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An analytical-numerical procedure for cracking and
time-dependent effects in continuous composite

beams under service load
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Abstract. An analytical-numerical procedure has been presented in this paper to take into account the non-
linear effects of concrete cracking and time-dependent effects of creep and shrinkage in the concrete portion
of the continuous composite beams under service load. The procedure is analytical at the element level and
numerical at the structural level. The cracked span length beam element consisting of uncracked zone in
middle and cracked zones near the ends has been proposed to reduce the computational effort. The
progressive nature of cracking of concrete has been taken into account by division of the time into a number of
time intervals. Closed form expressions for stiffness matrix, load vector, crack lengths and mid-span
deflection of the beam element have been presented in order to reduce the computational effort and book-
keeping. The procedure has been validated by comparison with the experimental and analytical results
reported elsewhere and with FEM. The procedure can be readily extended for the analysis of composite
building frames where saving in computational effort would be very considerable.
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1. Introduction

The composite beam (Fig. 1) is one of the economical forms of construction. Combination of steel

and concrete systems has been conceived on the premises that each type of construction offers a natural

advantage which when utilized together results in an efficient system. In continuous composite beams,

the time-dependent effects of creep and shrinkage in concrete can lead to the progressive cracking of

concrete slab near interior supports and result in considerable moment redistribution along with

increase in deflections.

Extensive literature is available on time-dependent analysis of continuous composite beams up to

ultimate load stage. Such procedures have been presented by Sakr and Lapos 1998, Kwak and Seo

(2000, 2002a, 2002b), Mari et al. (2003) and Fragiacomo et al. (2004). The procedures take into

account the progressive cracking. In these procedures, the division of the beam along the length and

across the section is required to take into account the non-linear behaviour under ultimate load but this

division leads to considerable increase in the computational effort.
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Some numerical procedures have been proposed for the time-dependent analysis of continuous

composite beams under service load. A coupled system of equations has been proposed by Dezi and

Tarantino (1993a, 1993b) for inelastic analysis of continuous composite beams by discretising the time

into a number of time intervals. The beam has been considered to be uncracked and is discretised along

its axis. Subsequently, the time-dependent analysis of prestressed continuous composite beams has also

been proposed using the coupled system of equations (Dezi et al. 1995). Cracking is neglected in this

method as it is assumed that prestressing is sufficient to prevent cracking. A simplification in the

method has been proposed later on to carry out the analysis in a single time step (Dezi et al. 1996). A

simplified numerical model using the closed form expressions has been presented to evaluate the creep

and shrinkage effects in composite beams (Amadio and Fragiacomo 1997) neglecting the cracking. 

A simple analytical procedure for the time-dependent analysis of two equal span continuous composite

beams under service load, taking into account cracking, has been proposed by Gilbert and Bradford

(1995). The transformed section approach has been used and the beam is taken as one element without

subdivision along the length and across the cross-section. The analysis is carried out in single time step

and the same crack lengths are assumed for the entire time interval beginning from the time of

application of the load. The progressive nature of cracking i.e., continuous change in crack length of the

beam with time is therefore not taken into account in this approach. Tension stiffening has also been

neglected in the procedure. This analytical procedure has been further extended by Bradford et al.

(2002) making it applicable for two unequal span continuous composite beams. The procedure though

convenient for two-span beams, would tend to become tedious if extended to beams having more than

two spans.

On the other hand application of a purely numerical approach (Sakr and Lapos 1998, Kwak and Seo

2000, 2002a, 2002b, Mari et al. 2003 and Fragiacomo et al. 2004) for analysis at service load in which

the subdivision along the length and cross-section is carried out would require a too large computational effort

and elaborate book keeping in order to determine the crack lengths, stresses etc.

Therefore, for service load, an analytical-numerical procedure has been presented in this paper to take

into account the non-linear effects of concrete cracking and time-dependent effects of creep and shrinkage in

continuous composite beams. The procedure is analytical at the element level and numerical at the

structural level. The cracked span length beam element consisting of uncracked zone in the middle and

cracked zones near the ends has been proposed. Closed form expressions for stiffness matrix, load

vector, crack lengths and mid-span deflection of the beam element have been presented. This approach

reduces considerably the computational effort. The proposed procedure takes into account the progressive

nature of cracking of concrete by division of the time into a number of time intervals. The tension stiffening

effect has also been incorporated in the proposed procedure. The procedure has been validated by

comparison with the experimental results (Gilbert and Bradford 1992), analytical results (Gilbert and

Bradford 1995) and with finite element method. The procedure can be readily extended for analysis of

composite building frames where saving in computational effort would be very considerable.

Fig. 1 Composite beam
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2. Cross-section analysis

A typical composite cross-section along with the strain distribution is shown in Fig. 2. It is assumed

that a plane cross-section remains plane. Slip between the slab and steel section has been neglected

since the earlier experiments and studies (Bradford and Gilbert 1991 and 1992) have shown that the slip

under sustained service load can be neglected provided the shear connectors are at a sufficient close

spacing. The closer spacing is desirable from design considerations also, since this reduces the

deflections. Under service load, the stress- strain relationship of concrete, prior to cracking, is assumed

to be linearly elastic in both compression and tension. The concrete portion across the cross-section is

assumed to be completely cracked, when the top fiber stress of the concrete slab exceeds the tensile

strength of concrete, ft, since the moment required for cracking the slab fully is only slightly larger than

the moment required for cracking the top fiber only (Bradford et al. 2002). The stress-strain

relationship for steel in both tension and compression is also assumed to be linear and stresses in steel

section are assumed to be below the yield stress, this would generally be the case when high strength

steel sections are used. Further, it is assumed that the construction is propped. Since neutral axis varies

with time and is also different for the cracked and the uncracked cross-sections, the top fiber of cross-

section has been selected as the reference axis.

The instantaneous curvature, ρ it, the instantaneous top fiber strain, ε it and the instantaneous top fiber

stress, σ it due to an applied moment Nit (the superscript, it, in quantities, here and subsequently, in other

quantities indicates the instantaneous value of the quantity), at a cross-section (Fig. 2) are given as

(Gilbert 1988).

(1-3)

where Ec= modulus of elasticity of concrete; A = area of the transformed cross-section and B, I = first

and second moment of area of the transformed cross-section about the reference axis (top fiber). It may

be noted that when the concrete portion across the cross-section is completely cracked, the properties of

the cross-section are those of the transformed steel section and reinforcement only with B and I being

evaluated about the top fiber of the composite cross-section. 
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Fig. 2 Strain distribution across the cross-section
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In an intermediate span of a continuous composite beam, there may be two cracked zones near the

ends and an uncracked zone in the middle.

First consider a cross-section in the uncracked zone. Let the instantaneous curvature, the instantaneous top

fiber strain, and the instantaneous top fiber stress be designated as ρun
it , εun

it , σun
it respectively where the

subscript, un in quantities here and subsequently in other quantities indicates that the quantities are

evaluated using uncracked cross-sectional properties. Accordingly, ρun
it , εun

it , σun
it are evaluated from

Eqs. (1)-(3) respectively on using uncracked cross-sectional properties.

Consider now, the effect of creep and shrinkage in this cross-section. Assuming the concrete to be

completely unrestrained, in a time interval beginning from the time of application of load, the change in

curvature and the top fiber strain would be ∆φρun
it and ∆φεun

it + ∆εsh respectively where ∆φ, ∆εsh = creep

coefficient and shrinkage strain respectively at the end of the time interval. To restrain these changes,

gradually applied axial force −∆N and the bending moment −∆M are required which are given as

(Gilbert 1988).

(4,5)

where Ac = area of concrete; Bc, Ic = first moment of area and second moment of area of concrete about

the top fiber and = age-adjusted effective modulus of concrete given as Ec/(1+χ∆φ) in which χ =

aging coefficient. It may be noted that the value of χ is different for creep and shrinkage (Amadiao and

Fragiacomo 1997). However, the use of two values of χ will lead to complex equations, therefore the

same value of χ is considered for creep and shrinkage. The error on this account is likely to be small.

Equilibrium is restored by applying ∆N and ∆M on the cross-section. The change in curvature of the

cross-section, ∆ρun
cs and the change in the top fiber strain of the cross-section, ∆εun

cs due to ∆N and ∆M

are given as

(6,7)

where the superscript, cs in the quantities, ∆ρ, ∆ε and subsequently in other quantities indicates that the

quantities arise from both creep and shrinkage and , , = age-adjusted transformed area, first

moment of area and second moment of area of the uncracked cross-section about the reference axis and

are evaluated using the modular ratio Es/ .

By rearranging Eq. (6),  can be expressed as a sum of two terms (Gilbert and Bradford 1995):

(1) the change in curvature due to creep,  and (2) the change in curvature due to shrinkage,

. The quantities  and  are given as 

(8,9)

where the superscripts c, s in the quantities ∆β, ∆ρ and subsequently in other quantities indicate that

these quantities arise from creep and shrinkage respectively.

Similarly, by rearranging Eq. (7),  can be expressed as a sum of two terms: (1) change in the top

fiber strain due to creep,  and (2) change in the top fiber strain due to shrinkage, . The

quantities  and  are given as
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(10,11)

In indeterminate structures, an additional moment ∆Mid (the superscript, id, here and subsequently, in

other quantities indicates that the quantity arises in indeterminate structures due to redistribution of

forces caused by creep and shrinkage) is generated gradually. The additional curvature, , the

additional top fiber strain,  and the additional top fiber stress,  due to ∆Mid are given by Eqs.

(1) - (3) respectively on replacement of Mit by ∆Mid, Ee by  and A, B, I by , ,  of the

uncracked cross-section. 

 The total curvature, , the total top fiber strain,  and the total top fiber stress,  (the

superscript, t in the quantities here and subsequently in other quantities, indicates the total value of

quantity at the end of a time interval) of an uncracked cross-section at the end of the time interval are

obtained by adding the changes in the quantities in the time interval to their instantaneous values

respectively, as 

; (12)

; (13)

(14)

Next consider a cross-section in the cracked zone. The tension stiffening effect is taken into account

by considering the cross-section in two states, uncracked and cracked. The cracked cross- section in the

uncracked state has the same properties as that of the uncracked cross-section. In the cracked state, as

stated earlier, the properties of the cross-section are those of the transformed steel section and

reinforcement only. 

The instantaneous curvature ρts
it  and instantaneous strain in the top fiber εts

it (the subscript, ts here and

subsequently in other quantities indicates that the tension stiffening effect has been taken into account)

of the cross-section are equal to  and  respectively (the subscript, cr here and

subsequently in other quantities indicates the cracked state of the cross-section) where ξ = interpolation

coefficient and η = 1−ξ. ρcr
it, εcr

it are evaluated from Eqs. (1) and (2) respectively on using the cracked

state properties of the cross-section.

The interpolation coefficient, ξ is evaluated by the following expression, with a minor modification

based on study by Albrecht et al. (2003) to the expression proposed by CEB-FIP Model Code (1990), as 

(15)

where κ = a factor for reduction in interpolation coefficient with time and σun = the tensile stress in the

reference axis to be evaluated from Eq. (3 ) assuming the cross-section to be in the uncracked state.

Based on a study by Albrecht et al. (2003), the value of κ has been assumed to be 1.0 for the

instantaneous analysis and 0.65 - 0.15(∆φ/φu) at any time instant for time-dependent analysis where

φu = the ultimate creep coefficient. 

Consider now, the effect of creep and shrinkage in a cross-section in the cracked zone. In the uncracked

state, the change in curvature and strain is evaluated in the same manner as explained earlier for the

uncracked zone (Eqs. (6)-(11)). In the cracked state, no change in curvature and strain takes place owing to
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creep and shrinkage. However, the changes occur in both the cracked and uncracked states owing to

additional moment, ∆M id (in indeterminate structures). For the cracked state, the additional curvature,

∆ρcr
id and the additional top fiber strain, ∆εcr

id due to ∆Mid are given by Eqs. (1) and (2) respectively on

replacement of Mit by ∆Mid and on using the cracked state properties of the cross-section. The total

curvature, ρts
t  and the total top fiber strain, εts

t  of a cross-section in the cracked zone, at the end of the

time interval are obtained by adding the changes in the uncracked and the cracked state of cross-section

to the instantaneous values and are given as

(16-17)

The total moment, M t  at the end of a time interval at a cross-section, both in the uncracked and the

cracked zone, is expressed as M t = M it = ∆M id.

3. Cracked span length beam element

Fig. 3 shows a typical bending moment diagram of a continuous beam due to vertical load. Concrete

would crack near interior supports if the tensile stress in the top fiber of a cross-section exceeds the

tensile strength of concrete. A typical cracked span length beam element therefore consists of three

zones, two cracked zones of length xA, xB, near ends A and B respectively, and an uncracked zone in the

middle (Fig. 4).

The stiffness matrix and the load vector of a cracked span length beam element are of interest. In

order to evaluate these, releases 1 and 2 are introduced at the ends (Fig. 5).

For the evaluation of stiffness matrix, the flexibility coefficients f11, f12, f21, f22 that are required can be

found by the principle of virtual work using m1 and m2 diagrams (Fig. 6), as

(18-20)

where = moment of inertia of transformed cross-section in the uncracked or

cracked state, about the neutral axis (Fig. 2). 

Eqs. (18)-(20) are to be integrated for the uncracked zone and the two cracked zones. For a cross-

section in the uncracked zone, 1/EcI
na is replaced by 1/EcIun

na whereas for a cross-section in a cracked
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Fig. 3 Typical bending moment diagram of a continuous beam

Fig. 4 Zones in a typical cracked span length beam element
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zone, considering the tension stiffening effect, 1/EcI
na is to be replaced by 1/EcIts

na (= ξ/EcIcr
na +η /

EcIun
na ) .

A single interpolation coefficient has been assumed for each cracked zone. The interpolation

coefficient for cracked zones near ends A and B are termed as ξA, ξB respectively and are evaluated

from Eq. (15) in which σun is replaced by the representative stresses, σun, A, σun,B respectively that are

obtained by dividing the area of stress diagrams σun over crack lengths xA, xB respectively by respective

crack lengths xA, xB. 

The closed form expressions for f11, f12, f21, f22 obtained from Eqs. (18)-(20), incorporating tension

stiffening effect, are given in Appendix A. Stiffness matrix [k] is the inverse of flexibility matrix and the

terms of stiffness matrix, k11, k12, k21, k22 may be expressed in the closed form as

   ; (21-23)

For evaluation of the fixed end moments, additionally the rotations at the ends are required. The end

rotations of the released beam element due to applied load or creep or shrinkage are found by

integrating m1 and m2 diagrams respectively with the corresponding curvature diagram. 

In particular, for the case of uniformly distributed span load, w (Fig. 7), the instantaneous rotations

θA
it  and θB

it  at the ends A and B respectively, may be expressed in the closed form, on integrating m1

and m2 diagrams respectively with the curvature diagram ρit(x) which is obtained from Eq. (1) on

substitution of Mit by wLx/2−wx2/2 where x = distance of cross-section from an end. The expressions

for θA
it  and θB

it  are obtained as 

k11 f22 f11f22 f21f12–( );⁄= k12 k21 f12– f11f22 f21f12–( )⁄= = k22 f11 f11f22 f21f12–( )⁄=

Fig. 5 Cracked span length released beam element

Fig. 6 m1 and m2 diagrams

Fig. 7 Beam element subjected to uniformly distributed span load
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(24)

 

(25)

For a beam element, subjected to uniformly distributed span load, w and also additionally the

instantaneous moments ΜA
it , ΜB

it  at the ends A and B respectively (Fig. 8), the instantaneous rotations

θA
it, θB

it  may be expressed in the closed form, on integrating m1 and m2 diagrams respectively with

ρ it(x), which is obtained from Eq. (1) on substitution of Mit by RB
it x + MB

it − wx2/2 and RA
it x − MA

it −

wx2/2 respectively where RA
it ,  RB

it = the instantaneous reactions at the ends A and B respectively and

x = distance of cross-section from end B for θA
it  and from end A for θB

it .  The expressions for θA
it  and θB

it

are obtained as

(26)

(27)

The first terms in Eqs. (26) and (27) are the contributions of the uncracked zone and the uncracked

state of the cracked zone whereas the second terms are the contributions of the cracked state of the

cracked zone.

The mid-span deflection, dm of a beam element is also of interest and may be expressed as (Elbadry et

al. 2003):

(28)

For the beam element shown in Fig. 8, instantaneous mid-span deflection dm
it may be expressed in the

closed form, on replacing ρ (x) by ρ it(x), as

(29)

Creep in the concrete increases the curvature of the uncracked zone and the uncracked state of the
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cracked zone by a factor ∆βun
c (Eq. (8) ) which leads to the change in end rotations, ,  if the

ends are not restrained against the rotation. Since the creep does not take place in the cracked state, the

rotations ,  can be expressed from Eqs. (26) and (27) respectively on dropping the second

terms involving the cracked state and multiplying the remaining terms by ∆βun
c ,  as

(30)

(31)

The change in mid-span deflection, , owing to creep can also be expressed similarly from Eq.

(29), as

(32)

Shrinkage in the concrete causes a constant curvature,  (Eq. (9) ) in the uncracked zone and in

the uncracked state of the cracked zone which leads to the change in end rotations, , if the

ends are not restrained against rotations. These rotations may be expressed in the closed from, on

integrating m1 and m2 diagrams respectively with the curvature diagram,  for the uncracked zone

and  for the cracked zone, as

(33,34)

Similarly, the change in mid-span deflection due to shrinkage,  may be expressed in the closed

form from Eq. (28), on replacing ρ(x) by  for the uncracked zone and by  for the cracked

zone, as

(35)

The closed form expression for , the additional mid-span deflection due to , may be obtained

from Eq. (29), on dropping the terms related to w, replacing  by 

(the changes in end reactions and moments resulting from creep and shrinkage) respectively and on

replacing  by  (since  is generated gradually), as

(36)
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Fig. 8 Beam element subjected to uniformly distributed span load and instantaneous end moments
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where = moment of inertia of the uncracked state of a cross-section (having age -adjusted

properties) respectively.

 The total mid-span deflection,  at end of a time interval (beginning from the time of application of

load) consists of dm
it ,∆dm

c ,∆dm
s  and ∆dm

id  and may be expressed as 

(37)

4. Analysis of continuous composite beams

The analysis of continuous composite beams is carried out in two parts. In the first part, instantaneous

analysis is carried out using an iterative method (Ghali et al. 2002) to establish the instantaneous crack

lengths. In the second part, time-dependent analysis is carried out by dividing the time into a number of

time intervals. The cracked span length beam elements along with the closed form expressions are used

in both the parts.

4.1 Instantaneous Analysis

An iterative process is required to establish the instantaneous crack lengths, interpolation coefficients

and bending moment at time t1, the time of application of load. For a typical iterative cycle, a

displacement analysis is carried out for the residual force vector, {EF(t1)} (in which, here and

subsequently for other quantities having one term in the parentheses, the term indicates the time instant

at which the quantity is evaluated or assumed to arise) of the continuous composite beam. The revised

force vector, {Mit(t1)}  and the revised displacement vector of continuous

beam, {D*(t1)}  are obtained by adding the force vector and displacement

vectors of this analysis to the force vector and displacement vector at the end of previous cycle. The

superscript, * indicates that the end rotations are based on the displacement analysis.

Based on the revised force vector, {Mit(t1)}, the revised crack lengths of beam elements, xA(t1), xB(t1)

are established by locating the section at which the tensile stress in the top fiber,  is equal to the

tensile strength of concrete, ft(t1). For the beam element shown in Fig. 8, the stress  for a cross-

section at distance x from end A is obtained from Eqs. (2) and (3), on substitution of  by

, as

(38)

where ; ;  in

which .

The crack lengths  can now be expressed in the closed form, on equating  with

ft(t1), as

(39)
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The interpolation coefficients ξA(t1), ξB(t1) are evaluated from Eq. (15) on replacing  ft and by ft(t1)

and σun by σA,un(t1), σB,un(t1) respectively which can be expressed in the closed form as

(41)

(42)

Changes in crack lengths and end rotations lead to the difference between the displacement vector,

{D*(t1)} obtained from the displacement analysis and the displacement vector, {D(t1)}({D(t1)}
T

= { }) obtained by the integrating the curvature diagram with m1 and m2 diagrams (see

Eqs. (26) and (27) ). This difference or error in displacement vector, {ed(t1)} (={D(t1)}-{D*(t1)}) leads

to the residual force vector, {eF(t1)}(=[k(t1)]·{ed(t1)}), where [k(t1)] can be evaluated from Eqs. (21)-(23).

The residual force vector of the members, {eF(t1)} are assembled to form the residual force vector, {EF(t1)}

of the continuous composite beam. {EF(t1)} should be within some permissible limit (Ghali et al. 2002)

for the iterative process to terminate, typically , where

{MF
0(t1)} = fixed end force vector for first iteration (zero crack length). Otherwise a new cycle is

started.

4.2 Time-dependent analysis

The progressive nature of cracking in beams with time is shown in Fig. 9. This results in change in

creep and shrinkage characteristics of beams with time. In order to account for these changes with time,

the time-dependent analysis is carried out by dividing the time into a number of time intervals. In a time

interval, the crack length is assumed to be constant and equal to that at the beginning of the time

interval (Fig. 9). The change in instantaneous bending moment, ∆Mit (resulting from the change in

crack length) and ∆Mid are assumed to arise at the specified instants of time t1, t2,.....tj (Fig. 10). In order

to have common notation for the instantaneous analysis and the time-dependent analysis, Mit(t1) is
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Fig. 9 Progressive nature of cracking
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redesignated as ∆Mit(t1) and the instantaneous curvature, instantaneous top fiber strain, instantaneous

top fiber stress at time t1 are designated as ∆ρit(t1), ∆ε
it(t1), ∆σ

it(t1) respectively.

The displacement method has been used for the time-dependent analysis also in which the fixed end

forces owing to creep and shrinkage and stiffness matrix of a beam element for a time interval are

required. 

Consider the first time interval (t1, t2). For the evaluation of the fixed end forces and the stiffness

matrix, the cracked span length released beam element is considered. Owing to the creep in the cross-

section of uncracked zone and uncracked state of the cracked zone, the curvature ∆ρit
un(t1) changes by a factor

∆β c
un(t2, t1, t1)  (see Eq. (8)), leading to the change in curvature ∆ρc

un(t2, t1, t1) (  ) in

which, here and subsequently for other quantities having three terms in the parentheses, the first and

second terms indicate the time of the end and the beginning of the interval (for which the change in a

quantity is evaluated) respectively and the third term indicates the time of initiation of a cause from

which the change arises. The cause may be either application of a moment or the shrinkage. Presently

the quantity is the curvature and cause is the application of the moment . The factor

 is given as −  in which, here and subsequently for other

quantities having two terms in the parentheses, the first term indicates the time instant at which a

quantity is evaluated whereas the second term indicates the time of initiation of the cause owing to

which the quantity arises. The cause may be either application of the moment or shrinkage or gradual

application of unit load (required for evaluation of age-adjusted flexibility matrix and hence stiffness

matrix) or application of stress (required for evaluating ). The factor  is evaluated from

Eq. (8) in which ∆φ is replaced by  and the age-adjusted cross-sectional properties are

evaluated using the modular ratio . In turn,  is evaluated using  and

. It may be noted that = 0. As stated earlier, in the cracked zone there is no change

in curvature of the cross- section in the cracked state. The changes in the rotations of the released beam

element at end A,  and at end B,  resulting from  are

evaluated from Eqs. (30) and (31) respectively in which ∆βun
c is replaced by .

Shrinkage is assumed to start from time t1, the time of application of first load. Owing to the

shrinkage, the change in curvature,  of a cross-section of uncracked zone and the

uncracked state of the cracked zone is given as . The quantity  is

evaluated from Eq. (9) on replacing ∆ε sh by ∆ε sh(t2, t1) and the age-adjusted properties are used in a

manner similar to that described earlier for . Here again, it may be noted that

 and also that, in the cracked zone there is no change in curvature of the cross-section
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Fig. 10 Time history of generation of moments and contributing moments in a time interval
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in the cracked state. Changes in the end rotations of the released beam , 

resulting from  are evaluated from Eqs. (33) and (34) respectively in which  is

replaced by .

The total change in end rotations of the released beam element,  and ,

due to creep and shrinkage in the first time interval are now given as

(43)

(44)

where the Prime on the third term in the parentheses of the quantities ,  and in other

quantities mentioned subsequently indicates more than one cause, the time of initiation of which are

indicated by the third term in the parentheses of the quantities on the right hand side of the equations.

Presently the causes are: (1) creep due to moment,  applied at time t1 and (2) shrinkage beginning

from time t1.

The vector of fixed end forces, { } required to restrain these changes in end rotations are

given as { } where = { , } and the age-

adjusted stiffness terms  are evaluated from Eqs. (21) - (23) on replacing  by

.

These vectors of fixed end forces of beam elements are assembled and a displacement analysis is

carried out using the age-adjusted stiffness matrices. This displacement analysis leads to the moment,

 at a section. The total bending moment, Mt(t2) at a cross-section of a beam element at the end

of first time interval is given as .

The deflection at mid-span of a beam element, dm
t (t2) at the end of the first time interval is obtained

from Eq. (37), as 

(45)

where , ,  and  are

obtained from Eqs. (29), (32), (35) and (36) respectively on replacing Ec, ,

xA, xB, ξA, ξB by Ec(t1), ,

 respectively and ,  by (t2, t1, t1), (t2, t1, t1) respectively.

The revised crack lengths are established by locating the cross-section, at which the tensile stress in

the top fiber,  is equal to the tensile strength of concrete, ft(t2), as is done for instantaneous

analysis. First the stress  is expressed in the same form as Eq. (38). On using Eq. (10) for

evaluation of and (t2, t1)(= (t1) (t2, t1)) and  (t1, t1)(= (t1) (t1, t1)), the stress

, may be expressed from Eq. (14) as 

(46)

Further, on using Eq. (2) for evaluation of , Eq. (11) for evaluation of  and ,
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and rearranging the terms, Eq. (46) may be expressed in the same form as Eq. (38):

(47)

where a(t2), b(t2), c(t2) are given in Appendix B

Since Eq. (47) is of the same form as Eq. (38), the crack lengths xA(t2), xB(t2) and the representative

stress, σA,un(t2), σB,un(t2) are obtained from Eqs. (39)- (42) respectively on replacing the terms in the

parentheses t1 by t2. 

Now consider the second time interval (t2, t3). In addition to the two forces, ∆Mid(t1) generated at time

t1 and ∆Mid(t2) generated at time t2, a force ∆Mit(t2) that results from change in crack lengths in the

previous time interval (t1, t2) needs to be considered in this time interval (t2, t3). Thus creep in this

interval is caused due to one force (∆Mit(t1)) generated at time t1 and two forces (∆Mit(t2), ∆Mid(t2))

generated at time t2 (Fig. 10). The bending moment, ∆Mit(t2) is obtained by carrying out a displacement

analysis for which the fixed end force vector is taken equal to the change in fixed end forces owing to

change in the crack lengths. 

Further analysis proceeds in the similar manner as explained for the first time interval. In the ith time

interval (ti, ti+1), there are 1+2(i-1) number of forces causing creep as shown in Fig. 10. The creep effect

of 1+2(i-1)number of forces and the shrinkage effect can be evaluated in a similar manner as explained

for the first time interval. The total deflection and the stress at the top fiber of a cross-section can be

expressed in a form similar to that of Eq. (45) and (47) respectively. The number of time intervals is

decided on the criteria that the change in the values of moments, M and mid-span deflections, dm for

any span, with increase in number of time intervals, should not be more than 1%.

5. Validation and numerical study

In order to validate the proposed procedure, first, the results have been compared with the

experimental results reported by Gilbert and Bradford 1992 for two two-span continuous composite

beams B1, B2 of length L1 = L2 = 5.8 m [Fig. 11(a)]. The relevant cross-sectional properties of the

beams are shown in the Fig. 12 and Table 1. The beam B1 was subjected to a superimposed uniformly

distributed span load (w) of 4.45 kN/m in addition to the dead load (1.92 kN/m) whereas beam B2 was

subjected to dead load only. The beams were tested for a period of 340 days and the mid-span

σun

t
t2( ) a t2( )x

2
b t2( )x c t2( )+ +=

Fig. 11 Longitudinal profile of (a) beams B1, B2, B3, B4; (b) beam B5; and (c) beam B6 (load case 1)
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deflections of beams were measured during the test.

The mid-span deflections obtained by the proposed procedure have been compared with the mid-span

deflections reported by the above experimental study and also with the analytical results of Gilbert and

Bradford (1995). The values obtained from the proposed procedure considering tension stiffening (TS)

and creep effect of ∆M id (CM) are in reasonable agreement with the reported experimental values of

mid-span deflections (Fig. 13). The values of mid-span deflections obtained from the proposed

procedure for both the beams are lower than the analytical values reported by Gilbert and Bradford

1995. The higher values of analytical procedure can be ascribed to: (1) neglect of TS, (2) neglect of CM

and (3) the manner in which the crack length is established i.e., same crack length is assumed for the

entire time interval which begins from the time of application of load. Therefore two more sets of

results were obtained from the proposed procedure: (1) neglecting TS and considering CM and (2)

neglecting both TS and CM. These deflections are also shown in Fig. 13. As expected, the values

obtained from the proposed procedure now are closer to the analytical results.

In order to study the effect of tension stiffening further, the instantaneous and long-term mid-span

Fig. 12 Cross-section of beams B1, B2, B3, B4, B5 and B6

Fig. 13 Comparison of mid-span deflections of beams B1 and B2
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deflections have been obtained for other two-span continuous composite beams of different span and

span ratio [Figs. 11(a) and 12]. These beams are designated as B3 and B4. Beam B3 is symmetrical

with span lengths L1 = L2 = 6.0 m, whereas beam B4 is unsymmetrical with span lengths L1 = 6.0 m;

L2 = 7.5 m. The cross-sectional properties of both the beams are the same and given in Table 1. Mid-

Table 1 Cross-sectional properties of beams considered for validation and numerical study

Beam
b 

(mm)
Dc

(mm)
Ds

(mm)
dsr

(mm)
Ass

(mm2)
Asr

(mm2)
Iss

(mm4)
ft

(N/mm2)
Ec

(N/mm2)
Es

(N/mm2)
∆φ ∆εsh

B1,B2 1000 70 203 15.0 3230 113 23.6×106 -3.0 22000 2×105 1.68 0.00052

B3,B4 1000 100 254 15.0 3620 113 40.04×106 -3.0 25000 2×105 2.00 0.0003

B5 1000 75 254 15.0 3210 254 34.04×106 -3.0 22600 2×105 1.74 0.0003

B6 1000 75 254 15.0 3210 254 34.04×106 -3.0 22600 2×105 1.74 0.0003

Fig. 14 Effect of cracking and tension stiffening on mid-span deflections of (a) beam B3; (b) shorter span of
beam B4; (c) larger span of beam B4
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span deflections of the beams are obtained from the proposed procedure for three cases: (1) neglecting

cracking, (2) considering cracking but neglecting TS and (3) considering both cracking as well as TS.

The beams have been subjected to a loading range, which varies from the cracking load (the load at

which the first crack occurs at the mid-support at the time of application of load) to twice the cracking

load. These deflections are shown in Figs. 14(a) to 14(c). It can be observed from these figures that

there is a considerable effect of tension stiffening on both the instantaneous as well as long-term mid-

span deflections of the beams. The effect increases with the increase in loading on the beam. For the

example considered, the maximum effect is up to 23.1% for the shorter span in unsymmetrical beam.

Next, the results obtained from the proposed procedure have been validated by comparison with those

obtained from ABAQUS (a finite element software), for a three span beam designated as beam B5 [see

Figs. 11(b), 12 and Table 1]. Two types of meshes, fine and coarse have been considered. The fine mesh

(Fig. 15) for the entire composite beam consists of 160(40×4) shell elements (S4R elements) and 40

beam elements (B31OS elements) whereas the coarse mesh consists of 40(20×2) S4R elements and 20

B31OS elements. The condition of no slip between the slab and the steel section is achieved by using

multipoint constraints (MPC’S), of type BEAM, between corresponding shell and beam elements.

Creep of the concrete is taken into account by modeling concrete as viscoelastic material in time domain

whereas shrinkage is taken into account by applying equivalent temperature loading (temperature and

coefficient of thermal expansion are assumed to vary in such a manner that the thermal strain of concrete at

any instant of time is equal to ∆εsh). Considering the fact that the viscoelastic material model cannot be

combined with the cracking in ABAQUS, two type of analyses have been considered: (1) instantaneous

analysis considering cracking, (2) time-dependent analysis neglecting cracking. For each analysis,

w = 22 kN/m is considered.

First, consider analysis 1. w is assumed to be applied at 3 days. The values of bending moment, MBC

and dm of beam AB using fine and coarse meshes are found to be 38.14 kN-m, 38.26 kN-m respectively

and 2.91 mm, 2.87 mm respectively. Therefore, the fine mesh is adequate and is considered for

validation. The values of MBC and dm obtained from the proposed procedure for analysis 1 are 38.27

kN-m and 2.68 mm respectively. The percentage differences in MBC and dm are 0.33% and 8.02%

respectively. Now consider analysis 2. w is assumed to be applied at 28 days. The values of bending

moment, MBC and dm for span AB obtained from ABAQUS and proposed procedure are 54.29 kN-m,

51.66 kN-m respectively and 4.31 mm and 3.92 mm respectively. The percentage differences in MBC

and dm are 4.44% and 9.05% respectively. Therefore, for both the analyses, the results obtained from

the proposed procedure (PP) are in reasonable agreement with the results obtained from ABAQUS.

Major portions of the differences between the results may be due to the consideration of biaxial state of

stress in ABAQUS and due to introduction of MPC’s (type BEAM) between only one node each of

Fig. 15 Finite element mesh of entire composite beam B5: (a) shell elements in slab; and (b) nodes in the
cross-section
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adjacent shell elements and a beam element (only available nodes for the connection in the chosen finite

element model) across a cross-section. Further, in analysis 2, some difference would also result from

choice of the same value of χ for creep and shrinkage. However, this difference is likely to be small.

It may be noted that the total number of degrees of freedom for the composite beams in the proposed

procedure is 12 whereas the corresponding number of degrees of freedom for ABAQUS is 1517.

Therefore, the computational effort required for the proposed procedure is a small fraction of that

required for the finite element analysis. 

Further numerical studies have been carried out for a five span beam (Beam B6) .The cross-sectional

properties of the beam are listed in Table 1. The beam is subjected to different load cases. In each case

some spans are assumed to be subjected to only self weight, wd = 2.4 kN/m and other spans are

assumed to be subjected to self weight, superimposed dead load and live load, wt = 18 kN/m. The load

case 1 is shown in Fig.11(c) where spans AB, CD, EF are subjected to wd, whereas spans BC and DE

are subjected to wt. In load case 2, spans BC and DE are subjected to wd, whereas spans AB, CD and EF

are subjected to wt. In load case 3, spans AB and EF are subjected to wd, whereas spans BC ,CD and DE

are subjected to wt. Taking into account the symmetry of the beam, moments MBC and MCB along with

mid-span deflection, dm of spans AB, BC and CD have been presented in Table 2. It is observed from

the results that, due to time-dependent effects of creep and shrinkage, the increase in moment, MBC is up

to 68.31% (load case 3) whereas MCB increases by up to 18.88% (load case 1). The increase in positive

mid-span deflection is up to 48.16% (for span AB in load case 2). Therefore, there is a considerable

redistribution of moments and change in deflections due to creep and shrinkage.

6. Conclusions

An analytical-numerical procedure has been presented in this paper to take into account the non-

linear effects of concrete cracking and time-dependent effects of creep and shrinkage in the concrete

portion of the continuous composite beams under service load. The procedure is analytical at the

element level and numerical at the structural level. Closed form expressions for stiffness matrix, load

vector, crack lengths and mid-span deflection of the cracked span length beam element have been

presented. The results obtained from the proposed procedure are shown to be in reasonable agreement

with the experimental, analytical and finite element results. It is concluded from the numerical study

carried out that the effect of tension stiffening on mid-span deflection of composite beams can be

significant. The proposed procedure can be readily extended for the analysis of composite building

Table 2 Results of numerical studies for beam B6

Load Case Analysis Type
Moment (kN-m) *Deflection dm (mm)

MBC MCB Span AB Span BC Span CD

1
Instantaneous 26.58 20.18 -1.13 3.77 -2.23

Time-dependent 41.59 31.53 -0.59 4.74 -2.84

2
Instantaneous 26.50 20.19 5.40 -2.75 4.28

Time-dependent 41.47 31.54 8.06 -3.89 5.79

3
Instantaneous 22.25 38.34 -0.78 2.64 1.32

Time-dependent 37.45 49.25 -0.15 3.27 1.96

*positive value: downward deflection 
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frames where saving in computational effort would be very considerable.
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Notation

A, B, I : area, first moment of area and second moment of area of transformed
section about reference axis, respectively

Ac, Bc, Ic : area, first moment of area and second moment of area of concrete about
reference axis, respectively
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: age-adjusted transformed area, first moment of area and second moment
of area about reference axis, respectively

b, Dc : width and depth of concrete
Asr, dsr : area of reinforcement in slab and its depth from top fiber, respectively
Ass, Iss, Ds : area, moment of inertia and depth of steel section, respectively 

: displacement vectors of continuous beam during an iterative cycle at time t1
: mid-span deflections

Ec, Es : modulus of elasticity of concrete and steel, respectively
: age-adjusted effective modulus of concrete at time ti for loading at time tj

{dcs(ti+1, ti)} : displacement vector for ith time interval
{ed(t1)} : error in displacement vector of beam element, during an iterative cycle

at time t1
{eF(tj)}, (EF(tj)} : residual force vector of a beam element and continuous beam respectively,

during an iterative cycle at time t1
ft(tj) : tensile strength of concrete at time 
f11, f12, f21, f22 : flexibility coefficients 

: moment of inertia of cross-section about neutral axis
: age-adjusted moment of inertia about neutral axis

k11, k12, k21, k22 : stiffness coefficients
[ ] : stiffness matrix at time tj
[ ] : age-adjusted stiffness matrix for ith time interval
L, L1, L2 : span lengths
m1, m2 : moment at a section due to unit end moments
{Mit(tj)} : force vector during an iterative cycle at time t1

: vector of fixed end moments required to restrain the rotations owing to
creep and shrinkage in ith time interval

{MF
0 (t1)} : fixed end force vector in first iterative cycle at time t1

: shears at ends

: moments at ends

: crack lengths at time tj

: length L-xA(tj) and L-xB(tj) respectively
w : uniformly distributed span load

: instantaneous end rotations

: curvatures at time tj

: top fiber strains at time tj

: top fiber stresses at time tj

: interpolation coefficients at time tj
φu : vultimate creep coefficient
∆φ(ti, tj) : creep coefficient at time ti for load applied at time tj
∆εsh(tj, t1) : shrinkage strain at time tj for shrinkage beginning from time t1
χ(ti, tj) : aging coefficient corresponding to ∆φ(ti, tj)
∆Mit(tj) : change in instantaneous bending moment at time tj
∆Mid(tj) : additional moment generated in indeterminate structure at time tj due to

creep and shrinkage
∆βc

un : factor by which a curvature changes due to creep
∆βc

un (ti, tj) : ∆βc
un at time ti for loading at time tj

∆βc
un (ti+1, ti, tj) : ∆βc

un (ti+1, tj) - ∆βc
un (ti, tj)
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D
*
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dm
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Iun
na

Icr
na

,

Ie un,

na
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θ A
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θ B
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θ A

it *,
θ B
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ρun
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it
tj( ) ρts
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tj( ) ρun

t
tj( ) ρts

t
tj( ), , , ,

εun
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tj( ) εcr
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: changes in curvature of a cross section

: curvature, top fiber strain and top fiber stress respectively due to ∆Mit(tj)

: changes in curvature in the ith time interval due to creep effect of a
moment applied at time, tj and beginning of shrinkage at time t1

: end rotations due to ∆Mit

: change in end rotations in ith time interval due to creep effect of moment
applied at time tj

: change in rotations at ends of released beam element in ith time interval
due to shrinkage beginning from time  t1

: total change in rotation at ends A and B of released beam in the ith time
interval due to more than one number of cause

: curvatures due to 

: top fiber strains at time tj due to 

: top fiber stress due to 

Subscript
un : uncracked cross section or uncracked state
cr : cracked state
ts : tension stiffening
A, B : ends A and B respectively

Superscript
it : instantaneous value
id : indeterminate
t : total value
c,s : creep and shrinkage respectively
cs : both creep and shrinkage

" : more than one cause
* : displacement analysis 

Appendix A

The flexibility coefficients f11, f12, f21, f22 are expressed in closed form as 

(A1)

(A2)

(A3)
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∆ρun
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Appendix B

The coefficients a(t2), b(t2), c(t2) are given as

(B1)

(B2)

(B3)

(B4)

(B5)

The quantity  is evaluated in the same way as p(t1) using age-adjusted cross-sectional

properties.
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