element with

respect to the concrete part, resulting in a smaller stiffness ratio, when the composite structure is

subjected to bending moments Mx.

From the previous results, the final values of the curvature in the z-x plane can be determined for each

term of the series. The initial and final solutions in terms of curvature in the z-x plane, axial deformation

of the steel beam and torsional curvature at mid-span are reported in Table 2, together with the errors

between the RRF and the AAEM solutions.

The sectional strains and stresses of the mid-span section are reported in Fig. 13, Fig. 14 for kch = ∞,

kch = 3 × 105 kN/m2. Referring to the strain diagrams of the section with rigid connection and especially

observing the web deformations, the creep effect in coupling the flexural and torsional behaviour is

clearly visible. 

In the elastic domain the neutral axis of the plane strain distribution connected to the bending moment

Mx coincides with the y axis, while the section loses its planarity in time owing to the growth of

Table 1. Initial and final values of the axial strain of the slab and the beam and of the section curvature

Ψ1c (L/2,t) Ψ1s (L/2,t) Ψ1s (L/2,t)

kch
[kN/m2]

t = t0
t = t

∞

RRF
t = t

∞

AAEM
error t=t0

t = t
∞

RRF
t = t

∞

AAEM
error t=t0

t = t
∞

RRF
t = t

∞

AAEM
error

∞ −7.04×10-5 −2.00×10-4 −1.91×10-4 4.8% −7.04×10-5 −2.00×10-4 −1.91×10-4 4.6% −4.04×10-4 −6.39×10-4 −6.22×10-4 2.6%

3×105 −6.76×10-5 −1.93×10-4 −1.84×10-4 4.8% −1.07×10-4 −2.27×10-4 −2.18×10-4 4.0% −4.70×10-4 −6.88×10-4 −6.72×10-4 2.4%

1×105 −6.23×10-5 −1.80×10-4 −1.71×10-4 4.8% −1.76×10-4 −2.79×10-4 −2.72×10-4 2.6% −5.96×10-4 −7.82×10-4 −7.69×10-4 1.7%

Fig. 8 Strains (a) and stresses (b) at initial and final time, with kch= ∞
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Fig. 9 Strains (a) and stresses (b) at initial and final time, with kch= 3 × 105 kN/m2

Fig. 10 Strains (a) and stresses (b) at initial and final time, with kch = 1×105 kN/m2
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warping strains. This can be explained by considering that at initial time the horizontal force acting in

the shear centre only produces flexural effects, while a negative torque contribution increasing in time

has to be added due to the upward translation of the shear centre.

Otherwise, when deformable connectors are considered, the state of deformation is not plane even at

Fig. 11 Displacements of the beam axis in the y direction at initial and final time, by varying the connector
stiffness

Fig. 12 Reduced Relaxation Functions for kch= ∞ (a), kch = 3×105 kN/m2 (b)
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loading time. This occurs as point D where the load is applied cannot be considered any more as the

shear centre of the composite section due to the introduction of strain discontinuities within the cross

section.

The stresses are highly influenced by the sectional redistribution due to the viscoelastic behaviour of

the slab, showing a marked increase especially in the upper flanges. Even the stress distribution

presents the out of plane component related to warping torsion.

The displacements of the longitudinal axis in the x direction reported in Fig. 15 show interesting

aspects. First of all, as no slip in the transverse direction is allowed, the very small differences related to

the connector stiffness present both at initial and at final time are a consequence of the warping

deformations acting in the longitudinal direction. Furthermore, the final displacements are about 150%

with respect to the initial ones. This value is greater than the one connected to the vertical load, which

was between 30% and 55%. This result is connected to the lower values of the Reduced Relaxation

Functions reported in Fig. 12, due to the lower steel–concrete stiffness ratio.

Regarding the secondary effects of the horizontal loads, the rotations around the z axis are shown in

Fig. 16. According to the previous discussion, at initial time the section with rigid connectors does not

present any rotation. On the contrary, it assumes in time non zero values. In the case of deformable

Table. 2 Initial and final values of the curvature in the z-x plane, of the axial strain of the beams and of the
torsional curvature

Ψ2 (L/2,t) [m
–1] Ψ1s (L/2,t) Ψ4 (L/2,t) [m

–2]

kch
[kN/m2]

t = t0
t = t

∞

RRF
t = t

∞

AAEM
error t = t0

t = t
∞

RRF
t = t

∞

AAEM
error t = t0

t = t
∞

RRF
t = t

∞

AAEM
error

∞ −1.02×10-4−2.56×10-4−2.44×10-4 4.5% 0.00 −6.25×10-8 0.00 - 0.00 2.01×10-5 1.86×10-5 7.5%

3×105 −1.06×10-4−2.72×10-4−2.60×10-4 4.6% −2.80×10-5−4.41×10-5−4.28×10-5 2.9% −3.82×10-6 1.54×10-5 1.39×10-5 9.3%

Fig. 13 Strains (a) and stresses (b) at initial and final time, with kch = ∞
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connectors, the rotations which are already present in the elastic domain change sign in time. This fact

can occur because the force is applied in the shear centre of the rigid section, which does not have a physical

meaning when the transverse section presents discontinuities in terms of strains and displacements.

4.3 Structure subjected to uniform distributed torque qω

The initial and final solutions in terms of curvature in the z-x plane, axial deformation of the steel

beam and torsional curvature at mid-span are reported in Table 3.

The states of strains and stresses reported in Fig. 17, Fig. 18 present dual characteristics with respect

to the case of horizontal load. In fact, in presence of rigid connection, the elastic strains have the same

Fig. 14 Strains (a) and stresses (b) at initial and final time, with kch = 3×105 kN/m2

Fig. 15 Displacements of the beam axis in the x direction at initial and final time, with kch =∞, kch = 3×10
5 kN/m2
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distribution as the sectorial area ω, represented by the dotted line. In all the other cases the strains and the

coordinate ω present some differences, connected to the coupling between the torsional and the flexural

problems.

The stresses present the typical warping distribution, to which the bending stresses have to be added

in the final configuration. The influence of the connector deformability prevails in the zone near the

steel–concrete interface.

The rotations around the z axis and the horizontal displacements are shown respectively in Figs. 19 and 20.

In both cases the connector stiffness determines only the warping contributions, as the transverse

deformability of the connection system has been neglected in each case. The rotations present a low

Fig. 16 Rotation of the beam axis around the z axis at initial and final time, with  kch =∞, kch = 3×10
5 kN/m2

Table. 3 Initial and final values of the curvature in the z-x plane, of the axial strain of the beam and of the
torsional curvature

Ψ2 (L/2,t) [m
–1] Ψ1s (L/2,t) Ψ4 (L/2,t) [m

–2]

kch
 [kN/m2]

t = t0
t = t

∞

RRF
t = t

∞

AAEM
error t = t0

t = t
∞

RRF
t = t

∞

AAEM
error t = t0

t = t
∞

RRF
t = t

∞

AAEM
error

∞ 6.51×10-5 1.63×10-4 1.56×10-4 4.5% 0.00 3.99×10-8 0.00 - −4.69×10-5 −5.97×10-5 −5.88×10-5 1.6%

3×105 5.82×10-5 1.50×10-4 1.43×10-4 4.6% −4.45×10-5−3.49×10-5−3.57×10-5 2.2% −5.30×10-5 −6.34×10-5 −6.26×10-5 1.2%

Fig. 17 Strains (a) and stresses (b) at initial and final time, with kch = ∞
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time increment, due to the coupling between flexural and torsional problems.

On the contrary, horizontal deflections increase of about 150% as in the previous case, as the response

is governed by the same Reduced Relaxation Functions. The initial values are not zero both for the rigid

and for the deformable connections because they are referred to the reference system origin which does

not coincide with the shear centre.

Fig. 18 Strains (a) and stresses (b) at initial and final time, with kch = 3×105 kN/m2

Fig. 19 Rotation of the beam axis around the z axis at initial and final time, with kch = ∞, kch = 3×10
5 kN/m2

Fig. 20 Displacements of the beam axis in the x direction at initial and final time, with kch =∞ , kch = 3×10
5 kN/m2
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5. Conclusions

The long-term analysis of simply supported composite steel–concrete bridge beams with thin-walled

open cross section subjected to skew bending and torsion has been presented. The warping of the

transverse sections and the longitudinal slip at the interface between the steel beams and the concrete

slab have been considered in the analysis, by adopting the sectorial areas theory.

Interesting results have been derived both by numerically solving the integro-differential equations

governing the problem and by adopting approximate methods, showing good agreement between the

solutions. In particular, concrete creep induces a coupling between the flexural and torsional problems.

The treatment presented provides accurate information about the service stage behaviour of composite

beams, highlighting the contribution of the different structural parts (steel and concrete elements) in the

time evolution of the structural response in terms of strains and stresses.

The formulation could be extended by introducing non-linearity of the materials (i.e. concrete

cracking) and by considering redundant static schemes. In this regard, please note that when non-

symmetric cross-section are dealt with, due to the deferred deformation of concrete, the reactions of the

supports produce torsional effects over time in addition to the bending ones already present in the

elastic phase.
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